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Abstract The ability to predict metastatic potential could

be of great clinical importance, however, it is uncertain if

predicting metastasis to specific vital organs is feasible. As

a first step in evaluating metastatic predictions, we ana-

lyzed multiple primary tumors and metastasis pairs and

determined that [90% of 298 gene expression signatures

were found to be similarly expressed between matched

pairs of tumors and metastases; therefore, primary tumors

may be a good predictor of metastatic propensity. Next,

using a dataset of [1,000 human breast tumor gene

expression microarrays we determined that HER2-enriched

subtype tumors aggressively spread to the liver, while

basal-like and claudin-low subtypes colonize the brain and

lung. Correspondingly, brain and lung metastasis signa-

tures, along with embryonic stem cell, tumor initiating cell,

and hypoxia signatures, were also strongly expressed in the

basal-like and claudin-low tumors. Interestingly, low

‘‘Differentiation Scores,’’ or high expression of the afore-

mentioned signatures, further predicted for brain and lung

metastases. In total, these data identify that depending upon

the organ of relapse, a combination of gene expression

signatures most accurately predicts metastatic behavior.
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Introduction

The vast majority of deaths due to breast cancer for nearly

half a million people annually worldwide are due to distant

metastases in the lung, liver, and brain [1]. Numerous

studies have focused on breast cancer metastases and how

they might differ from primary breast tumors; however,

controversy remains regarding (A) the predisposition of

specific classes of breast tumors to spread to distant sites

and (B) the degree of similarity between primary breast

tumors and their associated metastases.

Estrogen receptor (ER) status is known to be associated

with breast cancer relapse in specific organs [2]. In 2008,

this organ selectivity was refined by contrasting relapse

patterns in 344 patients who had their tumors genomically

subtyped as luminal A or B, HER2-enriched, basal-like, or
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normal-like [3]. In general, bone metastases were associ-

ated with the luminal subtypes, whereas basal-like and

HER2-enriched tumors were significantly associated with

brain and lung relapse. Similar results were also observed

in an immunohistochemical-based study on 3,726 patients

[4]. Recently, a new breast cancer subtype was identified,

named claudin-low [5–7]. This subtype exhibits aggressive

characteristics including expression of mesenchymal

markers and low expression of genes involved in tight

junctions and cell–cell adhesion. The lack of epithelial cell

features and expression of mesenchymal traits is reminis-

cent of features associated with breast stem cells [8]. Since

breast cancer stem cells are relatively resistant to both

chemotherapy and radiation [9, 10], and because metasta-

ses frequently progress despite treatment, it is important to

determine if these claudin-low/mesenchymal cells are

associated with metastatic potential.

To better understand the biology driving breast cancer

metastases, 1,319 human gene expression microarrays from

primary tumors, metastases, and cancer cell lines were

analyzed here. Tumors and their associated metastases, on

average, were much more similar to each other than they

were different. By including the recently defined claudin-

low subtype we extend previous findings [3, 4] and better

define the metastatic predilections of each intrinsic subtype.

Increasingly ‘‘undifferentiated’’ breast cancer cells

[as quantitatively measured by a Differentiation Score pre-

dictor (DS)] tend to express stem cell signatures and pref-

erentially metastasize to the brain and lung. These results

identify that breast cancer intrinsic subtype is maintained

throughout disease progression, and that a combination of

several genomic signatures can add prognostic value and

therefore direct where disease monitoring should be focused.

Results

Genetic similarity among tumors and metastases

Previously, we examined the genome-wide gene expression

profiles of five primary breast tumor/matched metastatic

pairs and noted an overall high degree of similarity within a

pair [11]. To further examine the degree of relatedness of

breast tumors and their metastases, we performed correla-

tion analysis using thousands of genes, and hundreds of pre-

defined gene expression signatures/modules [12] incorpo-

rating a large set of tumors and paired metastases. Intra-

class correlation (ICC) values were determined between

pairs of samples using multiple classification/grouping

methods: (1) different pieces of the same primary tumor

(‘‘intrinsic pairs’’), (2) tumors and their matched metastases

[all metastases, or further separated into either lymph

node (LN) or distant], (3) tumors and their matched

metachronous metastases, (4) sets of synchronous metas-

tases from the same patient, (5) tumors from different

patients grouped by intrinsic subtype, and (6) metastases

from different patients (Fig. 1a). On average when using all

expressed genes, there was high concordance between two

pieces of the same primary tumor (ICC = 0.9 [0.89–0.91]),

while pairs of tumors and their metastases exhibit lower

concordance values (0.82 [0.8–0.83]). As observed by the

metachronously paired tumor-metastasis samples, gene

expression did not change substantially over time. The

autopsy patient data (0.72 [0.68–0.75]) suggest that normal

organ RNA may be the variable most responsible for the

decreased similarity between tumor and metastasis pairs.

This hypothesis was supported by increased ICC values of

20 matched pairs of laser-captured tumors and LN metas-

tases [13] (0.9 [0.85–0.94]).

