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Abstract This study was part of a large-scale monitoring
project to assess the possible effects of Elado® (10 g clo-
thianidin & 2 g β-cyfluthrin/kg seed)-dressed oilseed rape
seeds on different pollinators in Northern Germany. Firstly,
residues of clothianidin and its active metabolites thiazo-
lylnitroguanidine and thiazolylmethylurea were measured in
nectar and pollen from Elado®-dressed (test site, T) and
undressed (reference site, R) oilseed rape collected by
honey bees confined within tunnel tents. Clothianidin and
its metabolites could not be detected or quantified in sam-
ples from R fields. Clothianidin concentrations in samples
from T fields were 1.3± 0.9 μg/kg and 1.7± 0.9 μg/kg in
nectar and pollen, respectively. Secondly, pollen and nectar
for residue analyses were sampled from free flying honey
bees, bumble bees and mason bees, placed at six study
locations each in the R and T sites at the start of oilseed rape
flowering. Honey samples were analysed from all honey bee
colonies at the end of oilseed rape flowering. Neither clo-
thianidin nor its metabolites were detectable or quantifiable
in R site samples. Clothianidin concentrations in samples
from the T site were below the limit of quantification (LOQ,
1.0 µg/kg) in most pollen and nectar samples collected by
bees and 1.4± 0.5 µg/kg in honey taken from honey bee

colonies. In summary, the study provides reliable semi-field
and field data of clothianidin residues in nectar and pollen
collected by different bee species in oilseed rape fields
under common agricultural conditions.
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Introduction

All bee species rely on pollen and nectar as food sources. In
collecting these plant substrates, they serve as economically
valuable pollinators of cultivated crop plants and contribute
to ecosystem services (Klein et al. 2007). Not only honey
bees (Apis spp.) but also bumble bees (Bombus spp.) and
mason bees (Osmia spp.) are commercially reared for pol-
lination services and can be more or less ifically targeted to
crop monocultures. In addition, various species of bumble
bees and mason bees (among many other bee species) are
common and widespread in the wild and, to some extent,
can also be attracted by crop monocultures. Since agri-
cultural crop plants are commonly treated with plant pro-
tection products (PPPs) against insect pests, pollinating
insects such as bees may potentially be affected by this
treatment. Thus, PPPs contribute to the multiple and varying
stressors bees are exposed to and which also include habitat
loss, agricultural intensification, parasites and pathogens
(Potts et al. 2010). In particular, systemically acting PPPs of
the neonicotinoid class of compounds are often held
responsible for losses of honey bee colonies and declines
in the abundance of wild bees (Sánchez-Bayo, 2014;
Goulson et al. 2015; Pisa et al. 2015, Rundlöf et al. 2015).
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As synthetic nicotine analogues, neonicotinoids affect the
nicotinic acetylcholine receptor in the insect brain (for
reviews, see: Tomizawa and Casida 2005; Jeschke et al.
2013). Neuroactive neonicotinoids are commonly used as
seed dressings in a variety of crops including oilseed rape
(OSR). The growing plant absorbs the insecticide, which is
distributed to all plant tissues and substrates, including
pollen and nectar (Elbert et al. 2008). Because of this sys-
temic activity, neonicotinoids can be applied as a seed
dressing or to soil at low rates, which reduces the need for
foliar insecticide applications that are applied at much
greater rates.

The European Union has temporarily suspended the use
of three neonicotinoids (clothianidin, imidacloprid and
thiamethoxam) for seed treatment, soil application and
foliar treatment in bee attractive crops (European Com-
mission 2013) to allow for in depth studies of their envir-
onmental effects. Many laboratory and semi-field studies
have provided data about lethal and sublethal effects of
neonicotinoids to bees under certain application regimes
and at specific concentrations (Godfray et al. 2014, Godfray
et al. 2015). However, from an environmental perspective
they have been criticised (Cresswell and Thompson 2012;
Guez 2013; Carreck and Ratnieks 2014; Godfray et al.
2014, Godfray et al. 2015), e.g., for not using field realistic
doses or for subjecting bees exclusively to food spiked with
neonicotinoids under laboratory conditions. Because of the
basic toxicological principle of the relationship between
dose and response, a central question is whether con-
centrations of neonicotinoid residues in pollen and nectar
reach levels that are deleterious to bees under common
agricultural practice and landscape conditions.

In 2013, a comprehensive monitoring project was initi-
ated to examine potential effects of clothianidin seed dres-
sing on pollinators under common agricultural practice.
This large-scale field study aimed to investigate possible
side effects of clothianidin-dressed OSR seeds at the land-
scape level on various pollinators under actual agricultural
conditions (Schmuck and Lewis 2016). This project con-
sisted of four different pollinator studies performed in the
project area at the same time: a honey bee monitoring study
(Rolke et al. 2016), a mason bee monitoring study (Peters
et al. 2016), a bumble bee monitoring study (Sterk et al.
2016), and a residue analysis of pollen and nectar from
foraging honey bees in tunnel tents placed over the test crop
as well as of pollen, nectar and honey collected by free
flying honey bees, bumble bees and mason bees (present
study). The studies were conducted in Mecklenburg-West
Pomerania (Mecklenburg-Vorpommern, Germany) at two
circular study sites of approximately 65 km2. Each site
surrounded the investigated bee hives and nesting shelters.
In autumn 2013, study fields were either drilled with
clothianidin-free OSR seeds (reference site, R) or with

clothianidin-dressed OSR seeds (Elado®: 10 g clothianidin
and 2 g β-cyfluthrin/kg seed (test site, T)).

