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Abstract Uplift modeling is a branch of machine learning which aims at predicting
the causal effect of an action such as a marketing campaign or a medical treatment on
a given individual by taking into account responses in a treatment group, containing
individuals subject to the action, and a control group serving as a background. The
resulting model can then be used to select individuals for whom the action will be
most profitable. This paper analyzes the use of ensemble methods: bagging and ran-
dom forests in uplift modeling. We perform an extensive experimental evaluation to
demonstrate that the application of those methods often results in spectacular gains in
model performance, turning almost useless single models into highly capable uplift
ensembles. The gains are much larger than those achieved in case of standard classifi-
cation. We show that those gains are a result of high ensemble diversity, which in turn
is a result of the differences between class probabilities in the treatment and control
groups being harder to model than the class probabilities themselves. The feature of
uplift modeling which makes it difficult thus also makes it amenable to the applica-
tion of ensemble methods. As a result, bagging and random forests emerge from our
evaluation as key tools in the uplift modeling toolbox.

Keywords Uplift modeling · Ensemble methods · Bagging · Random forests

Responsible editor: Johannes Fürnkranz.

M. Sołtys · S. Jaroszewicz (B)
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
e-mail: s.jaroszewicz@ipipan.waw.pl

S. Jaroszewicz · P. Rzepakowski
National Institute of Telecommunications, Warsaw, Poland
e-mail: p.rzepakowski@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-014-0383-9&domain=pdf


1532 M. Sołtys et al.

1 Introduction

Machine learning is primarily concerned with the problem of classification, where the
task is to predict, basedonanumber of attributes, the class towhich an instancebelongs,
or the conditional probability of it belonging to each of the classes. Unfortunately,
classification is not well suited to many problems in marketing or medicine to which
it is applied. Consider a direct marketing campaign where potential customers receive
a mailing offer. A typical application of machine learning techniques in this context
involves selecting a small pilot sample of customers who receive the campaign. Next,
a classifier is built based on the pilot campaign outcomes and used to select customers
to whom the offer should be mailed. As a result, the customers most likely to buy after
the campaign will be selected as targets.

Unfortunately this is not what a marketer wants! Some of the customers would have
bought regardless of the campaign; targeting them resulted in unnecessary costs. Other
customers were actually going to make a purchase but were annoyed by the campaign.
The result is a loss of a sale or even a complete loss of the customer (churn). While
the second case may seem unlikely, it is a well known phenomenon in the marketing
community (Hansotia and Rukstales 2002; Radcliffe and Surry 2011).

In order to run a truly successful campaign, we need, instead, to be able to select
customers who will buy because of the campaign, i.e., those who are likely to buy
if targeted, but unlikely to buy otherwise. Similar problems arise in medicine where
some patients may recover without actually being treated and some may be hurt by
the therapy’s side effects more than by the disease itself.

Uplift modeling provides a solution to this problem. The approach employs two
separate training sets: treatment and control. The objects in the treatment dataset have
been subject to some action, such as a medical treatment or a marketing campaign.
The control dataset contains objects which have not been subject to the action and
serve as a background against which its effect can be assessed. Instead of modeling
class probabilities, uplift modeling attempts to model the difference between condi-
tional class probabilities in the treatment and control groups. This way, the causal
influence of the action can be modeled, and the method is able to predict the true gain
(with respect to taking no action) from targeting a given individual. To date, uplift
modeling has been successfully applied in real life business settings. An American
bank used uplift modeling to turn an unsuccessful mailing campaign into a profitable
one (Grundhoefer 2009). Applications have also been reported in minimizing churn
at mobile telecoms (Radcliffe and Simpson 2008).

Ensemble methods are a class of highly successful machine learning algorithms
which combine several different models to obtain an ensemble which is, hopefully,
more accurate than its individualmembers. The goal of this paper is to evaluate selected
ensemble methods in the context of uplift modeling. Our comparison will be focused
on bagging and Random Forests (which is a form of bagging using additional ran-
domization), two very popular ensemble techniques, which, as we demonstrate, offer
exceptionally good performance. Boosting, another important technique, is beyond
the scope of this paper as adapting it to uplift modeling requires an extensive theoret-
ical treatment and merits a separate investigation. Further, we provide an explanation
for good performance of those methods which, in our opinion, is that the nature of
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uplift modeling naturally leads to highly diverse ensembles. The ‘uplift signal’ is
weak compared to changes in conditional class probabilities which makes the predic-
tion problems difficult; the members of the ensemble are thus very sensitive to noise
introduced by random sampling and/or randomized decision tree splits which makes
them very different from each other.

In practice, uplift modeling is frequently applied in the marketing domain which
in itself is likely (we do not have access to a large enough collection of real marketing
datasets to demonstrate this experimentally) to promote ensemble diversity due to the
so called correlation problem (Abe et al. 2004), i.e., the fact that predictor variables
are usually very weakly correlated with customer behavior.

The contribution of this paper is to provide a thorough analysis of ensemblemethods
in the uplift modeling domain. First we discuss how various types of uplift decision
trees can be combined into ensembles. Then we provide an extensive experimen-
tal evaluation on real and artificial datasets showing excellent performance of such
methods. We also discuss theoretical properties of uplift ensembles and provide an
explanation for their good performance based on the concept of ensemble diversity.
Although the use of ensemble methods in uplift modeling has already been mentioned
in the literature Radcliffe and Surry (2011) andGuelman et al. (2012), to the best of our
knowledge this is the first detailed treatment of the subject including both theoretical
analysis and thorough experimental verification.

The remaining part of the paper is organized as follows: Sect. 2.1 gives a literature
overview, Sect. 3 describes ensemblemethods in the context of upliftmodeling, and the
experimental Sect. 4 demonstrates excellent performance of those methods. Section 5
then offers an explanation for this good performance through an analysis of model
diversity. Finally, Sect. 6 concludes the paper.

2 Uplift modeling

In this section we will discuss the state of the art and introduce the notation used in
the paper. We begin, however, by mentioning the biggest challenge one encounters
when designing uplift modeling algorithms. The problem has been known in statistical
literature (see e.g. Holland (1986)) as the

Fundamental Problem of Causal Inference. For every individual, only one of the
outcomes is observed, after the individual has been subject to an action (treated)
or when the individual has not been subject to the action (was a control case),
never both.

Essentially this means that we do not know whether the action was beneficial
for a given individual and, therefore, cannot assess model’s decisions at the level of
individuals. This is different from classification, where the true class of an individual
is known, at least in the training set.

2.1 Related work

Despite its practical appeal, uplift modeling has received surprisingly little attention
in the literature. In this section we will present the related work. We begin with the
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motivation for uplift modeling and related techniques and a brief overview of ensemble
methods, then we discuss the available uplift modeling algorithms, and finally present
current references on using ensemble methods with uplift models.

The first publication explicitly discussing uplift modeling was Radcliffe and Surry
(1999). It presents a thorough motivation including several use cases. General dis-
cussions of uplift modeling and its applications can also be found in Hansotia and
Rukstales (2002) and Radcliffe and Surry (2011).

Experiments involving control groups are becoming common in website optimiza-
tion, where they are used with so called A/B tests or multivariate tests (Kohavi et
al. 2009). The focus of those methods is, however, different from uplift modeling as
their main goal is to verify the overall effectiveness of a change in website design,
not selecting the right design for each customer (looking into specific subgroups is
usually mentioned only in the diagnostic context). Another related technique is action
rule discovery (Adomavicius and Tuzhilin 1997; Raś et al. 2009) which is concerned
with finding actions which should be taken to achieve a specific goal. This is differ-
ent from uplift modeling which aims at identifying groups on which a predetermined
action will have the most positive effect. Contrast sets introduced by Bay and Paz-
zani (2001) allow for finding subgroups in two datasets on which a specified quantity
differs significantly. This is different from uplift modeling which aims at predicting
this difference at the level of single records.

