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Abstract
Most studies of continuous health-related outcomes examine differences in mean levels (location) of the outcome by expo-
sure. However, identifying effects on the variability (scale) of an outcome, and combining tests of mean and variability 
(location-and-scale), could provide additional insights into biological mechanisms. A joint test could improve power for 
studies of high-dimensional phenotypes, such as epigenome-wide association studies of DNA methylation at CpG sites. One 
possible cause of heterogeneity of variance is a variable interacting with exposure in its effect on outcome, so a joint test of 
mean and variability could help in the identification of effect modifiers. Here, we review a scale test, based on the Brown-
Forsythe test, for analysing variability of a continuous outcome with respect to both categorical and continuous exposures, 
and develop a novel joint location-and-scale score (JLSsc) test. These tests were compared to alternatives in simulations 
and used to test associations of mean and variability of DNA methylation with gender and gestational age using data from 
the Accessible Resource for Integrated Epigenomics Studies (ARIES). In simulations, the Brown-Forsythe and JLSsc tests 
retained correct type I error rates when the outcome was not normally distributed in contrast to the other approaches tested 
which all had inflated type I error rates. These tests also identified > 7500 CpG sites for which either mean or variability in 
cord blood methylation differed according to gender or gestational age. The Brown-Forsythe test and JLSsc are robust tests 
that can be used to detect associations not solely driven by a mean effect.
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Introduction

Most investigations into health-related phenotypes have 
focused on determining whether an exposure affects the 
mean of a phenotype (location test). However, assessing 
whether an exposure affects the variability of a phenotype 
(scale test) could also provide insight into the biological 
mechanisms that control phenotypic variation and disease 

pathogenesis [1–3]. When the exposure is randomization 
within a randomized controlled trial (RCT), variance differ-
ences in the outcome can also be used to indicate the degree 
to which there is heterogeneity in response to treatment, and 
thus potential for improving treatment outcomes through 
patient stratification [4]. Analogously, variance differences 
by level of a genotype being employed as an instrumental 
variable within a Mendelian randomization [5] framework 
can provide evidence of violation of the assumption required 
for identification of an average treatment effect [6].

The potential of combining a location test with a scale test 
(joint location-and-scale test) has yet to be fully explored, 
especially in the context of high-dimensional phenotypes 
where these tests could be used to improve power. There 
are several ways in which an exposure could be associated 
with outcome variability, including: direct cause (expo-
sure causes outcome variability); indirect cause (a com-
mon cause of exposure and outcome also causes outcome 
variability); interaction, where a third variable modifies the 
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effect of exposure on outcome. Thus joint location-and-
scale tests could be used to examine evidence for either a 
mechanistic effect or the existence of interactions [7], with 
further research needed to clarify exactly how the exposure 
affects the outcome variability. One example where these 
approaches could be particularly useful is for epigenome-
wide association studies (EWAS), where DNA methylation 
at CpG (cytosine followed by a guanine) sites across the 
genome are tested for association with an exposure (Sup-
plementary Text) [8, 9]. Differences in variability in meth-
ylation levels is key to much contemporary theorising in 
this area [1, 10].

A range of statistical tests have been developed to inter-
rogate whether an exposure affects variability of an outcome, 
specifically in the context of evaluating variability differ-
ences for a continuous variable between groups of individu-
als [11]. Li et al. [12] compared approaches for assessing 
methylation variability in the EWAS setting, and showed 
that the Brown-Forsythe test [13] performed well compared 
to alternative approaches. Since this test can be re-formu-
lated in a regression framework [14, 15], it can be extended 
to continuous exposures. Methods for jointly testing mean 
and variability have also been proposed [7, 14–19], although 
these approaches are either limited by sensitivity to distri-
butional assumptions or are restricted to binary exposures.

Here we review variability tests, specifically the Brown-
Forsythe test, and develop a novel joint location-and-scale 
test, which can be used for both continuous and categori-
cal exposures. We performed a simulation study to compare 
these approaches to alternative tests, and then applied these 
modelling approaches to investigate the effect of gender and 
gestational age on cord blood DNA methylation mean and 
variability.