The aim of the study part presented here was to provide
reliable data on residue concentrations of clothianidin and
its active metabolites thiazolylmethylurea (TZMU) and
thiazolylnitroguanidine (TZNG) in OSR pollen, nectar and
honey produced under common agricultural practice.
Accordingly, honey bee and bumble bee hives as well as
mason bee nesting blocks were installed at study locations
within the reference and test sites. For one approach, bees
were allowed to forage freely within their natural flight
radius. Pollen collected by all three bee species was sam-
pled and analysed. In addition, nectar collected by honey
bee workers and, at the end of OSR flowering, honey from
all honey bee colonies were sampled. Data from this field
realistic scenario was then compared to data obtained from a
worst-case scenario, in which honey bees were forced to
forage on OSR only. This was achieved by using a semi-
field tunnel tent approach.

The results of this study part serve as basic data for the
understanding and interpretation of the results obtained in
the bee monitoring studies (Rolke et al. 2016; Sterk et al.
2016; Peters et al. 2016) as well as providing the necessary
background for a general discussion on field realistic
exposure of bees to clothianidin and its metabolites.

Material and methods

Description of the study fields, study field subareas and
study locations

The study was conducted at two neighbouring study sites in
the vicinity of Sternberg, northern Germany. Each study site
covered an area of approximately 65 km² with a diameter of
9 km. Both sites together provided in total nearly 1,800 ha
of OSR crops (27 % of arable land). During OSR flowering,
no other bee attractive crops were present. The selection of
the project area and the study sites took place in summer
2013 and is described in detail in Heimbach et al. (2016).
Before drilling, soil samples were collected from all study
fields for the analysis of clothianidin residues and soil
characterisation. In addition, clothianidin loadings of the
OSR seeds were analysed and the entire development of
OSR from drilling to harvest was monitored. The results of
these analyses are reported in Heimbach et al. (2016).
Farmers cultivated OSR and other crops at both study sites
according to their common procedures and at their own
discretion. They were allowed to compensate for the miss-
ing insecticidal dressing in OSR fields at the R site as
necessary by foliar spray applications of pyrethroids
according to their own selection. Except for the
clothianidin dressing of OSR seeds at the T site, no further
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neonicotinoid was used from autumn 2013 until summer
2014 at the study fields (for details of farming and
PPP applications in the study area, see: Heimbach et al.
(2016).

In autumn 2013, Elado® (10 g clothianidin & 2 g
β-cyfluthrin/kg seed)-dressed OSR seeds were drilled at all
18 study fields (total area approximately 792 ha) at the T
site, whereas Elado®-free OSR seeds were drilled at all
17 study fields (total area approximately 615 ha) at the R
site (Fig. 1). The median area of study fields was 35.3 ha
(1.22–198.0 ha) at the T site and 33.5 ha (9.0–97.3 ha) at the
R site. On average, 3.4± 1.1 kg/ha of OSR seeds were
drilled in the study fields. 1 kg of OSR seeds from the T site
contained on average 8.0± 1.2 g clothianidin, which
amounts to 28.8± 10.0 g/ha when the seeds were drilled in
the T fields, and this in turn amounts to 19.2± 6.7 μg clo-
thianidin per kg soil in the uppermost 10 cm of the soil after
drilling assuming an equal distribution of clothianidin in the
top 10 cm soil and a soil density of 1.5 kg/l. OSR seeds in
the R fields exhibited a median loading of 0.02 g clothia-
nidin per kg seeds. In the R site, the resulting amount of
clothianidin per unit area was 0.19± 0.25 g/ha that was
0.7 % of the analysed concentration of the T site. For a
detailed description of the seed treatment, OSR fields and
planting, see Heimbach et al. (2016). Each study field was
divided into equally sized sampling plots, called subareas,
of approximately 10 ha by means of the GIS programme
QGIS. The main aim of subdividing the study fields into
subareas was to achieve an appropriate number of samples
related to the field size. Examples of the subdivision of two
study fields are shown in Fig. 2. Study field T13 was an
OSR variety demonstration field and each of the 22 OSR
varieties was represented by a subarea, which was smaller
than 1 ha. In accordance to the given criteria, the study
fields of the R site were subdivided into 58 subareas, and
the 18 study fields of the T site were divided into
96 subareas.

For free flying bees, six study locations were selected
each at the R and T sites (Fig. 1). Three out of the six study
locations per study site were established at the edge of an
OSR field, whereas the other three were situated 400 m (for
honey bees and bumble bees) or 100 m (for mason bees)
distant from the nearest OSR field. Honey bees and bumble
bees were placed at the same study locations, whereas
mason bees were positioned at different locations taking
into account their maximum flight distances. For detailed
descriptions of the study locations, see Rolke et al. (2016),
Sterk et al. (2016), and Peters et al. (2016).

Estimation of OSR plant density at tunnel tent positions

The density of emerged OSR plants was estimated before
stem elongation in March 2014 to compare between the
densities of drilled seeds (data provided by Heimbach
et al. 2016) and developed plants at the later tunnel
tent positions. At each position, a frame of 1 × 1 m was
randomly placed 10 times on the ground within a radius of
5 m. The number of emerged OSR plants was counted
within the frame. Mean numbers of OSR plants were
calculated for each tunnel tent position.