Themost popular ensemblemethods are bagging (Breiman 1996), boosting (Freund
and Schapire 1997) and Random Forests (Breiman 2001). Other ensemble methods
exist, such as Extremely Randomized Trees (Geurts et al. 2006) or Random Decision
Trees (Fan et al. 2003). Essentially, those methods differ by the way randomness is
injected into the tree learning algorithm to ensure that models in the ensemble are
diverse. In Liu et al. (2008) a unifying framework is proposed which encompasses
many approaches to randomization. As we mentioned in Sect. 1, this paper will only
look into bagging and Random Forests.

2.2 Notation

We will now introduce the notation used throughout the paper. The probabilities in the
treatment group will be denoted by PT and the probabilities in the control group by
PC . The convention will be kept for other notations, with the superscript T denoting
quantities related to the treatment group and the superscript C quantities related to the
control group. For example, the treatment training dataset will be denoted with DT

and the control training dataset with DC .
Both training datasets have the same set of predictor attributes X1, . . . , Xm and a

class attribute Y . The joint domain of the X ’s (the sample space) is denoted with X ,
and the domain of Y is assumed to be Y = {0, 1}, with 1 considered the positive or
desired outcome, e.g. a customer responds to a marketing offer or a patient survives a
specified amount of time. We define a classification model as a function

m(x) : X → [0, 1]
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with the assumption thatm(x) is an estimator of P(Y = 1|x), i.e., the model estimates
the probability of the desired outcome conditional on the values x of the predictor
variables. An uplift model is a function

mU (x) : X → [−1, 1] (1)

understood as an estimator of

PT (Y = 1|x) − PC (Y = 1|x), (2)

that is of the difference between success probabilities in the treatment and control
groups or, in other words, the expected net gain from performing the action on an
individual described by predictor attributes’ values x. The quantity given in Eq. 2 is
also referred to, by some authors, as uplift. For consistency, throughout the paper, we
will use the term net gain.

It is possible to extend the definitions to multiclass problems by including costs or
benefits of each outcome y ∈ Y . For example, let vy denote the benefit resulting from
a given individual ending up in class y (after being subject to the action or when left
untreated). Then, the expected net gain of taking the action on an individual described
by a feature vector x is

− c +
∑

y∈Y
vy P

T (Y = y|x) −
∑

y∈Y
vy P

C (Y = y|x), (3)

where c is the cost of taking the action. When Y = {0, 1}, v1 = 1, v0 = 0, and c = 0,
Eq. 3 reduces to Eq. 2. In this paper we will not use the cost model, and Eq. 2 will be
our working definition of the net gain. A discussion on using costs in uplift modeling
can be found in Hansotia and Rukstales (2002).

2.3 Current uplift modeling algorithms

The most obvious approach to uplift modeling is to build two classification models
mT and mC on the treatment and control groups respectively and to subtract their
predicted probabilities:

mU (x) = mT (x) − mC (x).

We will call this approach the double classifier approach. Its obvious appeal is sim-
plicity; however in many cases the approach may perform poorly. The reason is that
both models can focus on predicting the class probabilities themselves, instead of
making the best effort to predict the (usually much weaker) ‘uplift signal’, i.e., the
difference between conditional class probabilities in the treatment and control groups.
See Radcliffe and Surry (2011) for a detailed discussion and an illustrative exam-
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ple.1 Nevertheless, in some cases the approach is competitive. This is the case when
the amount of training data is large enough to accurately estimate conditional class
probabilities in both groups or when the net gain is correlated with the class variable,
e.g. when people likely to buy a product are also likely to positively respond to a mar-
keting offer related to that product. As we shall see in Sect. 4, ensemblemethods are an
effective technique for improving the performance also for double classifier models.

Other approaches to uplift modeling try to directly model the difference in con-
ditional success probabilities between the treatment and control groups. Most active
research follows this direction. Currently such methods are mainly adaptations of two
types of machine learning algorithms: decision tree learners and regression models
to the uplift case. The first approach to uplift decision tree learning has already been
presented by Radcliffe et al. (1999), albeit with very few details given. In amore recent
report (Radcliffe and Surry 2011) the authors provide a thorough description of their
approach: the decision trees have been specially adapted to the uplift case by using a
splitting criterion based on statistical tests of the differences between treatment and
control success probabilities introduced by the split.

Another typeof uplift decision treewas presentedbyHansotia andRukstales (2002).
In the proposed approach, a single uplift decision tree is built which explicitly models
the difference between responses in treatment and control groups. The algorithm uses a
splitting criterion called��P , which selects tests maximizing the difference between
the differences between treatment and control success probabilities in the left and right
subtrees, i.e., by maximizing the desired quantity directly.

Another decision tree for uplift modeling is proposed in Chickering andHeckerman
(2000). The tree is modified such that every path ends with a split on whether a given
person has been treated or not. Otherwise the algorithm is a standard decision tree
construction procedure from Buntine (1992), so all remaining splits are selected such
that the class (not the net gain) is predicted well.

In Rzepakowski and Jaroszewicz (2010) uplift decision trees have been presented
which are more in line with modern tree induction algorithms, the splits are selected
based on information theoretical criteria and a pruning method is included. The
approach has been extended to the case of multiple treatments in Rzepakowski and
Jaroszewicz (2012). This is the uplift model we are going to use as base learner for
our ensembles, so we will discuss the approach in more detail in Sect. 3.1.

A few regression techniques for uplift modeling have, under various names, been
proposed inmedicine, social science andmarketing.Most researchers, however, follow
the two model approach either explicitly or implicitly. Details can be found in Robins
(1994),Robins andRotnitzky (2004),Vansteelandt andGoetghebeur (2003),Lo (2002)
and Larsen (2001). In Jaśkowski and Jaroszewicz (2012) a class variable transforma-
tion was presented which allows for converting an arbitrary classification model (the
paper used logistic regression) into anupliftmodel.As a result, a single classifier is built
which directly models the difference between success probabilities in the treatment
and control groups. Recently Pechyony et al. (2013), the approach has been extended

1 The example is based on artificial data with two attributes, one strongly affecting the class probabilities
independently from the treatment received, the other determining the relatively small sensitivity to the
treatment. A model based on two decision trees uses only the first attribute.
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to work in the context of online advertising, where it is necessary to not only maximize
the net gain, but also to increase advertiser’s benefits through maximizing response
rate in the treatment group. This type of problems are beyond the scope of this paper.

2.4 Ensemble methods for uplift modeling

We are aware of only two papers using ensemble methods in uplift modeling. In Rad-
cliffe and Surry (2011) the authors mention the successful use of bagging in their
uplift modeling practice. Unfortunately, the report contains only a brief note of the
technique with no experimental or theoretical evaluation. In this paper we present a
thorough experimental evaluation of bagged uplift models as well as an analysis of
the theoretical aspects of the technique in the uplift modeling context. Based on it, we
present a compelling argument for high utility of bagging in uplift modeling.

Guelman et al. (2012) present an adaptation of the Random Forest algorithm to
the uplift case. The adaptation uses splitting criteria defined in Rzepakowski and
Jaroszewicz (2010, 2012), but at each node in the tree a random subset of attributes
is first selected from which the best test is then picked. For details see Sect. 3.3.
Unfortunately the authors do not present an experimental verification of the technique
or comparison with other uplift approaches. This gap is filled in this paper, where we
compare Random Forests with bagging and single uplift models on several datasets.
The experiments and a discussion of the results can be found in Sect. 5.3.