Methods

Modelling approaches

Location tests

Linear regression is commonly used to assess mean differ-
ences in methylation by an exposure. That is,

where yi is the outcome for the i-th individual (e.g. DNA 
methylation levels in epigenome-wide association studies), 
x
′
i
 is the exposure(s) for the i-th individual and �i ∼ N(0, �2

�
) . 

A z-test can then be used to test the null hypothesis that 
the mean difference is zero (i.e. that � =0). The assump-
tion of Normality of the errors is necessary for correct finite 
sample inference (p-values of test statistics and confidence 

(1)yi = � + x�
i
� + �i , i = 1,… , n ,

intervals)-however, for large sample sizes, non-normality of 
residuals (e.g. residuals following either a uniform or a beta 
distribution [20]) does not materially affect coverage (dis-
cussed further in the Supplementary Text). Alternatively, 
the variance sandwich estimator is robust to general forms 
of heteroskedasticity, i.e. when the variance of the �i varies 
with the values of xi.

Scale tests

There are several statistical tests for assessing variability 
differences of continuous outcome by a categorical exposure 
[11]. Bartlett’s test [21] is perhaps the most well-known of 
these tests (Supplementary Text) and has been used to ana-
lyse high-dimensional phenotypes [3, 22]. However, this test 
is known to be very sensitive to outliers and non-normality 
of the outcome, which is a major cause of concern when 
analysing data like DNA methylation. The Brown-Forsythe 
test [13], on the other hand, has been shown in simulations 
to be relatively robust to non-normality of the outcome and 
outliers [12]. This test is essentially a one-way analysis of 
variability of the variable Zj = |Yj −Mj| , where Yj is the out-
come (e.g. methylation) of the j-th category of exposure and 
Mj is the population median outcome in the j-th category of 
exposure. Let Yj ∼ N

(
�j, �

2
j

)
 , where �j and �2

j
 are the popu-

lation mean and variance of Yj . Given a sample of n indi-
viduals from this population, the test statistic for 
H0 ∶ �2

1
= �2

2
= ⋯ = �2

k
 is given by

where k is the number of exposure categories, nj is the num-
ber of individuals in the sample in the j-th exposure cat-
egory, zij = |yij − ymj| , where yij is the outcome for the i-th 
individual in the j-th category of exposure and ymj is the 
sample median outcome in the j-th category of exposure and 
zj and z are the sample mean in the j-th category of exposure 
and overall sample mean of zij , respectively. Under the null 
hypothesis, H0 ∶ �2

1
= �2

2
= ⋯ = �2

k
 , BF ∼ Fk−1.n−k.

We now consider data where the covariate is not (neces-
sarily) categorical, i.e. instead of yij being the outcome for 
the i-th individual in the j-th group (as above), we have yi as 
the outcome for the i-th individual, and xi as the value of the 
covariate for that individual. The Brown-Forsythe test can be 
re-formulated as a two-stage approach [14, 15]:

	 (i)	 Obtain the absolute values of the residu-
als from a least absolute deviation regression, 
di = |yi − (�̂ + x�

i
�̂)|.

	 (ii)	 Test for an association between the di ’s and a function 
of the x′

i
 ’s using a regression F-test.

(2)BF =
(n − k)

∑k

j=1
nj
�
zj − z

�2

(k − 1)
∑k

j=1

∑nj

i=1

�
zij − zj

�2 ,
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To show that this reformulation is the same as (Eq. 2) 
in the case of a categorical covariate, note that the least 
absolute deviation regression predicted value �̂ + x�

i
�̂  is the 

median of y in each category of the covariate. Thus, the 
absolute value of the residuals is the absolute value of devia-
tions from the median, and thus regressing di on xi gives the 
regression F-test of the same form as in (Eq. 2).

Since this regression framework does not depend on the 
exposure ( xi ) being categorical, it can also be applied to 
continuous exposures. Indeed, this approach has the same 
structure as the Glejser and Bresuch-Pagan tests of heter-
oskedasticity [23, 24].