Tunnel tents and tunnel tent arrangement

Tunnel tent experiments were conducted to sample nectar
and pollen from OSR plants in the study fields via honey
bees under semi-field conditions. The tunnel tents (10 × 5 ×
2.5 m) used in this study were semi-circular in cross-section
and constructed out of a tubular steel frame, covered with
synthetic gauze (mesh size ca. 2 mm). The tunnel tents had
a sampling area of approximately 50 m² (at least 45 m²
covered with OSR) and were placed in subareas of the study
fields for 3 days in a north-south direction, with a minimum
distance of 20 m to the edge of the OSR field (Supple-
mentary Figure S1). To ensure that samples of nectar and

Fig. 1 Study locations and study
fields at the reference site (a)
and test site (b). Study locations
of honey bees and bumble bees
are indicated by blue points.
Study locations of mason bees
are indicated by red points.
Yellow polygons indicate
OSR study fields. Circle
diameter = 9 km
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pollen originated from OSR flowers of the study field
subarea, honey bees were enclosed in the tunnel tents at
least 1 day before sampling. Each honey bee colony (see
2.4) was used only once and was removed after successfully
collecting pollen and nectar.

Preparation and management of bees

Honey bee colonies

Honey bee colonies, Apis mellifera carnica (Apidae), bred
according to normal beekeeping practice, disease-free and
queen-right were used. All queens were offspring (F1) of
the same mother queen. Two different types of honey bee
hives were used in this study. For semi-field tunnel tent
experiments, small hives (“Mini Plus”, 30 × 30 × 30 cm,
6 combs, and approximately 2,500 bees) were used. These
hives were placed inside the tunnel tents at the northwest
corner with south-facing entrances.

Hives for free flying honey bees were larger in size and
consisted of one brood chamber and 1–2 honey supers
(“Zander”, measures of one level (brood chamber and
honey supers): 50 × 43.5 × 23 cm, 10 combs per level).
Eight hives were placed with south-facing entrances at each
of the 12 study locations at the beginning of OSR full
flowering on 22/23 April 2014. Rolke et al. (2016) give a

detailed description of the preparation, placement and
management of the honey bee colonies.

Bumble bee colonies

The buff-tailed or large earth bumble bee, Bombus ter-
restris dalmatinus (Apidae), was used, as this subspecies
is commercially available and widely used for pollination
indoors and outdoors. At each study location, one single
hive was established for the sampling of returning bumble
bees loaded with pollen on 25 April 2014 (in addition to
9 hives established for assessment of colony development,
see, Sterk et al. 2016). All hives were positioned south-
facing to be protected against wind and rain at the start of
OSR flowering. They were set up on top of concrete
blocks about 30 cm above the ground. To achieve com-
parability, every colony contained a mother queen from
the same hibernation batch. A detailed description of the
preparation, placement and management of the bumble
bee colonies can be found in Sterk et al. (2016).

Mason bees

In total, 18,000 cocoons of the red mason bee,
Osmia bicornis (Megachilidae), were used in this study.
The cocoons were kept at −2 °C to +4 °C over the winter
period 2013/2014. Before the cocoons were placed in the
study area, they were incubated for 5 days at 8 °C followed

Fig. 2 Example of subdivision of study fields into subareas. a Study
field T1 with four subareas and corresponding tunnel tent locations (red
dots; the broken line indicates the border between the two OSR vari-
eties, three tunnel tent locations were placed in OSR variety

“Compass” and one subarea covers the variety “Sherpa”). b Study field
T3 (198 ha, divided into 18 subareas). For (a) and (b), only samples of
subareas which are indicated by green filling have been taken
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by 2 days at 11 °C. At each study location, two cardboard
boxes with 750 cocoons each were placed into nesting
shelters at the start of OSR flowering on 21 April 2014.
Nesting shelters were positioned south-east-facing so that
they were exposed to direct sunlight but protected against
rain. In all cases, the nesting shelters were placed in front of
a forest, a hedge or large shrubs to ensure similar protection
from wind. Inside the nesting shelters, nesting blocks
composed of 20 medium-density fibreboards (16 × 16 cm)
were provided. Each board contained 10 rows of nesting
holes arranged in parallel and each row contained 10 nest-
ing holes (8 mm in diameter). See Peters et al. (2016) for a
more detailed description of preparation and placement of
the mason bees.

Sample collection

Pollen collection

In the tunnel tents, sampling started on 23 April 2014 and
lasted until 19 May 2014. On 21/22 April, all OSR fields
appeared to be in full flower and by 22 May 2014 the
flowers in the majority of study fields had withered
(Heimbach et al. 2016). During these 4 weeks, samples
from 34 out of 58 subareas in the R site and 41 out of
96 subareas in the T site were collected, with collection of at
least one sample per study field. The colonies were set up
inside the tunnel tents 2 days before sampling and bees were
allowed to fly and habituate to the test conditions. For the
collection of pollen samples, pollen traps (a punched plate
through which pollen-carrying bees must crawl to separate
the pollen pellets from the bees’ legs and a fine meshed grid
to store these pellets) were attached in front of the entrance
of the honey bee hives the evening before sampling. One
sample with a minimum amount of 100 mg pollen was
collected once per tent location until noon of the sampling
day.

Colonies of free flying honey bees were placed at the
study locations on 21/22 April 2014, with 21 April 2014 set
as day after placement (DAP) 0. Pollen samples were taken
twice from all 96 colonies (8 colonies per study location) at
two different time points during OSR flowering, on DAP 15
and DAP 19/23. Pollen traps (a grid through which pollen-
carrying bees must crawl to separate the pollen pellets from
the bees’ legs and a fine meshed grid to store these pellets)
were introduced into the bottom board of the hives the day
before sampling. On the following day (sampling day),
pollen traps were removed and the entire pollen yield was
transferred to bottles and shaken in order to mix the pollen
properly. Out of this mixture, subsamples of a minimum of
300 mg were taken.