3 Bagging and random forests for uplift modeling

In this section we discuss modifications to ensemble methods needed to apply them
to the task of uplift modeling. We begin by describing the base learners we are going
to use, then we talk about implementations of uplift bagging and Random Forests.

3.1 Base learners

As our base learners we are going to use both dedicated uplift decision trees and the
double classifier models. For the double classifier approach we used pairs of unpruned
J4.8 decision trees from the Weka package. This is a version of the well known C4.5
learner and is not discussed here in detail, see Quinlan (1992) and Witten and Frank
(2005).

As a second type of base learner we are going to use E-divergence based uplift
decision trees proposed in Rzepakowski and Jaroszewicz (2010, 2012). For the sake
of completeness, we will now describe the method briefly. A single tree is built by
simultaneously splitting the treatment and control training sets. At each level of the
tree the test is selected such that the divergence between class distributions in the
treatment and control groups is maximized after the split. Various measures of the
divergence lead to different splitting criteria.

Take two probability distributions P = (p1, . . . , pn) and Q = (q1, . . . , qn). There
are manyways tomeasure how far P is from Q, the most common being the Kullback-
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Leibler divergence (Csiszar and Shields 2004) and the squared Euclidean distance
(which, for symmetry, we call E-divergence):

K L(P : Q) =
∑

i

pi log
pi
qi

,

E(P : Q) =
∑

i

(pi − qi )
2.

In Rzepakowski and Jaroszewicz (2010) both divergences have been used, here we
focus only on the Euclidean distance as it gave better results in the experiments.2 The
splitting criterion used in Rzepakowski and Jaroszewicz (2010, 2012) is based on the
E-divergence gain defined as

Egain(A) = E
(
PT (Y ) : PC (Y )|A

)
− E

(
PT (Y ) : PC (Y )

)
, (4)

where A is the test being evaluated. This expression measures the increase in diver-
gence after the split. The conditional divergence used in the equation is defined as

E
(
PT (Y ) : PC (Y )|A

)
=

∑

a∈A
P(a)E

(
PT (Y |a) : PC (Y |a)

)
,

where A is the set of possible outcomes of the test A and P(a) is a weighted average
of probabilities of outcome a in the treatment and control training sets. It can be
shown (Rzepakowski and Jaroszewicz 2010) that the gain possesses several desirable
theoretical properties. Instead of using the raw value of the gain, the tree learning
algorithm in Rzepakowski and Jaroszewicz (2010, 2012) uses gain ratio, which is
obtained by dividing (4) by a factor penalizing tests with a large number of outcomes
as well as tests which lead to very different splits in the treatment and control training
sets. The details are omitted to save space and can be found in Rzepakowski and
Jaroszewicz (2010, 2012).

Following Breiman’s suggestion Breiman (1996), the trees used as base learners
for the ensembles are not pruned. Our experiments confirmed that unpruned trees out-
perform pruned trees as ensemble members. Single pruned trees are however included
in our experiments for comparison. In Rzepakowski and Jaroszewicz (2012) a prun-
ing strategy based on so called maximum class probability difference criterion was
proposed. Here we use a different approach based on Areas Under the Uplift Curves
(AUUCs), which we found to perform better. Uplift curves are used to assess perfor-
mance of uplift models and are discussed in detail in Sect. 4.2. The approach works
by splitting available data into training and validation sets. The tree is built on the
training datasets (treatment and control), then, for each node, the validation AUUC
of the subtree rooted at that node is compared to the AUUC we would obtain had the

2 One reason is that KL-divergence tends to infinity when one of the qi probabilities is very close to zero.
This results in numerical instability and estimation problems, negatively affecting lower levels of the trees
where little data is available for learning. E-divergence is much better behaved in this respect.
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Fig. 1 Bagging algorithm for uplift models

subtree been replaced with a single leaf. If the latter is larger, the subtree is pruned.
This is a direct adaptation of classical tree pruning based on validation sets (Breiman
et al. 1984).

3.2 Bagging of uplift models

Figure 1 shows the bagging algorithm adapted to the uplift modeling problem. Overall,
the algorithm is almost identical to classical bagging used for classification (Breiman
1996). The only difference is that two bootstrap samples are now taken independently
from the treatment and control datasets and that members of the ensemble are each
built on a pair of samples. Note that we are averaging the predicted net gains, that is
the predicted differences between success probabilities in the treatment and control
groups (Eq. 2).

Of course one can use any type of uplift model as the base learner, including double
classifiers. It turns out that the latter case is equivalent to using a double classifier
consisting of two bagged classifier ensembles, one built on the treatment, the other
on the control dataset. To see this, denote by mT

i the classifier built on the bootstrap
sample DT

i , by m
C
i the classifier built on DC

i , and by m
U
i = mT

i −mC
i the i-th double

classifier uplift model added to the ensemble. Then, for a given input vector x the
prediction of the bagged uplift model is

mU (x)= 1

B

B∑

i=1

mU
i (x)= 1

B

B∑

i=1

[
mT

i (x) − mC
i (x)

]
= 1

B

B∑

i=1

mT
i (x) − 1

B

B∑

i=1

mC
i (x),

which is exactly the difference between success probabilities predicted by bagged
classifiers trained separately on the treatment and control datasets.

In this paper we will examine ensembles of both double classifiers and dedicated
uplift trees, and show bagging to be highly profitable in both cases.

123



1540 M. Sołtys et al.

Fig. 2 An algorithm for building a member of an Uplift Random Forest

3.3 Random forests for uplift modeling

In case of Random Forest classifiers we tested both the method proposed by Guel-
man and others in Guelman et al. (2012), which we call Uplift Random Forests, and
ensembles of double randomized decision trees, which we callDouble Uplift Random
Forests. Uplift Random Forests work the same as bagged E-divergence based uplift
decision trees, except that extra randomization is added to the test selection process
while building ensemble members: the test for each node in a tree is selected based
only on a randomly selected subset of available attributes.

Figure 2 shows the algorithm for building a single member tree of an Uplift Ran-
dom Forest. The original paper Guelman et al. (2012) used KL-divergence based
test selection proposed in Rzepakowski and Jaroszewicz (2010). Here we used the
Euclidean distance based criterion (see previous section). The number k of randomly
selected attributes was chosen to be the ceiling of the square root of the total number
of attributes. Construction of the tree was stopped when either no more than 3 training
records remained in the treatment or control training sets or the tree height exceeded
20. Those values were chosen arbitrarily to prevent excessively large trees. Building
larger trees had very little impact on the results.

Of course, it is also possible to build a random forest composed of double ran-
domized decision trees, one built on a bootstrap sample DT

i taken from the treatment
dataset, the other on a sample DC

i taken from the control dataset. We call such models
Double Uplift Random Forests. Note that this approach involves stronger randomiza-
tion as each tree constructed on the treatment set is randomized independently of trees
constructed on the control. By an argument analogous to the one for bagging, such
an uplift model is equivalent to a double classifier model consisting of two Random
Forest classifiers.

In our experiments we used Weka’s RandomTree classifier to construct members
of the ensemble. Unfortunately the RandomTree class uses a slightly different split-
ting criterion than J4.8 tree which we use in bagged double classifiers. The former
uses raw entropy gain and the latter uses entropy gain ratio, i.e., the gain is divided
by the entropy of the test itself. Moreover J4.8 uses heuristics to eliminate tests with
very low entropies, see Quinlan (1992) for details. This makes comparison of bagged
double classifiers with Double Uplift Random Forests more difficult, but we chose not
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to modify the implementations of Weka tree learners as they are a standard used by
the community, and since neither criterion is uniformly better than the other.