Joint location‑and‑scale tests

If the outcome data are symmetrically distributed then the 
p-values from the location and scale tests are independent 
and can be combined using Fisher’s method (JLSp) [14, 
15]. However, often high-dimensional phenotypes are not 
all symmetrically distributed (e.g. DNA methylation at CpG 
sites), which will likely lead to correlated p-values for at 
least some markers. Other alternative approaches for jointly 
testing for mean and variability effects include likelihood-
ratio tests (LRT) comparing linear mixed models with and 
without including a fixed-effect and random-effect for the 
exposure (LRTmv) and double generalized linear mixed 
models (DGLM) [17, 18, 25] (further details in Supplemen-
tary Text). However, these tests are also sensitive to devia-
tions from normality and outlying values [17].

To alleviate some of the issues involved in testing for 
mean and variability effects simultaneously, we have devel-
oped a joint location-and-scale score test (JLSsc). This 
approach essentially combines a location test and scale test, 
while accounting for the correlation between these tests.

For exposure X and outcome Y, we consider the condi-
tional mean and variance specifications

and propose to test the joint null hypothesis 
H0 ∶ � = 0, �2(x) = �2.

For a sample 
{
yi, x

�
i

}n

i=1
 , the conditional linear model 

specification is then given by

with E
(
�i|xi

)
= 0 . The homoskedasticity restriction, 

�2(x) = �2 , is commonly tested using the Breusch-Pagan 
auxiliary linear specification

E(Y|X = x) = � + x��

Var(Y|X = x) = �2(x)

(3)yi = � + x�
i
� + �i

(4)𝜀̂2
i
= 𝛾 + x�

i
𝛿 + ui,

where 𝜀̂i is the linear regression residual from (Eq. 3). The 
nR2 from linear regression of(Eq. 4) is the score test for 
H0 ∶ � = 0 in this linear specification, but which covers the 
null in the more general specification that �2(x) = h

(
� + x�

i
�
)
 

with h(.)  any positive function, for further details see the 
Supplementary Text.

The Breusch-Pagan score test only considers the speci-
fication under the null, as we do below, in which case 
ui = 𝜀̂2

i
− 𝛾 , and the properties of  ui under the null are 

therefore simply governed by the properties of the condi-
tional moments of Y given X.

Our test procedure is to combine the linear model and 
auxiliary equations,

where y = 1

n

n∑
i=1

yi is the sample mean of yi , and test the 

joint null H0 ∶ � = � = 0 , which is a test for our general 
hypothesis H0 ∶ � = 0, �2(x) = �2 . For the variance speci-
fication test part we impose the restriction that � = 0 , 
which enhances power.

For our variance estimator under the null to be consist-
ent, as detailed below, we require that, under the null, the 
conditional skewness and kurtosis of Y given X are not a 
function of X. This assumption would automatically be 
satisfied when Y is normally distributed.

Let ỹi = yi − y , x̃i = xi − x and d̃i = ỹ2
i
− �𝜎2 , where 

�𝜎2 =
1

n

∑n

i=1
ỹ2
i
 . Further, let the n × kx matrix X̃ =

[
x̃
�

i

]
  and 

the n vectors ỹ =
(
ỹi
)
 and d̃ =

(
d̃i
)
 . Then the linear regres-

sion estimators for � and � in (Eq. 5) are given by

Let � =

(
�

�

)
, �̂ =

(
�̂

�̂

)
 and �Σ =

1

n

∑n

i=1

�
ỹ2
i

ỹid̃i
ỹid̃i d̃2

i

�
 . A 

consistent estimator for the variance of �̂  under the null 
that � = � = 0 and the additional assumption that the con-
ditional skewness and kurtosis of Y  do not vary with the 
values of X , is then given by

A test statistic for testing for H0 ∶ � = � = 0 , or 
H0 ∶ � = 0 , is then given by

It follows from standard limiting distribution theory 
that, under the null, S

d
→ �2

2kx
 . The proposed test using sta-

(5)
yi = � + x�

i
� + �i

(
yi − y

)2
= � + x�

i
� + ui

𝛽 =
(
X̃�X̃

)−1
X̃�ỹ

(6)𝛿 =
(
X̃�X̃

)−1
X̃

�

d̃ .

(7)Vâr
(
𝜃̂
)
= Σ̂⊗

(
X̃�X̃

)−1
.