Pollen samples from bumble bees were taken once at
every study location during OSR flowering (DAP 19). At

each bumble bee hive, 11–21 returning workers with pollen
loads were caught and immediately transferred to dry ice.
At least 230 mg of pollen was collected from the legs of the
bumble bees.

Pollen samples from mason bees were taken once at
every study location during OSR flowering (DAP 23).
Accordingly, the nesting blocks were opened and 10 sub-
samples were collected from the rear end of an active,
provisioned nesting cell by retrieving the pollen with a
micro spoon and combined in a pooled sample with a
minimum of 200 mg pollen.

All pollen samples were transferred separately into 15 ml
tubes and stored frozen (between −10 °C and −43 °C) until
analysis.

Nectar collection

For practical reasons, nectar samples were taken from honey
bees only, both in tunnel tents and from free flying indivi-
duals. About 200 returning honey bee foragers per sample
were caught at the hive entrances by using a vacuum col-
lector and immediately transferred to dry ice and stored
frozen (between −10 °C and −43 °C) until dissection. The
honey stomachs of the collected honey bees were dissected
in the laboratory (according to Carreck et al. 2013) and the
nectar (minimum of 200 mg) was discharged into a 15 ml
tube. All nectar samples were stored frozen (between
−10 °C and −43 °C) until analysis.

Honey collection

Honey was only harvested from colonies of free flying
honey bees. The harvest of spring honey took place
immediately after the end of OSR flowering (DAP 32).
Combs from individual colonies were uncapped and honey
from each colony was extracted separately by the use of a
radial extractor 42000 Voll (Carl Fritz Imkereitechnik
Mellrichstadt, Germany). Honey samples (minimum 5 g)
were transferred into 15 ml tubes and stored frozen
(between −10 °C and −43 °C) until analysis.

Residue analysis

Residue analyses were performed by Eurofins Agroscience
Services Chem GmbH (Hamburg, Germany). The analytical
method was based on the multi-residue sample preparation
technique QuEChERS (“Quick Easy Cheap Effective
Rugged Safe”, see Lehotay 2006) according to the
European Standard EN15662:2008 (2009). Around 100 mg
each of a homogenised specimen of pollen, nectar or honey
was weighed into a 50 ml centrifuge tube. The exact weight
of each sample was documented and used for calculating
the residue concentration. To adjust the water content, 10 ml
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of water was added. For extraction, 10 ml acetonitrile was
added to each tube. The centrifuge tube was capped and
shaken by hand for at least 2 min. Thereafter, 4.0 g of
MgSO4, 1.0 g of NaCl, 1.0 g of trisodium citrate
dihydrate and 0.5 g of disodium hydrogen citrate sesqui-
hydrate were added. The centrifuge tube was capped again
and immediately shaken by hand for ≥1 min. The sample
tube was centrifuged for 4 min at 4,000 rpm. Thereafter, an
aliquot of exactly 6 ml of the acetonitrile phase was trans-
ferred to a 15-ml centrifuge tube and evaporated to dryness
using a nitrogen stream and water bath at 40 °C. The residue
was carefully taken up in exactly 1 ml of mixed
internal standard solution (water/acetonitrile/formic acid,
75/25/0.1 v/v/v, final concentration: 0.3 ng/ml). The final
solvent was equal to the solvent used for preparation of
solvent-based standard solutions. If necessary, the uptake
was supported by vortex and/or ultrasonic bath, and
brief centrifugation was carried out afterwards to
separate insoluble particles. Extracts were transferred to
HPLC vials for analysis. Calibration solutions were
prepared in mixed internal standard solutions ranging from
0.015 ng/ml – 2.0 ng/ml.

For clothianidin and its metabolites TZNG and TZMU,
the quantification was performed by internal standardisation
using stable-labelled internal standards in pure solvent. A
calibration curve was established with at least six con-
centration levels and used for quantification. For each
calibration curve, the coefficient of determination R² was
>0.979. The chromatographic system used for the deter-
mination of clothianidin and its metabolites TZNG and
TZMU was a high performance liquid chromatograph with
reversed phase chromatography (Zorbax RRHD Eclipse
Plus C18, 50 × 2.1 mm, 1.8 µm column) coupled with tan-
dem mass spectrometry (MS/MS) with electrospray

ionisation (AB Sciex API 6500 Triple Quadruple Mass
Spectrometer, Analyst version 1.6.2). The limit of quanti-
fication (LOQ) was 1.0 µg/kg and the limit of detection
(LOD) 0.3 µg/kg for all three compounds.

Data analysis

Average residue concentrations were calculated using
0.0 µg/kg for individual concentrations “<LOD” and 0.65
µg/kg (= mean value for range between LOD and LOQ) for
concentrations “<LOQ” to account for the fact that residues
were detected and provide a reasonable estimate regarding
potential biological effects. No separate average con-
centrations were calculated in cases where a minimum of
90 % of values were < LOD or < LOQ. The results are
presented both as mean ± standard deviation (SD) as well as
median values. The mean plant densities were compared
between R and T site study fields were compared using
unpaired t-test (GraphPad Prism version 6.04, GraphPad
Software, La Jolla, California, USA).