3.4 Theoretical properties

This section discusses theoretical properties of ensemble methods in the uplift setting.
We analyze those properties by treating uplift modeling as an instance of classification
or regression problems. Essentially, most theoretical properties of classification and
regression ensembles almost directly carry over to the uplift case, but are of purely
theoretical interest, since the respective quality measures cannot be computed due to
the Fundamental Problem of Causal Inference.

Themost popular explanation ofwhy baggingworks is variance reduction (Breiman
1996). This argument is typically used in the regression context with Mean Squared
Error criterion. The error is decomposed into three components: Bayes error, model
variance and model bias. In Breiman (1996) Breiman shows that averaging several
models decreases the variance component and concludes that for bagging to work, the
models in the ensemble must be sufficiently diverse for the reduction in variance to
offset to use of bootstrap samples instead of the full training dataset.

Upliftmodeling is not, strictly speaking, a regression task, but can be viewed as such
when the conditional net gain (defined in Eq. 2) is treated as a numerical quantity to be
predicted.3 Breiman’s argument can then be applied directly and is not repeated here.
An analogous argument can of course be used when talking about net gain defined in
terms of costs or benefits (Eq. 3).

One can also view uplift models as classifiers. The class to be predicted is whether
the action will have a positive impact on the given individual. The model given in
Eq. 1 then decides that the action should be taken on an individual x if mU (x) > 0.
Unfortunately, due to the Fundamental Problem of Causal Inference, we never know
whether the action was truly beneficial if taken on a given object, so we cannot assess
uplift model correctness at the level of individuals.

In the classification context, it can be shown [seeHansen andSalamon (1990) and an
essentially equivalent argument in Breiman (1996)] that bagging inflates the predicted
probability of the most frequent class thus resulting in improved accuracy. The same
argument can directly be applied to uplift models treated as classifiers. Even though
the true class values are not available to us, the argument shows that if an ensemble’s
members correctly decide on taking the action with probability greater than 0.5, we
may expect the ensemble to perform better than a single model.

In Breiman (2001) a bound is given on the performance of a classification ensemble
in terms of the strength of individual models and correlations between them. However,
the definitions of strength and correlation require the knowledge of the true class which
is not available in uplift modeling. The bound thus remains true in principle, but the

3 Note that net gain is bounded to the interval [−1, 1] so the Mean Squared Error criterion may not be
appropriate for values close to ±1 since it does not take into account the error’s asymmetry. In practical
situations, however, the predicted net gain is rarely close the boundaries of the interval, so the square loss
is applicable.
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values involved cannot themselves be computed. For this reason we define our own
measures of strength and diversity in Sect. 5.

Other explanations for good performance of ensemble methods are presented by
Dietterich (2000). They include, for example, the fact that ensembles use a richer
model space than single models. All those explanations trivially carry over to the
uplift case.

4 Experimental evaluation

In this section we present an experimental evaluation of bagging and Random Forests
for uplift modeling. We begin with a general discussion on assessing performance of
uplift models, then present the actual experimental results.

4.1 Benchmark datasets for uplift modeling

A significant problem one encounters while working on uplift modeling is the lack of
publicly available datasets. Even though control groups are ubiquitous inmedicine and
their use in marketing is growing, there are relatively few publicly available datasets
which include a control group and a reasonable number of predictive attributes. In our
experiments we are going to use several publicly available datasets which include true
control groups obtained through randomization. Additionally, we also include datasets
from the UCI repository artificially split into treatment and control groups. We first
describe the datasets coming from randomized trials and later the procedure used to
split the UCI benchmarks.

Table 1 summarizes the datasets with real control groups used in our experiments.
The first dataset comes from Kevin Hillstrom’s MineThatData blog (Hillstrom 2008)
and contains results of an e-mail campaign for an Internet based retailer. The dataset
contains information about 64,000 customers who have been randomly split into three
groups: the first received an e-mail campaign advertising men’s merchandise, the
second a campaign advertising women’s merchandise, and the third was kept as a
control. Data is available on whether a person visited the website and/or made a
purchase (conversion). We only focus on visits since very few conversions actually
occurred. In this paperwe use the dataset in twoways: combining both e-mailed groups
into a single treatment group (the resulting dataset is called Hillstrom visit)
and using only the women’s merchandise group (dataset called Hillstrom visit
w.). The women’s group was chosen because the campaign on this group was, overall,
much more effective.

Additionally, we use several publicly available clinical trial datasets which accom-
pany a book on survival analysis by Pintilie (2006) or are available in the R package
for statistical computing. The first medical dataset available with Pintilie (2006) is the
Bone Marrow Transplant (BMT) data on patients who received two types of bone mar-
row transplant: taken from the pelvic bone (used as the control group since this was the
procedure commonly used at the time the data was collected) or from the peripheral
blood (a novel approach, used as the treatment group in this paper). The peripheral
blood transplant is easier on the donor but may result in a higher rate of rejection
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Table 1 Datasets from randomized trials used in the paper

Dataset Source #Records #Attributes

Treatment Control Total

Hillstrom visit MineThatData blog (Hillstrom 2008) 42,694 21,306 64,000 8

Hillstrom visit w. MineThatData blog (Hillstrom 2008) 21,306 21,306 42,612 8

BMT cgvh Pintilie (2006) 49 51 100 4

BMT agvh Pintilie (2006) 49 51 100 4

Tamoxifen Pintilie (2006) 321 320 641 10

Pbc R, survival package 158 154 312 20

Bladder R, survival package 38 47 85 6

Cgd R, survival package 65 63 128 10

Colon death R, survival package 614 315 929 14

Colon recurrence R, survival package 614 315 929 14

Veteran R, survival package 69 68 137 9

Burn R, KMsurv package 84 70 154 17

Hodg R, KMsurv package 16 27 43 7

in the recipient. The goal of using an uplift model is to pick a group of patients for
whom the alternative therapy is applicable without the increased risk. There are two
target variables representing the occurrence of the chronic (cgvh) and acute (agvh)
graft versus host disease. We ignore the survival nature of the data and simply treat
nonoccurrence as the successful outcome. There are only three randomization time
variables: the type and extent of the disease and patient’s age.

Note that even though the BMT dataset does not, strictly speaking, include a control
group, uplift modeling can still be applied. The role of the control group is played
by one of the treatments and the method allows for selection of patients to whom an
alternative treatment should be applied.

The second clinical trial dataset accompanying (Pintilie 2006), calledTamoxifen,
contains data on treatment of breast cancer with a drug tamoxifen. The control group
received tamoxifen alone and the treatment group tamoxifen combined with radio-
therapy. We model the target variable stat describing whether the patient was alive
at the time of the last follow-up. The dataset contains six variables: size of the tumor,
histology, hormone receptor level, haemoglobin level, patient’s age, and a binary vari-
able set to true if auxiliary node dissection was done. Details can be found in Pintilie
(2006).

Additional datasets come from the survival and KMsurv packages from the R
statistical computing system.Wewill discuss them in less detail since full descriptions
are easily accessible online. First, datasets available in the survival package. The
pbc dataset comes from the Mayo Clinic study of primary biliary cirrhosis (PBC) of
the liver conducted between 1974 and 1984 and includes data on 312 patients who
participated in a randomized controlled trial of the drug D-penicillamine (the control
group received placebo). We assumed death before the endpoint of the study to be
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the negative outcome and a patient receiving a transplant or being censored to be the
positive outcome.

The recurrences of bladder cancer dataset (bladder) contains information on 85
subjects who received either the thiotepa drug or placebo. For each patient it is reported
whether recurrence occurred during four periods of time. We assumed patients for
whom there was at least one recurrence to be the negative cases, those without any
recurrence, the positive cases.