(8)S = 𝜃̂�
(
Σ̂−1 ⊗

(
X̃�X̃

))
𝜃̂.
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tistic S (Eq. 8) is a score test based on the joint asymptotic 
distribution of �̂  and �̂ .

Additional terms such as the square of a continuous 
exposure, especially useful for modelling the relationship 
with outcome variability, can be added as part of xi vec-
tor and would be included in both parts of the test. Other 
variables that are expected to affect the outcome but are not 
considered important for testing purposes are regressed out 
of both the outcome and exposure variables by taking residu-
als from linear regression adjusting for these variables prior 
to analysis with JLSsc (see Supplementary Text). Further 
details of JLSsc are discussed in the Supplementary Text, 
including extensions for relaxing the conditional skewness 
and kurtosis assumption and a Brown-Forsythe formulation 
of the approach.

We have developed an R package to perform these tests 
available at: https://​github.​com/​jrs95/​jlst.

Simulation study

We assessed the performance of the location and scale 
tests as well as the joint location-and-scale tests with both 
binary and continuous exposures in a simulation study 
based on methylation data. We assessed the performance 
of linear regression (estimated using ordinary least squares, 
OLS), Bartlett’s test (for simulations with a binary expo-
sure), Brown-Forsythe test, LRT comparing mixed models 
with and without a variability effect (LRTv), JLSsc, JLSp, 
LRTmv and DGLM. For approaches which failed to ade-
quately control type I error rates, we repeated the tests after 
applying M-value (i.e. log2(yi∕(1 − yi)) ) [26] and inverse 
normal rank transformations to the methylation levels. This 
simulation study was performed based on data from the 
Tsaprouni et al. study [27], which investigated the relation-
ship between smoking and DNA methylation (data acces-
sible at NCBI GEO database [28], accession GSE50660).

Type I error simulations were performed by randomly 
generating a binary or continuous exposure (uncorrelated 
with mean or variability of any of the methylation levels) 
and testing the association of this exposure with mean and 
variability of DNA methylation at each CpG site in Tsap-
rouni et al. Although the distribution of DNA methylation 
at some CpG sites is highly skewed or has very thick tails, 
most have skewness between -1 and 1 (67.4%) and kurtosis 
less than 3 (74%). Histograms of the mean, standard devia-
tion, skewness and kurtosis of all CpG sites are shown in 
Figure S1. To generate datasets with varying sample size 
(100, 500, 1000 and 10,000 samples), samples were taken 
with replacement from the Tsaprouni et al. dataset (Supple-
mentary Text). The binary and continuous exposures were 
randomly generated using Ber(0.5) and N(0,1) , respectively. 
Quantile–quantile (QQ) plots were used to assess deviations 
from normality and detect outlying test statistics.

Power simulations were performed using the same expo-
sure distributions as above and setting these exposures to 
affect the mean and variability of methylation. In each simu-
lation replicate, one CpG was selected at random from the 
Tsaprouni et al. dataset, the mean and standard deviation 
of this CpG site were used to set the average methylation 
and to generate mean and variability effects (Supplemen-
tary Text). The mean and variability effects of the exposure 
on methylation were simulated using normal distributions, 
while the residual error was simulated to be either normally 
distributed, heavy-tailed or skewed (Supplementary Text). 
Statistical power was calculated as the proportion of simula-
tion replicates where either the location, scale or joint test 
had p < 1 × 10−7 . For each simulation scenario, 1000 simu-
lation replicates were performed for a sample size of 1000 
observations.

We also performed type I error and power simulations for 
a categorical exposure with three categories ( Bin(2, 0.3)) 
and investigated adding a squared exposure term (i.e. the 
square of the simulated exposure) to the JLSsc approach in 
the continuous exposure (type I error and power) simulations 
(Supplementary Text). Additional power simulations were 
performed where we generated an outlying value (Supple-
mentary Text).

The computational time of the extended Brown-For-
sythe test and JLSsc were compared to their equivalent 
LRTs for 100,000 randomly selected CpGs from the Tsap-
rouni et al. dataset for the binary and continuous exposures 
describe above. This analysis was performed using one core 
(2.6 GHz; 4 GB) on a Linux server.