Individual gene measurements can be fraught with

‘‘noise.’’ Thus, to further test the relationship between

tumors and metastases, ICC values were identified using a

compendium of 298 different gene expression signatures/

modules [12], where each module is a summary measure of

tens to hundreds of genes. The overall ICC values were

higher than individual genes (thus showing greater

robustness for gene signatures) and the breast tumor–

metastasis pairs showed high conservation of pathways

(Fig. 1b). The signatures with the most variability between

tumors and matched metastases were associated with

extracellular matrix (ECM) proteins. These genes may be

microenvironment-induced or may be due to different

amounts of fibroblasts found in tumors as compared to

metastases (Supplemental Table 1).

Association of subtypes and sites of metastasis

Since the majority of genes maintain their RNA expression

levels when growing as either primary tumors in the breast

or as metastases, we sought to determine if the different

intrinsic subtypes showed a predilection for metastasis to

specific organs using genomic data arising from primary

tumors only. Therefore, we combined four public micro-

array datasets with Distance Weighted Discrimination [14],

providing 855 tumors with documented first site of relapse

(Supplemental Table 2) [15–18]. Principal components

analysis found that the overall variation of gene expression

was due to the biology of the tumors, and not by cohort/

source or microarray platform (Supplemental Fig. 1). Sta-

tus for ER, progesterone receptor (PR), and human epi-

dermal growth factor receptor 2 (HER2) was recorded for

852, 537, and 499 tumors, respectively, and of the 482

tumors with defined status for all three markers, 110 were

triple negative (TN); Kaplan–Meier analyses for site of

relapse with these markers are shown in Supplemental

Fig. 2. For all sites of relapse, ER/PR negativity was
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associated with increased metastases, except for bone, in

which both ER? and ER- tumors recurred. Clinical

HER2? and TN status were associated with liver and

brain/lung relapse, respectively.

Next, each tumor’s intrinsic subtype was calculated for

this combined data set using the PAM50 [19] and the

claudin-low subtype predictors [6] (Supplemental Table 3).

Of the 855 tumors, 76 were identified as normal breast-like,

and since this tumor classification is reflective of mostly

normal breast tissue [19], these tumors/samples were

excluded from further analyses, leaving a dataset of 779

tumors. Based on the site of first relapse data for liver,

lung, brain, and bone, Kaplan–Meier plots were generated,

and we determined that intrinsic subtype was correlated

with site of relapse (Fig. 2, Supplemental Fig. 3). Com-

pared to luminal A, basal-like and HER2-enriched tumors

showed the highest hazard ratio (HR) of relapse to any site

(basal-like vs. luminal A hazard ratio [HR] 2.1,

P \ 0.0001; HER2-enriched vs. luminal A HR 2.0,

P \ 0.0001) followed by luminal B (HR 1.69, P \ 0.001)

and claudin-low (HR 1.47, P = 0.051) tumors. Important

findings included: (1) bone metastasis was the most com-

mon—regardless of subtype (Table 1), (2) brain relapse

occurred most frequently in non-luminal samples, (3) liver

relapse was associated with HER2-enriched tumors, and

(4) lung relapse occurred often within the claudin-low and

basal-like subtypes. In all analyses, luminal B tumors were

more metastatic than luminal A tumors, thus providing a

useful stratification within ER? tumors.

Undifferentiated tumors and brain metastases

In 2009, Bos et al. [16] utilized two human breast cancer

cell lines, CN34 and variants of the MDA-MB-231 human

breast cancer cell line (a claudin-low cell line[6]), along

with gene expression data from human breast tumors, to

identify 17 genes whose expression correlated with brain

relapse (BrMS). Given the clear associations observed for

the intrinsic subtypes and sites of metastases, we hypoth-

esized that the BrMS would correlate with basal-like and/or

claudin-low subtypes. ANOVA from two different datasets

supported this hypothesis (Fig. 3a, b). A lung metastasis

signature (LMS) [20] is also associated with intrinsic

subtype (Fig. 3c, d).

Recently, a genomic method to quantify breast epithelial

cell differentiation status, known as the Differentiation

Score (DS) predictor [6] was developed. This predictor is

based on the genomic signatures of FACS purified popu-

lations of mammary stem cells, luminal progenitors, and

mature luminal cells of the normal human breast [8]. The

scoring of the DS predictor is based on the premise that

mammary stem cells are the least differentiated cells in the

breast and they give rise to luminal progenitors, which then

produce mature luminal cells; for the DS, higher scores

represent greater differentiation along this axis that starts

with the mammary stem cell signature and culminates in

mature ER? luminal cells. In this spectrum, claudin-low

tumors are the least differentiated, followed by basal-like,

HER2-enriched, and ending with luminal B and A tumors
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Fig. 1 Genomic similarity of breast tumors and metastases. Micro-