The dataset cgd comes from a placebo controlled trial of gamma interferon in
chronic granulotomous disease (CGD) and contains complete information on the time
to first serious infection observed through the end of study. Since each patient even-
tually developed an infection we considered those who did so in less than 180 days to
be negative and the remaining ones positive cases.

The colon data comes from a trial of adjuvant chemotherapy for colon can-
cer. There are two types of treatment which we merged together into a single treat-
ment group. The control group received placebo. We analyzed two target attributes:
‘death’ and ‘recurrence or death’ with the resulting datasets called respectivelycolon
recurrence and colon death.

The veteran data comes from a randomized trial of two treatment regimens for
lung cancer on 137 patients. For uplift analysis, survival time is omitted and patients
alive up to the end of the study constitute the positive examples.

Two additional datasets come from the KMsurv package. The burn dataset has
154 rows describing infections suffered by patients who underwent burns. The treat-
ment group was subject to body cleansing and the control group to routine bathing.
Occurrence of staphylococcus aureus infection was the negative outcome. Finally, the
hodg dataset describes 43 patients who underwent an allogeneic graft or an autolo-
gous graft (control group) as a lymphoma treatment. Those who die by the end of the
study constitute the negative examples.

In order to increase the number of available datasets we additionally used an
approach described in Rzepakowski and Jaroszewicz (2010, 2012) to artificially split
standard UCI datasets into treatment and control groups suitable for uplift modeling.

The conversion is performed by first picking one of the data attributes which either
has a causal interpretation (this was the case only for thehepatitis dataset) or splits
the data evenly into two groups. Details are given in Table 2 taken from Rzepakowski
and Jaroszewicz (2012). The first column contains the dataset name and the second
provides the condition used to select records for the treatment group. The remaining
records formed the control. A further postprocessing step removed attributes strongly
correlated with the split itself; ideally, the division into treatment and control groups
should be independent from all predictive attributes, but this is possible only in a
controlled experiment. A simple heuristic was used for this purpose:

1. Anumerical attributewas removed if itsmeans in the treatment and control datasets
differed by more than 25%.

2. A categorical attribute was removed if the probability of one of its categories
differed between the treatment and control datasets by more than 0.25.

The number of removed attributes versus the total number of attributes is shown in
the third column of Table 2.
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Table 2 Conversion of UCI
datasets into treatment and
control groups

Dataset Treatment/control split
condition

#Removed
attributes/#original
attributes

Australian a1 = ‘1’ 2/14

Breast-cancer Menopause = ‘PREMENO’ 2/9

Credit-a a7 �= ‘V’ 3/15

Dermatology Exocytosis ≤1 16/34

Diabetes Insu >79.8 2/8

Heart-c Sex = ‘MALE’ 2/13

Hepatitis Steroid = ‘YES’ 1/19

Labor Education-allowance = ‘YES’ 4/16

Liver-disorders Drinks <2 2/6

Primary-tumor Sex = ‘MALE’ 2/17

Splice Attribute1 ∈ {‘A’, ‘G’} 2/61

Winequal-red Sulfur dioxide <46.47 2/11

Winequal-white Sulfur dioxide <138.36 3/11

Further, multiclass problemswere converted into binary problemswith themajority
class assumed to be class 1 (the desired outcome) and the remaining classes merged
into class 0. We note that it is possible to use all analyzed uplift methods in the
multiclass setting, however, we chose to use binarization in order to make the analysis
(e.g. drawing curves) easier.

4.2 Evaluating uplift models

Let us now discuss methods of evaluating uplift models. The task is more challenging
than in traditional machine learning because of the Fundamental Problem of Causal
Inference mentioned in Sect. 2. For a given individual we know only one of the
outcomes, after or without treatment. As a result, we never know whether the action
has been truly beneficial for a given individual or not. Therefore, we cannot asses
model performance at the level of single data records, this is possible only for groups
of similar records.

Recall that building uplift models requires two training sets. Consequently, we
also have two test sets: treatment and control. A typical approach to assessing uplift
models (Radcliffe and Surry 2011; Hansotia and Rukstales 2002) is to score both test
datasets using the same uplift model and assume that objects in the treatment and
control groups which have received similar scores are similar and can be compared
with each other. In Hansotia and Rukstales (2002) the authors grouped treatment and
control test cases by deciles of their scores and estimated net gains by subtracting
success rates within each decile.

A more practical modification of this approach is to visualize model performance
using uplift curves (Rzepakowski and Jaroszewicz 2010; Radcliffe and Surry 2011).
Recall that one of the tools for assessing performance of standard classificationmodels
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are lift curves,4 where the x axis corresponds to the number of cases subjected to an
action and the y axis to the number of successes captured by the model.

In order to obtain an uplift curve we score both test sets using the uplift model and
subtract the lift curve generated on the control test set from the lift curve generated
on the treatment test set. The number of successes for both curves is expressed as
percentage of the total population such that the subtraction is meaningful.

The interpretation of the uplift curve is as follows: on the x axis we select the per-
centage of the population on which the action is performed, and on the y axis we read
the net gain achieved on the targeted group (the net gain on the remaining cases is zero
since no action was performed on them). The point at x = 100% gives the gain in suc-
cess probability we would obtain if the action was applied to the whole population. A
diagonal uplift curve corresponds to performing the action on a randomly selected per-
centage of the population. Examples of uplift curves are given in Sect. 4.4, more details
can be found in Rzepakowski and Jaroszewicz (2010) and Radcliffe and Surry (2011).

As with ROC curves, we can use the Area Under the Uplift Curve (AUUC) to
summarize model performance with a single number. We subtract the area under the
diagonal from this value in order to obtain more meaningful numbers. Note that the
area under the uplift curve can be less than zero; this happens when the model gives
high scores to cases for which the action has a predominantly negative effect.

4.3 Experimental setup

Our experiments involved four types of uplift ensembles:

Bagged uplift trees. Bagged ensembles of E-divergence based unpruned uplift
decision trees (see Sect. 3.1).
Bagged double J4.8 trees. Bagged ensembles of double classifiers based on
unpruned J4.8 models from Weka.
Uplift Random Forests. Bagged ensembles of randomized E-divergence based
uplift decision trees built using the algorithm in Fig. 2.
Double Uplift Random Forests. Bagged ensembles of double classifiers based on
randomized trees from Weka.

Additionally, for comparison, we included the base models in the experiments: pruned
and unpruned E-divergence based uplift trees and double classifier uplift models based
on pruned and unpruned J4.8 trees. This choice allowed us to compare the effectiveness
of ensembles versus single models, as well as to assess the effect of extra randomness
introduced by Random Forests.

All experiments have been performed by randomly splitting each dataset into train-
ing (80 % of the data) and test (the remaining 20 %) parts. Each experiment was
repeated 128 times, and the resulting uplift curves have been averaged. The reason for
this choice was to make the results repeatable and less sensitive to the random seed
used. However, the disadvantage of such an approach is that it hides the variance of
the predictions. To address this issue we also compute standard deviations of AUUCs

4 Also known as cumulative gains curves or cumulative accuracy profiles.
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computed over the 128 test sets in a manner similar to bootstrap estimates. Moreover,
we use statistical tests to asses the results’ significance.

4.4 Illustrative examples

Let us begin by showing some examples of how the use of ensemble methods can
dramatically improve the performance of uplift models. Figure 3 shows uplift curves
for various bagged and Random Forest ensembles built on three real datasets and three
UCI benchmarks artificially split into treatment and control groups. Each chart displays
uplift curves for increasing ensemble sizes; Areas Under the Uplift Curves (AUUCs)
are given in the legends. For comparison, the charts include uplift curves for base
models and pruned base models, i.e., pruned E-divergence based uplift trees or double
classifiers based on pruned J4.8 trees, see Sect. 3.1 for details. In case of Random
Forest models, the base model is the non-randomized tree of the corresponding type.