We set up further simulations to investigate type I error 
distributions, not using the Tsaprouni et al. dataset, but 
instead drawing the outcome variable distribution from a 
Normal (0, 1), a t-distribution with 4 degrees of freedom, 
a log-normal (0, 1) distribution or contaminated Normal 
90% N(0, 1) & 10% N(5, 1) , and the exposure as a binary, 
three-category or a standard Normal variable (Supplemen-
tary Text).

Application to offspring gender and gestational age 
on cord blood DNA methylation

Study population

This study used DNA methylation data generated as part 
of the Avon Longitudinal Study of Parents and Children 
(ALSPAC) [29, 30]. ALSPAC recruited 14,541 pregnant 
women with expected delivery dates between April 1991 
and December 1992. Of these initial pregnancies, there were 
14,062 live births and 13,988 children who were alive at 
1 year of age. Please note that the study website contains 
details of all the data that is available through a fully search-
able data dictionary and variable search tool (http://​www.​

https://github.com/jrs95/jlst
http://www.bristol.ac.uk/alspac/researchers/our-data/
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brist​ol.​ac.​uk/​alspac/​resea​rchers/​our-​data/). Ethical approval 
for the study was obtained from the ALSPAC Ethics and 
Law Committee and the Local Research Ethics Committees. 
Informed consent for the use of data collected via question-
naires and clinics was obtained from participants following 
the recommendations of the ALSPAC Ethics and Law Com-
mittee at the time. Consent for biological samples has been 
collected in accordance with the Human Tissue Act (2004).

As part of the Accessible Resource for Integrated Stud-
ies (ARIES) project (http://​www.​aries​epige​nomics.​org.​uk) 
[31], a sub-sample of 1018 ALSPAC child–mother pairs had 
DNA methylation measured. The ARIES participants were 
selected based on availability of DNA samples at two time-
points for the mother (antenatal and at follow-up when the 
offspring was in adolescence) and at three time-points for 
the offspring (neonatal from cord blood, childhood (age 7) 
and adolescence (age 17)).

Laboratory methods, quality control and pre‑processing

The laboratory methods and quality control procedures 
used have been described elsewhere [32]. In brief, the DNA 
methylation wet laboratory and pre-processing analyses 
were performed at the University of Bristol as part of the 
ARIES project, where the Infinium HumanMethylation450 
BeadChip [33] was used to measure genome-wide DNA 
methylation levels at over 485,000 CpG sites. The methyla-
tion level at each CpG site was calculated as a beta value: 
the ratio of the methylated probe intensity and the overall 
intensity. These beta values range from 0 (no methylation) 
to 1 (complete methylation). The samples were processed 
using functional normalization with the meffil package [34, 
35]. Further quality control procedures are described in the 
Supplementary Text.

Statistical analysis

To investigate the mean and variability effects of gender 
and gestational age (in weeks, Supplementary Text) on cord 
blood methylation, we used the approaches which controlled 
type I error rates without transforming methylation levels, 
namely linear regression (estimated using ordinary least 
squares, OLS), the Brown-Forsythe test, JLSp and JLSsc. 
All analyses were adjusted for cell counts estimated using 
the method described by de Goede et al. for cord blood 
methylation [36]. We further adjusted for 20 surrogate vari-
ables to account for residual batch effects [37]. The gesta-
tional age analysis was further adjusted for offspring gender 
and whether the birth was by caesarean section as well as for 
maternal characteristics: age, smoking, pre-pregnancy BMI 
and weight, parity, education, family social class and alcohol 
intake during pregnancy. All these factors were included 
in all analysis models (i.e. in both stages of the variance 

and joint tests). CpGs were considered to be associated with 
either gender or gestational age if one of the location, scale 
or joint tests had p < 1 × 10−7.

All analyses were performed using R (version 3.5.2).