Results

Mean density of OSR plants at study fields

OSR plant density at study fields of the R site varied
between 18.3 plants/m² and 45.2 plants/m² (mean±
SD: 26.1± 7.2 plants/m²). Similarly, OSR plant density of
the T site varied between 14.0 plants/m² and 49.6 plants/m²
(mean± SD: 31.1± 10.1 plants/m²) (Supplementary Figure
S2A). There was no statistical difference between the mean
plant densities of R and T site study fields (unpaired t-test:
t= 1.684, df= 33, P= 0.102). Six study fields in the T site

Table 1 Mean residue
concentrations of clothianidin in
pollen, nectar and honey
sampled from bees both under
semi-field and field realistic
conditions

Experimental
conditions

Bee species

Pollen Nectar Honey

Reference 
sitea Test siteb Reference 

sitea Test siteb Reference 
sitea Test siteb

S
em

i-f
ie

ld
(t

un
ne

l)

Apis mellifera
< LOD

(n = 34)
1.67

(n = 39)
<LOD

(n = 34)
1.31

(n = 39)

F
ie

ld
 (

fr
ee

 fl
yi

ng
)

Apis mellifera

1st sampling:
< LOD

(n = 48)

1st sampling:
0.50

(n = 48)

1st sampling:
< LOD

(n = 46)

1st sampling:
0.68

(n = 48)

< LOQ
(n = 48)

1.35
(n = 48)

2nd sampling:
< LOD

(n = 48)

2nd sampling:
0.97

(n = 48)

2nd sampling:
< LOD

(n = 48)

2nd sampling:
0.77

(n = 48)

Bombus terrestris
< LOD
(n = 6)

0.88
(n = 6)

Osmia bicornis
< LOD
(n = 6)

0.88
(n = 6)

a Minimum 90% of samples with residues < LOD (= 0.3 µg/kg) or < LOQ (= 1.0 µg/kg), respectively
b Calculation: residues < LOD= 0.0 µg/kg; residues < LOQ but >LOD= 0.65 µg/kg; residues > LOQ as
quantified. See material and methods for details on calculation and text for standard deviations
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(T1, T9, T10, T13, T14 and T15) were drilled with more
than one OSR variety (for more details, see: Heimbach et al.
2016). The mean number of OSR plants estimated for the
different OSR varieties of these six study fields are illu-
strated in Supplementary Figure S2B. At the R site on
average 68 % and at the T site on average 69% of the
drilled OSR seeds developed to OSR plants which survived
the winter period of 2013/2014.

Residues of clothianidin and metabolites—
semi-field tunnel experiments

In all pollen samples collected by honey bees in tunnel tents
(n= 34) from the 17 R site fields, residues of clothianidin,
TZNG and TZMU were below the LOQ (n= 3) or even
lower than the LOD (n= 31). In nectar samples no clo-
thianidin, TZNG or TZMU could be detected (< LOD, n=
34) (Supplementary Table S1). TZMU and TZNG were not
detected, neither in pollen nor in nectar samples (< LOD,
one sample TZNG< LOQ) (Supplementary Table S1).

Clothianidin residue levels in all pollen samples
collected by honey bees in tunnel tents from the 18 T site
fields were on average 1.7± 0.8 μg/kg (mean± SD; med-
ian: 1.6 μg/kg) in pollen and 1.3± 0.9 μg/kg (mean± SD;
median: 1.1 μg/kg) in nectar (n= 39 each) (Table1).
In pollen samples, a maximum clothianidin concentration of
3.5 μg/kg was found, while nectar samples showed a max-
imum clothianidin concentration of 3.6 μg/kg (Supplemen-
tary Table S2). TZMU and TZNG were not detected in any
of the 39 pollen and nectar samples from all study fields
(< LOD) except for TZNG in 1 nectar sample and 9 pollen
samples, where the concentration was below LOQ
(Supplementary Table S2).

The analysis of pollen and nectar samples from different
study field subareas showed that concentrations of clothia-
nidin could differ between subareas within the same field,
even if only one OSR variety was cultivated there. For
example, in nectar samples taken from two different sub-
areas at study field T2, clothianidin was analysed in one
subarea as < LOQ, whereas in another 3.6 µg/kg was
detected. However, clothianidin residues in pollen samples
from those two subareas at study field T2 were 1.6 and
1.1 µg/kg, respectively, and thus showed less variation
(Supplementary Table S2).

Residues of clothianidin and metabolites—field
experiments (free flying bees)

Clothianidin residues in pollen, nectar and honey collected
by honey bees

In all R site pollen samples collected by free flying honey
bees from the first sampling date, residues of clothianidin,

TZNG and TZMU were <LOD (n= 48). During the second
sampling, residues of clothianidin were determined as
< LOQ in one sample, whereas for all other samples (n=
47), clothianidin and its metabolites TZNG and TZMU
were, again, determined as < LOD (Supplementary Table
S3). At the T site, 12 out of 48 samples from the first
sampling contained clothianidin concentrations < LOD, in
35 samples clothianidin residues were determined as
< LOQ and one sample showed a quantifiable concentration
of 1.1 µg/kg. At the second sampling, the clothianidin
concentration increased slightly: concentrations remained
< LOD in samples from 3 colonies, while 22 samples
showed concentrations < LOQ and in 23 samples quanti-
fiable concentrations of 1.0 – 2.7 µg/kg were analysed
(Supplementary Table S4). For T site pollen samples, the
average clothianidin concentration for the first sampling
was 0.50± 0.30 µg/kg (mean± SD; median: 0.65 µg/kg)
and 0.96± 0.53 µg/kg (mean± SD; median: 0.65 µg/kg) for
the second sampling (Table 1). No measurable residues of
the metabolites TZNG and TZMU were detected at both
sampling dates (< LOD: n= 95; < LOQ: n= 1).