It can be seen that applying ensemble methods led to dramatic improvements for
those datasets, in some cases more than tripling the Area Under the Uplift Curve and in
others turning practically useless single models into highly capable uplift ensembles.

For example, the upper left chart shows uplift curves for the winequality_
white dataset. The base model, a double classifier based on a J4.8 tree, achieved only
amodest improvement over targeting a randomly selected subset of the population. By
targeting about 80 % of the database according to base model’s selection we are able
to obtain the net gain just 3 % higher than if we indiscriminately applied the action to
all objects. In contrast, when targeting 70 % of the population selected using a Double
Random Forest the difference grows to almost 10 %. The area under the uplift curve
for the Random Forest model is more than three times larger than for the base model
(regardless, pruned or unpruned)! Similar improvements have been achieved for the
liver_disorders dataset with the application of bagging to uplift decision trees
based on E-divergence test selection criterion.

The Tamoxifen dataset is another interesting example; here the base model is
practically useless, as its performance is almost identical to random selection of the tar-
get group. Applying bagging improved performance significantly: by targeting about
70 % of patients with the drug and radiotherapy and the remaining 30 % with the drug
only we would (apart from reducing the number of people subject to radiotherapy
and its side effects) achieve, overall, better results than if the combined treatment was
administered to all patients. Similar gains are visible for the chronic graft versus host
disease in the BMT dataset. Using an uplift model, we could target almost 75 % of
patients with the alternative, milder therapy while actually achieving lower incidence
of side effects. Note that the overall impact of the alternative therapy is negative in
this context, but this seems to be due to only about a quarter of the patients for whom
it gives particularly bad results.

The next subfigure shows the performance of bagged uplift decision trees on the
women’s merchandise campaign from the Hillstrom dataset. The gains are not as
spectacular as in the previous cases, but still, the application of bagging resulted in
about 10 % increase in the AUUC over a single pruned uplift tree and about 20 %
increase over a single unpruned tree.

123



1548 M. Sołtys et al.

Fig. 3 Uplift curves for various types of uplift ensembles with increasing number ofmembers B on selected
datasets. Areas Under the Uplift Curves (AUUCs) are shown in the legends

The final example is the artificially split credit_a dataset, where Uplift Random
Forest is seen to perform exceptionally well. The chart requires a comment. It can
be seen that the base model makes predictions which are actually worse than random
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selection, while an ensemble with just one member performs much better. This is
unexpected, since the single member tree was built, due to bootstrapping, on a smaller
sample than the full model. The same effect was seen when bagging was applied to
E-divergence based uplift decision trees on this dataset. To understand this result we
examined the generated trees. When the base model was used, in almost all of the 128
random train/test splits the test in the root of the tree was based on the A6 attribute
which takes 14 different values; this resulted in quick training data fragmentation
and poor overall performance. If the same tree construction algorithm was applied
to a bootstrap sample taken from the original dataset, tests in the root were almost
never based on this attribute resulting in much better trees. The good performance of
one member ensembles thus turned out to be a counterintuitive side effect of the test
selection criterion proposed in Rzepakowski and Jaroszewicz (2010). As can be seen
in the charts presented in the next section this phenomenon occurs (less strongly) also
for other datasets as well as for the J4.8 decision trees. To visualize real gains resulting
from forming larger ensembles we have included the curves for one model ensembles
in all the charts in Fig. 3.

4.5 Performance evaluation of uplift ensembles

The examples shown above were hand-picked to demonstrate the striking benefits
ensemble methods can bring to uplift modeling. To provide a more unbiased view, in
this section we present a complete analysis comparing the algorithms on all available
datasets.

First, we compare the Areas Under the Uplift Curves (AUUCs) of uplift ensembles
of increasing sizes with the performance of base models, pruned and unpruned. In case
of Random Forests the base models are the corresponding trees without randomized
attribute selection. The results are shown in Figs. 4 and 5. We begin by discussing
the performance of E-divergence based uplift trees, later we move to double classifier
models and their ensembles.

Looking at Fig. 4 one can see that for all datasets, except three (Tamoxifen,
veteran and hepatitis), forming larger ensembles improves performance
for both bagging and Uplift Random Forests, sometimes dramatically so. For
the cgd, bladder, colon death, colon recurrence, breast_cancer,
diabetes, heart_c, liver_disorders, splice, and both winequality
datasets the gains over base models were especially large, with Areas Under the Uplift
Curves doubling or even tripling. For the Hillstrom visit dataset the perfor-
mance of the ensemble increased steadily as more members were added but fell just
short of surpassing the pruned base model. Note that when only women’s merchan-
dise offer was considered (see also Fig. 3) bagging brought significant improvement
in performance over the base model. The loss of performance on the Tamoxifen
and veteran datasets is most probably due to poor base models.

An interesting observation is good performance of bagging. While in the case of
standard classification bagging is considered a simple technique offering only modest
improvements in performance, it is very competitive when used for uplift modeling,
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Fig. 4 Areas Under the Uplift Curves versus ensemble size for bagged E-divergence based uplift decision
trees and Uplift Random Forests

Fig. 5 Areas Under the Uplift Curves versus ensemble size for bagged double classifiers based on J4.8
trees and for Double Uplift Random Forests

comparable to Random Forests. A more thorough discussion of that issue is provided
in the next section, where we analyze the correlation between ensemble members.

To test the statistical significance of the results we will take two approaches. First
we are going to look at how far the model’s AUUC differs from zero (i.e., random
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Table 3 Areas under the uplift curves for base models, bagged ensembles and Random Forests

Dataset Unpruned 1001 bagged Uplift Rand. Double 1001 bagged Double uplift
E-div. tree E-div. trees Forest (1001) J4.8 classif. double J4.8 Rand. forest

BMT agvh 1.97 ± 4.76 2.25 ± 4.79 2.77 ± 4.58 0.55 ± 2.82 0.74 ± 5.08 3.92 ± 4.78

BMT cgvh 2.20 ± 4.50 2.95 ± 4.17 3.24 ± 4.29 2.75 ± 3.23 5.78 ± 4.39* 4.69 ± 4.57*

Hillstrom visit 0.35 ± 0.17** 0.38 ± 0.17** 0.28 ± 0.16* 0.17 ± 0.18 0.06 ± 0.16 −0.00 ± 0.17

Hillstrom visit w. 0.62 ± 0.19** 0.73 ± 0.18** 0.63 ± 0.19** 0.45 ± 0.22** 0.32 ± 0.21* 0.23 ± 0.22*

Tamoxifen −0.10 ± 1.46 −0.23 ± 1.17 −0.40 ± 1.12 −0.15 ± 1.42 0.25 ± 1.27 −0.31 ± 1.27

Burn 6.02 ± 3.17* 4.36 ± 4.38 4.47 ± 4.91 2.37 ± 4.10 2.54 ± 4.64 2.49 ± 4.64

Hodg 2.39 ± 7.67 6.81 ± 8.88 6.98 ± 8.66 7.80 ± 9.24 9.75 ± 8.60* 9.72 ± 8.67*

Bladder 0.53 ± 5.21 1.09 ± 5.69 1.08 ± 5.69 0.09 ± 4.88 1.86 ± 6.08 1.63 ± 6.10

Cgd 0.99 ± 2.23 2.44 ± 2.73 2.95 ± 2.65* 2.83 ± 2.07* 1.67 ± 2.40 2.74 ± 2.17*

Colon death 0.18 ± 1.50 0.71 ± 1.28 0.88 ± 1.27 0.72 ± 1.30 0.59 ± 1.46 0.73 ± 1.08