Results

Simulation study

The linear regression test (estimated using ordinary least 
squares, OLS) of mean differences was not inflated under 
the null of no mean or variability effect even in 100 samples 
(Figs. 1a and S2). Similarly, the Brown-Forsythe variability 
test accurately controlled type I error rates (Figs. 1b and S3). 
Bartlett’s test and LRTv had extreme type I error inflation 
due to the deviations from normality and the existence of 
outlying values in methylation levels (Figure S4). Likewise, 
the test statistics from the likelihood-based approaches for 
joint testing the mean and variability (LRTmv and DGLM) 
were also heavily inflated (Figure S4). The extreme inflated 
type I error rates of these approaches were still present after 
transforming methylation levels using the M-value transfor-
mation (Figure S5) but were no longer present after using an 
inverse normal rank transformation (Figure S6). However, 
when using this transformation a mean effect can induce a 
variability effect (Figure S7), as seen previously [38]. JLSp 
fared better than the aforementioned joint tests in controlling 
type I error rates, although the non-independence of the p
-values did lead to a small amount of type I error inflation 
(Fig. 1c and S8). The JLSsc approach, on the other hand, 
correctly controlled type I error rates (Fig. 1d and S8).

In the power simulations, when there was either a mean 
or variability effect and the underlying data were normally 
distributed, the Brown-Forsythe test and JLSsc were less pow-
erful but still performed well in comparison to the equivalent 
LRT and the alternative approaches (Fig. 2). This is expected 
as the Brown-Forsythe test and JLSsc sacrifice a small amount 
of power under the normal model for robustness to deviations 
from this model. Broadly similar results were found when the 
residual error was heavy-tailed or skewed, when the exposure 
was a categorical variable with three categories (although 
removing outliers [points > 3 standard deviations] in the out-
come is necessary here to retain type I error levels), when a 
squared exposure term was added to JLSsc for a continuous 
exposure (likewise outlier removal in the outcome is necessary 
to retain type I error levels when testing both the exposure and 
the exposure-squared together), and when there was an outlier 
in the dataset (Figures S9-S13). The Brown-Forsythe formula-
tion of the test also performed similarly in the scenarios tested 
(Supplementary Text and Figure S14). The additional type I 
error simulations (not drawing from existing methylation data) 
showed similar results-type I error was correctly controlled by 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.ariesepigenomics.org.uk
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JLSsc, with some inflation of error for JLSp when the mean 
and variance were not independent (e.g. when the outcome 
was drawn from log-normal or contaminated Normal distribu-
tions, Supplementary Text, Figures S15–S17 and Table S1).

The extension to JLSsc relaxing the constant skewness 
and kurtosis assumptions showed lower power than the usual 
version when the assumptions were met (Figure S18), and 
slightly less inflation of p-values when the assumptions were 
not met (Figure S19).

The computational time required to complete each 
approach for 100,000 CpGs with a binary exposure were 
as follows: 22 min for the extended Brown-Forsythe test, 
113  min for LRTv, 16  min for JLSsc and 123  min for 
LRTmv. The relative computation times between the respec-
tive variability and joint tests were even greater when the 
exposure was continuous.

Application to offspring gender and gestational age 
on cord blood DNA methylation

In ARIES, 858 children (417 male and 441 female) were 
available for the analysis of gender, and after excluding 
offspring with missing maternal information we were left 
with 708 children (345 males and 363 females) for the 

analysis of gestational age (mean: 39.5 weeks, standard 
deviation: 1.5 weeks; Table S2). Figures S20 and S21 
show the distributions of skewness and kurtosis across 
methylation sites for the gender and gestational age analy-
ses. These were broadly similar to those from the dataset 
used for the simulation study (Figure S1).

Methylation at 8174 CpG sites were associated with 
gender in cord blood (through the mean, variability or 
joint tests; Fig. 3a and Table S3). Most of these sites 
were identified through a mean difference in methylation 
of males and females (7642 CpGs had a mean difference 
withp < 1 × 10−7 ). 240 CpG sites were associated with a 
variability difference between males and females, of which 
all but 12 were also associated with a mean difference. 
For instance, cg18918831 was more variable in males 
compared to females (Figure S22). Using only the mean 
(regression) and variability (Brown-Forsythe) tests sepa-
rately (taking account of the increasing number of tests 
done by using the cut-off < 5 × 10−8 ) would have identified 
7244 as having either a mean or a variability difference 
(or both). Of these, 6967 (96%) were identified by JLSsc 
which identified an additional 261 sites not identified by 
either location or scale tests (Fig. 4a). Results for JLSp are 
presented in Supplementary Text.