In nectar samples collected by free flying honey bees
from both sampling dates at the R site, clothianidin residues
were < LOD in 89 samples and < LOQ in 5 samples.
Residues of TZNG and TZMU were < LOD in all samples
analysed, except for two samples from the first sampling
and one sample from the second sampling, where TZNG
and TZMU were < LOQ (Supplementary Table S5). In
nectar from both sampling dates at the T site, clothianidin
concentrations were < LOD in 8 out of 96 samples and
< LOQ in 66 out of 96 samples. Clothianidin was found in
quantifiable concentrations in 22 out of 96 nectar samples,
with 1.6 µg/kg being the maximum concentration found.
The average clothianidin concentration for the first sampling
was 0.67± 0.39 µg/kg (mean± SD; median: 0.65 µg/kg) and
for the second sampling 0.77± 0.24 µg/kg (mean± SD;
median: 0.65 µg/kg) (Table 1). Residues of TZMU were
< LOQ in one sample and < LOD in the remaining
95 samples. Likewise, residues of TZNG were < LOD in all
samples except for one, where it was < LOQ (Supple-
mentary Table S6).

Honey samples were taken from each honey bee colony
at the end of OSR flowering. Residues of clothianidin were
< LOD in 18 out of 48 samples and < LOQ in 30 out of
48 samples from the R site. Residues of TZNG and TZMU
were < LOD in all samples from the R site (Supplementary
Table S7). In honey samples from the T site, 11 out of
48 samples showed clothianidin concentrations < LOQ.
Hence, 37 out of 48 samples contained quantifiable con-
centrations of clothianidin ranging from 1.0 to 2.1 µg/kg.
The average clothianidin concentration for all samples
from the T site amounted to 1.35± 0.48 µg/kg
(mean± SD; median: 1.40 µg/kg) (Table 1). There were no
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differences between edge and distant study locations.
Residues of TZNG as well as TZMU were <LOD in
34 samples and < LOQ in 14 samples (Supplementary
Table S8).

Clothianidin residues in pollen collected by bumble bees

In total, 12 pollen samples were collected and analysed
from returning bumble bee workers (one sample per study
location). In all samples from the R site, concentrations of
clothianidin, TZNG and TZMU were < LOD (Supple-
mentary Table S9). Pollen from the T site contained clo-
thianidin concentrations < LOQ in three samples, whereas
the other three samples showed quantifiable concentrations
with a maximum of 1.3 µg/kg (Supplementary Table S9).
The average concentration of clothianidin in T site pollen
samples was 0.88± 0.27 µg/kg (mean± SD; median:
0.83 µg/kg) and thus was <LOQ (Table 1). The metabolites
TZNG and TZMU could not be detected (< LOD) neither in
R nor in T site samples, except for one sample from the
T site, where TZNG was analysed as being < LOQ
(Supplementary Table S9).

Clothianidin residues in pollen collected by mason bees

As for the sampling in bumble bees, 12 pollen samples were
taken and analysed from provisioned mason bee cells (one
pooled sample per study location). In all samples from the R
site, concentrations of clothianidin, TZNG and TZMU
were < LOD (Supplementary Table S10). Clothianidin
concentrations in T site pollen samples were < LOQ in four
samples, whereas the other two samples showed quantifi-
able concentrations with a maximum of 1.7 µg/kg
(Supplementary Table S10). The average concentration of
clothianidin in test site pollen samples was 0.88± 0.42
µg/kg (mean± SD; median: 0.65 µg/kg) (Table 1). Both
metabolites, TZNG and TZMU, could not be detected
(< LOD) within samples from both the R and T sites
(Supplementary Table S10).

Discussion

Pollination by bees and insecticide treatments are essential
components of modern agriculture. Unfortunately, potential
bee toxicity of insecticides may cause problems for mana-
ged and wild bee populations (for recent reviews, see: Pisa
et al. 2015; Goulson et al. 2015; Johnson 2015). Although
the use of systemically acting neonicotinoid seed treatments
is generally regarded a more ecologically sound alternative
to foliar insecticide applications (Elbert et al. 2008), there is
concern of pollinators be exposed to these chemical as they
can be translocated into pollen and/or nectar when applied

as seed treatments. However, potential negative effects of
neonicotinoid seed-treatment of crops on pollinating insects
critically depend on the concentrations to which they are
exposed to by collecting pollen and nectar. Laboratory-
based studies have clearly indicated adverse effects of
neonicotinoids to bees at certain concentrations and under
artificial exposure regimes (for reviews, see: Belzunces
et al. 2012; Godfray et al. 2014; Godfray et al. 2015).
However, no significant adverse effects have been detected
in a number of field studies (Cutler and Scott-Dupree 2007,
2014; Blacquière et al. 2012; Pohorecka et al. 2012; Pilling
et al. 2013; Cutler et al. 2014; Rolke et al. 2016; Sterk et al.
2016; Peters et al. 2016). This discrepancy maybe explained
by pollinators experiencing lower PPP doses under field
realistic conditions (Carreck and Ratnieks 2014). Therefore,
data on neonicotinoid residues in pollen and nectar of
neonicotinoid treated crops attractive to pollinating insects
collected under common agricultural practice seem to be
important for a realistic risk assessment.