Colon recur. 0.83 ± 2.11 1.48 ± 1.78 1.19 ± 1.73 0.81 ± 2.05 1.83 ± 2.12 1.57 ± 2.19

Pbc 0.82 ± 3.42 0.68 ± 2.92 0.57 ± 2.90 0.08 ± 3.34 −0.16 ± 2.93 −0.30 ± 3.00

Veteran −0.87 ± 2.90 −1.45 ± 3.00 −1.56 ± 2.93 −0.30 ± 1.97 −2.52 ± 2.15 −0.81 ± 2.31

Australian −0.72 ± 2.60 0.60 ± 2.31 1.16 ± 2.17 1.00 ± 2.65 1.04 ± 2.23 −0.39 ± 2.18

Breast_cancer 0.84 ± 2.82 1.96 ± 2.76 2.33 ± 2.74 1.46 ± 3.35 2.51 ± 3.09 2.62 ± 2.72

Credit_a −3.06 ± 2.39 4.73 ± 2.23** 6.26 ± 1.93** 0.86 ± 2.50 0.34 ± 2.09 −3.55 ± 1.91

Dermatology 6.28 ± 1.97** 7.37 ± 1.41** 8.09 ± 1.01** 5.44 ± 2.31** 7.43 ± 1.54** 7.92 ± 1.29**

Diabetes 1.69 ± 2.36 2.83 ± 2.15* 2.68 ± 2.14* 1.19 ± 2.57 2.17 ± 2.34 2.41 ± 2.33*

Heart_c 2.05 ± 3.22 3.32 ± 3.39 3.64 ± 3.33* 2.34 ± 3.50 4.19 ± 3.29* 4.62 ± 3.42*

Hepatitis 0.56 ± 4.28 0.14 ± 3.74 0.06 ± 3.56 1.32 ± 4.87 0.24 ± 4.10 0.16 ± 3.98

Labor −4.72 ± 6.47 −0.01 ± 8.69 0.00 ± 8.39 −0.96 ± 8.13 0.27 ± 8.29 −4.40 ± 5.72

Liver_disorders 1.12 ± 3.48 3.60 ± 3.10* 3.60 ± 3.06* 1.09 ± 3.40 3.55 ± 3.22* 3.32 ± 3.07*

Splice 5.04 ± 0.95** 8.13 ± 0.88** 8.15 ± 0.79** 0.76 ± 0.79 3.45 ± 1.25** 7.78 ± 0.95**

Winequality_red 4.61 ± 1.58** 8.33 ± 1.38** 8.14 ± 1.38** 3.52 ± 1.65** 8.22 ± 1.55** 9.81 ± 1.49**

Winequality_white 4.51 ± 0.95** 7.53 ± 0.72** 7.30 ± 0.74** 3.35 ± 1.05** 9.28 ± 0.76** 10.77 ± 0.76**

Standard deviations are indicated in the table. Results more than one (respectively two) standard deviation
above zero are bolded and marked with a star (respectively two stars)

prediction) to determine whether we can expect useful predictions on future data. The
results are presented in Table 3. Such an approach, however, does not necessarily show
relative model performance since one model can consistently outperform another on
most datasets even though both models’ AUUCs are within one standard deviation
from each other. To address such cases we use the procedure described in Demšar
(2006) which ranks models on each dataset and performs a Nemenyi rank test across
all datasets. The results are given in Fig. 6. The average rank of each model is marked
on a scale. Above the scale, the width of the critical difference (CD) interval is marked.
AUUCs of models which are more than the length of this interval apart differ signif-
icantly. Models which are not significantly different are connected with thick black
lines. See Demšar (2006) for details.

The left side of Table 3 shows that in four cases Random Forest ensembles were
more than one standard deviation above random predictions, while the base models
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Fig. 6 Critical difference plots for E-divergence and double model based ensembles obtained using the
Nemenyi test at the 0.01 significance level

were not. The reverse was true in one case. The upper part of Fig. 6 shows that both
types of ensembles outperform pruned as well as unpruned base models at the 0.01
significance level.

The situation is similar for double classifiers based on J4.8 trees as shown in Fig. 5.
Here, again, ensemble methods in most cases behave better than base models, often
dramatically so. Overall, the differences between the Random Forest approach and
bagging are larger in this case. The most probable reason is the slightly different
splitting criterion, as discussed in Sect. 3.

The right side of Table 3 shows that in six cases Random Forest ensembles were
more than one standard deviation above random predictions, while the base model
was not. The reverse was never true. The lower part of Fig. 6 demonstrates, however,
that bagged trees were actually the best model, although their superiority over double
unpruned trees cannot be rigorously demonstrated.

Figure 7 presents the performance of all uplift ensemble methods on a single plot. It
is clear that using ensemble methods is usually very beneficial. Which of the methods
produces best results is very much case dependent. It is also interesting that bagging—
the simplest of the ensemble methods—performs very well and is usually comparable
to, or better than, Random Forest methods.

In the next section we will offer an explanation for the good performance of ensem-
ble methods for uplift modeling by analyzing correlations between predictions of
ensemble members.

5 Analysis of ensemble diversity

In case of ensemblemethods used for classification it has long been established that the
performance of an ensemble depends on the diversity of its members (Breiman 1996,
2001; Liu et al. 2008). In this section we will analyze the diversity of uplift ensembles
and, based on the analysis, offer an explanation for their good performance.

The first question we need to answer is how to measure the diversity of uplift
models. For ensembles of classifiers, measures of member strength and correlation
have been proposed by Breiman (2001) and improved by Buttrey and Kobayashi
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Fig. 7 Areas under the uplift curves versus ensemble size for four types of uplift ensembles

(2003). Unfortunately, those measures are not suitable for uplift models since they
require the true class of each instance to be known. In uplift modeling, due to the
Fundamental Problem of Causal Inference, only the outcome after treatment or the
outcome without treatment is known for a given individual, never both. Therefore, we
never know if the action was really beneficial and, consequently, cannot adapt those
measures to the uplift case.

We thus had to devise our own measures of model strength and diversity. Strength
was measured by simply looking at individual Areas Under the Uplift Curves for
all ensemble members. This area can then be averaged over all ensemble members;
alternatively, one can simply look at the performance of ensembles containing just a
single member which can be read from the initial points of the charts in Figs. 4, 5 and
7.

To measure the diversity of ensemble members we calculate averaged Pearson
correlation coefficient of their predicted values of the net gain. Let mU

i be the i-th
member of an uplift ensemble and D = {x1, . . . , xN } a dataset. Denote the vector of
all net gain values (see Eqs. 1 and 2) predicted by mU

i on the records of D by

ui (D) = (mU
i (x j ) : j = 1, . . . , N ).

The average correlation of predictions made by members mU
1 ,mU

2 , . . . ,mU
B of the

ensemble on a dataset D is then measured using

ρ(D) = 2

B(B − 1)

∑

1≤i<i ′≤B

|ρ (ui (D), ui ′(D)) |, (5)
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Fig. 8 Ensemble diversity: correlation between predictions of ensemble members

where ρ(u, v) is the Pearson correlation coefficient between vectors u and v. That is,
we measure ensemble’s diversity on a single dataset using averaged absolute values of
correlations between predictions of its members. Recall that assessing uplift models
requires two test sets: treatment and control. Correlations of member’s predictions
ρ(D) are averaged over treatment and control test sets and over all random train/test
splits to produce the final measure of ensemble diversity.

Below we analyze the diversity of various types of ensembles used in our experi-
ments.