Fig. 1   QQ plots for type I error 
simulations using a binary 
exposure and 1000 samples. a 
linear regression (mean test); 
b Brown-Forsythe (variability 
test); c JLSp (joint test); and d 
JLSsc (joint test)
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Mean methylation at 5359 of these sites were associated 
with gender in previous EWAS (Table S3) [39–42], corre-
sponding to replication rates between 37–69% per EWAS. 
The highest rate was with the only other cord blood study 
[40], and the lowest rate with a study of adult peripheral 
blood [41]. Unexpectedly, however, replication rates above 
54% were observed for a study of fetal brain [42] and periph-
eral blood in adults over the age of 70 [39]. Repeating the 
enrichment analyses of Singmann et al. [41], enrichments of 
the 8174 CpG sites were similarly observed in CpG island 
shores ( p < 2 × 10−15 ; Fisher's exact test) and not among 
CpG sites annotated to genes with sex-hormone functions 
( p > 0.4 ). However, unlike Singmann et al., some enrich-
ment was observed in CpG islands ( p < 5.2 × 10−5 ), not at 
CpG sites annotated to imprinted genes ( p > 0.4 ), and not 
for any Gene Ontology terms (Bonferroni-adjusted p > 0.3 ). 
There was no evidence for enrichment for the three enriched 
GO terms observed by Singmann et al. in adult blood ([41], 
nominal p > 0.1 ) nor any of the top ten enriched GO terms 
observed by Yousefi et al. in cord blood ([40], nominal 
p > 0.2 ). Enrichment methods and gene sets were identical 
to those previously described [41].

Gestational age was associated with cord blood methyla-
tion at 412 CpG sites (Fig. 3b and Table S4). Most of these 

CpG sites (354, 86%) were associated with a mean effect 
of gestational age on methylation, and there were no CpG 
sites with a variability effect with p < 1 × 10−7 . Using only 
the mean (regression) and variability (Brown-Forsythe) tests 
separately (taking account of the increasing number of tests 
done by using the cut-off < 5 × 10−8 ) would have identified 
319 CpG sites as having either a mean or a variability differ-
ence (or both), all of which had a mean effect. Of these, 311 
(97%) were identified by JLSsc (Fig. 4b), which identified 
an additional 29 sites. Results for JLSp are presented in Sup-
plementary Text. The majority of the CpG sites identified 
have been found previously in EWAS of gestational age (402 
CpG sites; Table S4) [42, 43].

Discussion

In this study, we have introduced a framework for test-
ing variability using an extended version of the Brown-
Forsythe test and for jointly testing mean and variability. 
These approaches were compared to the LRTs as well as 
other alternative methods in simulations and were used to 
investigate the effect of gender and gestational age on cord 
blood DNA methylation.

Fig. 2   Power simulation results comparing approaches for identifying CpG sites associated with either a mean and/or a variance effect with the 
exposure at p < 1 × 10

−7 . a & b are plots for a binary exposure and c & d are plots for a continuous exposure
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Without transforming the phenotype to be normally dis-
tributed, the approaches which assume normality of the 
phenotype (Bartlett’s test, LRTv, LRTmv and DGLM) had 
inflated type I error rates when faced with real methylation 
data. Indeed, these approaches essentially became tests of 
deviations from normality and outlying values, which can 
have some utility in identifying outliers caused by disease 
[44]. However, because of these drawbacks these approaches 

are not useful for assessing variability nor joint mean and 
variability effects. Normalizing outcome levels can over-
come this problem, and give rise to nominally correct type-
I error for the joint test. However, this transformation can 
induce mean or variability effects that were not present 
prior to the transformation, and thus may lead to erroneous 
conclusions about which of mean or variability effect (or 
both) was present [38]. In particular, kurtosis and skew of 

Fig. 3   Miami plots for the mean (linear regression estimated using 
ordinary least squares, OLS) and variability (Brown-Forsythe test) 
associations of methylation with gender a and gestational age b. The 

dark red and blue lines represent the p < 1 × 10
−7 threshold and the 

orange points are CpG sites that are associated with a variance effect
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the untransformed variables (and how these relate to expo-
sure) affect how mean and variability effects are induced by 
this transformation. The extended Brown-Forsythe test and 
the JLSsc approach retained correct type I error rates and 
performed well in comparison to the other approaches in 
detecting variability and joint effects. These tests were also 
at least 5 times more computationally efficient than their 
LRT counterparts.