This study presents data on residues of clothianidin and
its active metabolites TZMU and TZNG in pollen, nectar
and honey collected by bees in clothianidin seed-treated
winter OSR. The OSR plants at all study fields developed
relatively homogenously. Clothianidin, TZMU and TZNG
were below LOD in almost all samples taken from the
reference site, regardless of the sample matrix or collecting
bee species. Thus, it can be assumed that honey bees,
bumble bees and mason bees placed within the reference
site exclusively foraged within this area free of clothianidin
seed-treated OSR.

The species of honey bees, bumble bees and mason bees
used in the present study are polylectic and thus collected
pollen/nectar may become diluted by material from non-
treated plants. Therefore, samples consisting exclusively of
winter OSR pollen and nectar were analysed. This was
achieved by forcing honey bees to collect pollen and nectar
in tunnel tents. The resulting data provide information on
the maximum possible concentrations when bees foraged on
clothianidin-treated winter OSR only and thus are repre-
sentative for a worst-case scenario. Average clothianidin
concentrations of 1.7± 0.8 μg/kg in pollen and 1.3± 0.9 μg/kg
in nectar were in the same range in both matrices. The
maximal concentrations found in single samples were
3.5 µg/kg and 3.6 µg/kg in pollen and nectar, respectively.
Thus, the concentrations were in the range of concentrations
reported in previous field studies on OSR (Cutler and Scott-
Dupree 2007; Cutler et al. 2014; Godfray et al. 2014;
Godfray et al. 2015). Residues of TZMU and TZNG could
not be detected or quantified in pollen and nectar samples
from clothianidin seed-treated OSR even when collected in
tunnel tents. This suggests that these two metabolites are
only of minor importance for the risk assessment, at least
for winter OSR in Central Europe.
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Free flying honey bees, bumble bees and mason bees
potentially had access to flowering plants other than OSR
within the study sites (Heimbachet et al. 2016). Indeed,
palynological analyses showed that the mean (±SD) per-
centage of OSR in pollen samples collected by honey bees
at the test site ranged from 12.8± 13.8% to 91.4± 2.7%
depending on study location and sampling date (Rolke et al.
2016). Similarly, the percentage of OSR in pollen sampled
by bumble bees varied from 16 to 95 % (Sterk et al. 2016).
Mason bees provisioned their brood cells with pollen con-
sisting of 10.6± 6.8 % and 21.4± 13.2 % OSR pollen
(Peters et al. 2016). OSR thus became the major pollen
source, at least for honey bees and bumble bees during the
course of our study (Rolke et al. 2016, Sterk et al. 2016).
The percentage of OSR was lower than 100 % in almost all
pollen samples taken from free flying bees (note that
bumble bee-collected and mason bee-collected pollen
samples for palynology and residue analysis were taken on
different days). Due to dilution with pollen from other
untreated plants, the concentrations of clothianidin have to
be lower compared to those samples from the worst-case
(semi-field) conditions. Indeed, average concentrations of
clothianidin in honey bee-collected, bumble bee-collected
and mason bee-collected pollen from the test site remain
below LOQ (1.0 µg/kg).

This result is in accordance with other field studies. In a
study conducted in Canada, on two experimental fields of
spring OSR treated with PROSPER 8 FL and PONCHO
600 FS (delivering clothianidin at 4.0 g/kg seeds), for
example, the majority of samples (>75 %) had no detectable
level of clothianidin residues and the maximum con-
centration detected in pollen samples was 2.6 µg/kg (Cutler
and Scott-Dupree 2007). In a more recent study, the same
authors reported an average concentration of 0.8± 0.5 µg/kg in
pollen samples collected by honey bees in PROSPER FX®-
treated OSR (Cutler et al. 2014). This would fall below the
LOQ when applying our method of residue analysis.
Pohorecka et al. (2012) reported similar values for spring
OSR treated with MODESTO 480 FS (4.9 g clothianidin/kg
seeds) in a honey bee study conducted in Poland. Here, on
average 0.6± 0.6 µg/kg (mean± SD) and 2.2± 1.3 µg/kg
(mean± SD) clothianidin were detected in pollen loads and
bee bread (processed pollen), respectively. In a German bee
monitoring study, clothianidin was not detected in any of
the 215 samples of honey bee bread collected from
2005–2007, although they included samples from colonies
with high OSR input (Genersch et al. 2010).

Similar to residues in pollen, average concentrations of
clothianidin in nectar samples taken from free flying honey
bees were below the LOQ. Thus, the clothianidin residue
levels remained slightly below the level that had been
shown as worst-case scenario in tunnel tents. This indicates
that free flying honey bees did not use OSR as an exclusive

nectar source, but visited other plants for nectar foraging, as
well. Since honey bees are polylectic, this is to be expected.
The mixing of nectar from clothianidin seed-treated OSR
and nectar from alternative non-treated plants explains the
reduced clothianidin concentration found under realistic
conditions. Nevertheless, OSR appears to be the major
nectar source for honey bees, as has been shown by the
palynological analysis of spring honey samples (Rolke et al.
2016). For test site colonies, the average percentage of OSR
pollen in spring honey samples was 79.6 %± 7.48 % (mean
± SD) and 77.9 %± 8.93 % (mean± SD) for edge and
distant locations, respectively (Rolke et al. 2016). Thus, in
the present study clothianidin concentrations in nectar
samples were slightly lower than residue concentrations
reported by Pohorecka et al. (2012), who analysed nectar
samples from clothianidin seed-dressed spring OSR in
Poland. These authors found 2.6± 4.0 µg/kg and 1.3 µg/kg
depending on whether nectar was collected directly from
rape flowers or nectar flow from combs was used, respec-
tively (Pohorecka et al. 2012). In the Canadian study, Cutler
et al. (2014) did not detect clothianidin residues in nectar
collected by bees exposed to seed-treated OSR.