5.1 Bagged double classifiers

Figure 8 shows the diversity of various types of uplift ensembles for all benchmark
datasets used in our experiments. For comparison,we also include diversity of standard
classifiers: unpruned J4.8 trees built separately on the treatment and control datasets.
The reported correlation is the average over all 128 treatment and control test sets.
Such trees are members of bagged uplift models based on double classifiers, so the
comparison of the two rightmost bars in each chart is especially illustrative.

In all but four cases uplift ensembles of double J4.8 trees are more diverse than
the classifiers of which they consist. Sometimes the difference is huge, e.g. in case
of the splice dataset the correlation of predictions made by the uplift ensemble
members is just 0.179 even though individual J4.8 trees make highly correlated pre-
dictions (coefficient equal to 0.852). Very large differences are also visible for the
australian and credit_a datasets, and large ones for colon recurrence,
diabetes, heart_c, winequality_red, and winequality_white. Note
(see Fig. 5) that for all of those datasets adding more members dramatically improved
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performance of bagged double J4.8 classifiers, eventually doubling or tripling the
AUUC of the ensemble.

One of the main claims of this paper is that this higher diversity is natural for uplift
models and that it underlies the good performance of ensemble methods when applied
to this problem.

We will now give a more formal explanation of the phenomenon. While correla-
tions are easier to interpret and for this reason are used in the charts, the argument will
use covariance of model predictions which is more amenable to calculations. Let x be
a random variable distributed according to the population distribution of X ’s in the
treatment or control group (note that in a properly designed study the predictor vari-
ables are identically distributed in both groups). Now, mT

i (x) and mC
i (x) are random

variables corresponding to predictions of the components of the i-th double classifier
in the ensemble. The covariance between the predictions of the i-th and i ′-th member
of the ensemble can be expressed as

cov
(
mT

i (x) − mC
i (x),mT

i ′ (x) − mC
i ′ (x)

)

= cov
(
mT

i (x),mT
i ′ (x)

)
+ cov

(
mC

i (x),mC
i ′ (x)

)

− cov
(
mT

i (x),mC
i ′ (x)

)
− cov

(
mC

i (x),mT
i ′ (x)

)
. (6)

Consider the case which is most difficult for uplift modeling: the success probability
varies strongly with x but the differences between the treatment and control groups
are small. This case is difficult, because the uplift model has to pick up the weak
‘uplift signal’ masked by high variability in class probabilities. The double classifier
approach is known to work especially poorly in this case (Radcliffe and Surry 2011).
Note however, that since the net gain is small, class probabilities in the treatment and
control datasets are close to each other and, therefore, (provided the models mT and
mC do a reasonably good job) the last two covariances in (6) are likely to be high,
decreasing the covariance between uplift ensemble members. Moreover, if the base
learners are similar to each other, all four covariances on the right hand side of (6) are
likely to have similar values, resulting in the correlation between ensemble members
being close to zero.

The scenario described above is frequently encountered in real life applica-
tions (Radcliffe and Surry 2011). It is thus a lucky coincidence that the peculiarities of
uplift modeling which make the task difficult also make it most suitable for ensemble
methods.

5.2 Bagged E-divergence based uplift decision trees

Similar experimental results have been obtained for bagged E-divergence based uplift
decision trees. Here again, in all but four cases ensembles of E-divergence based uplift
trees are more diverse than individual J4.8 classifiers built on treatment and control
datasets, sometimes dramatically so. Although a mathematical justification similar to
Eq. 6 is not possible in this case, we believe the reason for the increased diversity is
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Table 4 Strength of individual
ensemble members for bagged
E-divergence based uplift trees
and random forests

Strength is measured as AUUC
of single member ensembles
expressed in percent
Bold values indicate better
performance of ensemble
members

Dataset Bagging forest Random forest

Real

BMT agvh 2.11 2.10

BMT cgvh 1.74 2.11

Hillstrom visit 0.27 0.16

Hillstrom visit w. 0.55 0.30

Tamoxifen 0.08 −0.03

Burn 6.02 3.26

Hodg 2.39 3.37

Bladder 0.53 0.49

Cgd 0.99 1.31

Colon death 0.18 0.12

Colon recurrence 0.83 0.55

Pbc 0.82 0.04

Veteran −0.86 −0.90

Artificial

Australian 0.28 0.43

Breast_cancer 0.97 1.17

Credit_a 2.11 2.23

Dermatology 5.89 5.05

Diabetes 0.84 1.10

Heart_c 2.00 1.70

Hepatitis 0.58 0.32

Labor −1.13 −1.08

Liver_disorders 1.96 1.33

Splice 4.04 3.73

Winequality_red 3.81 3.47

Winequality_white 3.76 3.56

the same: the weaker uplift signal is more difficult to predict than conditional class
distribution, making uplift trees very unstable and sensitive to changes in the training
sets, such as those caused by taking bootstrap samples. This instability, in turn, results
in high diversity and good performance of uplift ensembles.

5.3 Bagging versus random forests

As can be seen by comparing two leftmost bars in the charts in Fig. 8, the diversity
of E-divergence based Uplift Random Forests was in all cases higher than that of
the corresponding bagged uplift tree ensembles (although the difference is sometimes
small). This is to be expected since Random Forests use identical tree construction
methodology but introduce extra randomness.
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It can be seen (Figs. 4, 7) that Uplift Random Forests, overall, perform very well.
However, they are not always superior to bagging despite higher model diversity. In
some cases bagging performs better and in some other cases both methods are com-
parable. We believe that the reason is that frequently bootstrapping already provides
sufficient diversity to the ensemble, while the randomized test selection restricts the set
of attributes available at each tree level which makes individual trees perform worse.
To illustrate this phenomenon, Table 4 gives the strength of ensemble members for
E-divergence based bagging and Random Forests. In 17 out of 25 cases members of
bagged ensembles were indeed stronger.

Increased model diversity is not always able to offset this decrease in strength. This
is most clearly visible on the Hillstrom visit w. dataset, where adding more
members to the Random Forest produced higher gains than it did for bagging (due to
higher diversity), but since the individual randomized trees were significantly worse,
the overall performance of bagging was better. Similar results have been obtained by
Segal for classical regression (Segal 2004).

In case of Double Uplift Random Forests we can also see that their diversity is
in general higher than that of bagged double classifiers and the conclusions of the
previous paragraph continue to hold. However, since bagging uses a different splitting
criterion (see Sect. 3), the conclusions are less clear-cut.

6 Conclusions

The paper presented a theoretical and experimental investigation of the effectiveness of
ensemble methods in uplift modeling. The analysis includes two practically important
types of uplift models: the double classifier approach and trees which model the net
gain directly. Although uplift ensembles have been mentioned before in the literature,
this paper is the first to provide a thorough analysis and evaluation, and the first to point
out that uplift modeling is especially well suited to the application of such methods.
Our experiments on real and artificial data demonstrate that ensemble methods often
bring dramatic improvements in performance, turning useless single trees into highly
capable ensembles. In some cases the Area Under the Uplift Curve of an ensemble
was triple that of the base learner. We demonstrate that features specific to uplift
modeling naturally promote high of diversity of ensemble members. Interestingly,
this is especially true in cases where uplift modeling itself is difficult.

Further, we compare bagging and Random Forests in the uplift modeling context.
We show that Random Forests provide more diverse ensembles at the expense of their
members being slightly weaker. In practice both methods perform very well; which
one is better is very much case dependent. Random Forests outperform bagging only
if increased diversity is able to offset the decrease in individual members’ strength.

The most important conclusion of the paper is that ensemble methods come out
from the analysis as key uplift modeling tools capable of achieving excellent results.
The improvements are typically much bigger than in the case of classification where
ensembles are most commonly applied.
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