Over 8000 CpG sites were associated with gender in cord 
blood methylation, while methylation at 412 CpG sites were 
associated with gestational age. The majority of these CpG 
sites were associated with effects of gender and gestational 
age on mean methylation. However, 240 CpG sites were 
associated with differences in variability between males and 
females. JLSsc identified most of the associations in both 

analyses, except where there was little evidence of a mean/
variability effect in the presence of a borderline effect of the 
other. Although the main aim of this paper was to present 
and evaluate a method, we did briefly investigate how the 
8174 sex-associated CpG sites compared to those identified 
in previous studies. Replication was high in spite of differ-
ent tissues and ages at sample collection (37–69%). Like 
previous studies, we observed some similar enrichments in 
genomic regions, particularly CpG island shores. However, 
unlike previous studies, we did not observe any evidence 
for enrichment for any GO terms. In this particular exam-
ple, nearly all sites captured by JLSsc are also captured by 
the mean-based test. However, there is no reason why we 
should expect this in general, i.e. for other phenotypes and 
exposures. Even for this example, the variability does indi-
cate something of functional interest-that a small subset of 
the sites with mean differences also have variability differ-
ences. Contrast this with the gestational age example where 
no variance differences were discovered. Furthermore, of 
those sites with sex-specific variance, nearly two-thirds 
had greater variance in females. We applied Gene Ontology 
enrichment analysis to the differentially variable sites but 
found no evidence of enrichment after adjusting for multiple 
tests. The most enriched Gene Ontology terms from this 
analysis had very little overlap with the most enriched terms 
for the CpG sites with mean differences. This suggests that 
the functions of these differential variable CpG sites is likely 
quite different, however our findings do not support further 
speculation about the exact nature of these functions.

These methods are applicable to any area of medical 
research where variability and joint effects are of interest 
(e.g. comparing arms of a randomised controlled trial [4]), 
although they will be particularly useful for analysing high-
dimensional phenotypes where it is not possible to assess 
the distribution at all markers. For instance, there has been 
recent interest in using variability tests to attempt to iden-
tify gene-environment interactions, as these interactions will 
often cause heterogeneity in the variance across genotypes 
[7, 38]. The Brown-Forsythe test has been proposed as a 
useful test in this scenario [38], although the extended ver-
sion presented here and elsewhere [14, 15] could be used 
to assess variability trends across genotypes, which is also 
of value in assessing assumptions in Mendelian randomiza-
tion, for example [6]. Furthermore, JLSsc avoids the distri-
butional assumptions made by current methods proposed in 
the genetics literature [7, 14, 15].

The limitations of this study also warrant consid-
eration. In the simulations and the applied example, we 
only analysed DNA methylation data, although we fully 
expect these results to be generalisable to all phenotypes. 
The application of the approaches to detect CpG sites 
associated with gestational age also have several limita-
tions, especially with regards to residual confounding. In 

(a) Associa�ons between gender and loca�on, 
           scale or both of DNA methyla�on 

(b) Associa�ons between gesta�onal age and loca�on, 
           scale or both of DNA methyla�on 

Fig. 4   Venn diagrams showing the number of CPG sites identified as 
associated gestational age a or gender b by the location or scale test, 
or by JLSsc
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particular, there are likely to be other important mater-
nal factors involved in gestation period that we have not 
adjusted for in our analysis. Where gender is the exposure 
there is unlikely to be residual confounding, but there 
may be effects of batch or cell count heterogeneity which 
remain. The ARIES cohort is also not selected at random 
from the full ALSPAC cohort [31], and as such, the results 
from this study may not generalise to the full ALSPAC 
cohort or the general population.

In summary, the extended Brown-Forsythe test and 
JLSsc are robust tests of variability and joint mean and 
variability effects, respectively. These tests can be used 
in analyses to detect associations for any type of exposure 
with high-dimensional phenotypes.
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