Bee larvae (and often adults) of eusocial bee species
usually consume nectar in a more or less processed state. In
honey bees, specialised workers process the collected nectar
by adding glandular secretions and greatly reduce the water
content to less than 20 % (Winston 1987). This modification
and concentration leads to the production of honey. We
analysed honey samples taken from colonies of free flying
honey bees at the end of OSR flowering. The average clo-
thianidin concentration was 1.35± 0.48 µg/kg in honey
samples from test site colonies. Although mixing with
nectar from plants other than OSR may have occurred
(Rolke et al. 2016), clothianidin concentrations increased
during the concentrating process of converting nectar into
honey. However, clothianidin concentrations remained
below LOQ in 23 % of the samples and the average con-
centration found was only slightly above LOQ (1.0 µg/kg).
In general, clothianidin residues in honey stayed below the
maximum residue level specified by the European Union
(10 µg/kg, European Commission 2015). Clothianidin was
not detected in honey samples in the Canadian study per-
formed by Cutler et al. (2014), while in the Polish study
slightly higher concentrations of clothianidin (3.4 ± 1.0 µg/
kg) were found (Pohorecka et al. 2012).

In summary, the concentration of clothianidin in plant
substrates collected by honey bees, bumble bees and mason
bees under field conditions was found to be below 1.0 µg/kg
(LOQ) in the majority of cases. Various studies have
reported similar or slightly higher clothianidin concentra-
tions in substrates originating from bees foraging near
clothianidin seed-treated OSR fields (Cutler and Scott-
Dupree 2007; Pohorecka et al. 2012; Pilling et al. 2013;
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Cutler et al. 2014). However, a recent study conducted by
Rundlöf et al. (2015) in Sweden has shown considerably
higher residual concentrations of clothianidin in pollen and
nectar collected by honey bees and bumble bees in Elado®

seed-dressed spring OSR. These authors reported average
clothianidin concentrations of 13.9± 1.8 µg/kg (mean±
SEM) and 10.3± 1.3 µg/kg (mean± SEM) for honey bee-
collected pollen and nectar, respectively, and 5.4± 1.4 µg/kg
for bumble bee-collected nectar (Rundlöf et al., 2015). In
comparison to our study, the Rundlöf et al. (2015) study
clearly differed in at least two parameters. Firstly, spring
OSR was planted in contrast to winter OSR in the present
study. In the nectar (and pollen) samples from winter OSR
fields, lower levels of neonicotinoid residues are usually
found in comparison to spring OSR. This has, for example,
been shown by Pohorecka et al. (2012) who found the
concentration of thiamethoxam to be on average 1.6 µg/kg
(in pollen < LOD) and 8.7 µg/kg (in pollen 5.6 µg/kg) in
forage (nectar and honey) from winter OSR and spring
OSR, respectively. These differences are most likely due to
the longer period between planting neonicotinoid seed-
dressed winter OSR and rape flowering (>6 months).
During this time, partial degradation of neonicotinoids may
occur. In contrast, only about 2 months usually pass from
planting to flowering of spring OSR. Secondly, the seed
density in the Rundlöf et al. (2015) study (7.7 kg OSR
seeds/ha) was about twice as high as in the present study
(3.4 ± 1.1 kg OSR seeds/ha in test fields; Heimbach et al.
2016). Together, these factors result in a considerably
higher clothianidin load per ha and may have led to the
higher residue values found in plant substrates in the
Swedish study. In addition, the numbers of pollen and
nectar samples analysed in the Rundlöf et al. (2015) study
appear to be small (n= 5 honey bees per field for pollen
sampling, n= 3–5 honey bees and bumble bees per field for
nectar sampling). Due to high variation of residue con-
centrations in different parts of the same field, this may lead
to a reduced discriminatory power. Nevertheless, the design
of the present monitoring study followed the agricultural
practice typical for winter OSR in the study area. Winter
OSR is economically more important than spring OSR, e.g.,
the proportion of the cultivated area of winter OSR vs.
spring OSR in the European Union in 2014 was 93.5 % and
99.7 % in Germany in 2015 (EUROSTAT 2016).

In conclusion, the residual concentrations of clothianidin
and its active metabolites TZNG and TZMU in analysed
samples of pollen, nectar and honey were clearly lower than
the reported no observable adverse effect concentration for
honey bees of 20 µg/kg, derived from feeding experiments
using spiked diets (Schmuck and Keppler 2003). The clo-
thianidin concentrations were also lower than those used in
most laboratory-based studies that have reported adverse
effects of clothianidin on bees (Godfray et al. 2014;

Godfray et al. 2015; Thompson and Miles 2015). Accord-
ingly, no detrimental effects on reproduction and health
parameters on honey bees, bumble bees and mason bees
exposed to clothianidin seed-treated OSR could be observed
within the conditions of the present monitoring studies
(Rolke et al. 2016; Sterk et al. 2016; Peters et al. 2016).
Thus, it can be concluded that clothianidin seed-treated
winter OSR, when used as directed, provides a favourable
margin of safety for pollinating bees.
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