arrays were performed on 265 primary tumors and 85 metastases and

the overall similarity was measured by intra-class correlation (ICC),

with estimates plotted showing 95% confidence intervals. a Using all

variably expressed genes, gene expression concordance values were

measured in matched samples from the same patient; primary tumors

split in 2 (n = 40), tumor-metastasis pairs (n = 34), tumor–LN

metastasis pairs (n = 24), tumor-distant metastasis (n = 10), autopsy

patient metastases from multiple organs within the same patient

(n = 33), metachronous tumor–metastasis pairs (n = 10), or from

independent patient samples; normal breast (n = 17), luminal A

tumors (n = 86), luminal B tumors (n = 50), HER2-enriched tumors

(n = 25), basal-like tumors (n = 44), claudin-low tumors (n = 45),

LN metastases (n = 21), and distant metastases (n = 45). b ICC of

298 gene expression signatures/modules [12] using the same samples

and pairing used in (a)
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[6]. Since claudin-low and basal-like tumors were associ-

ated with brain relapse, we postulated that the more

undifferentiated a tumor is on this axis, the more likely it

would be to metastasize to the brain. To test this hypoth-

esis, gene expression data from parental and organ-tropic

(brain, lung, and bone) MDA-MB-231 cell lines were

obtained from the Gene Expression Omnibus, and their DS

calculated and plotted on the DS axis (Fig. 4a). Shown on

the same scale are the 779 breast tumor dataset (Fig. 4b),

cancer cell lines of various tissue origins (NCI60) [21]

(Fig. 4c), and the MDA-MB-231 series [16, 20, 22]

(Fig. 4d). Overall, claudin-low and luminal breast cancer

cells lines show the same relative differences in differen-

tiation status as is seen in primary tumors. Importantly, the

MDA-MB-231 cells from the NCI60 and Massagué studies

showed nearly identical DS, and the brain-tropic MDA-

MB-231 cells were significantly less differentiated than the

parental cell line.

To identify other features shared between low DS

tumors and brain metastasis, we analyzed the NCI60 [21]

cell line series. Interestingly, DS were found to be similar

in claudin-low breast cancer cell lines, central nervous

system (CNS), and melanoma cell lines, a tumor type

known to aggressively spread to the brain[23] (Fig. 4c). To

identify genes that mediate cerebral colonization, signifi-

cance analysis of microarrays (SAM) was performed on the

NCI60 data set by comparing these three cancer cell line

types versus the rest. Two-hundred and sixty-five genes

were identified as being highly expressed (FDR = 0%) in

claudin-low, CNS and melanoma cell lines; Ingenuity

Systems Pathway Analysis found that ‘‘cellular move-

ment’’ was the top biological function associated with these

genes (Supplemental Fig. 4).

The triple-negative SUM149PT breast tumor-derived

cell line contains two distinct populations of breast cancer

cells[24], which can be separated by FACS to yield one

population with basal-like and another with claudin-low-

like features and a lower DS [6]. To test if lower DS cor-

relates with increased migration, we fluorescence-activated

cell sorted (FACS) the SUM149PT cell line into CD49f?/

Epcam-/low and CD49f?/high/Epcam? subpopulations,

performed Boyden chamber migration assays, and deter-

mined that the less differentiated (i.e., lower DS)

SUM149PT CD49f?/Epcam-/low cells were significantly

(P \ 0.001) more migratory than the more differentiated

Epcam? population (Supplemental Fig. 5).
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Fig. 2 Association of breast cancer subtype with site of first relapse.

Shown are Kaplan–Meier plots and log rank tests of first site of

relapse in each breast tumor subtype in the 779 tumor dataset. If a

patient showed two or more simultaneous sites of relapse, then this

patient was counted as being site of first relapse for both. Organ of

first relapse; a any, b brain, c lung, d bone, e liver

b
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Differentiation Scores and metastasis

We next sought to better understand the information that

DS provides for predicting site of metastasis. Since there is

a range of differentiation within each intrinsic subtype

(Fig. 4b), we tested if the least differentiated basal-like/

claudin-low tumors were more metastatic than the more

differentiated basal-like/claudin-low tumors. Kaplan–Me-

ier analysis and log-rank tests determined that the least

differentiated half of these tumor subtypes were associated

with significantly more relapse to brain (P = 2E-03, log

rank-test) and lung (P = 2.4E-02). This same approach

applied within luminal and HER2-enriched tumors found

no association of DS with bone or liver relapse, thus this

association appears specific for brain and lung relapses,

although it should be noted that the least differentiated

luminal and HER2-enriched tumors do not have low

overall DS.

To visualize the information that DS and intrinsic sub-

types provide for predicting site of metastasis, we plotted

the DS of the 779 tumors versus the HR for each site of

metastasis (Fig. 5a). The tumors were then ordered based

on DS and all genes (11,068) hierarchical clustered

(Fig. 5b). Interestingly, tumors with the lowest DS have a

much higher HR for brain and lung metastases, and this

risk drops off quickly as differentiation increases. Impor-

tantly, this analysis identified a subset of tumors within the

largely ER- claudin-low and basal-like tumors that

aggressively metastasize.

Stem cell signatures correlate with brain

and lung metastases

Several studies have shown an association of stem cell

characteristics and metastatic proclivity [25–27]. There-

fore, the 855 tumor dataset was used to test if several

Table 1 Site of first relapse of the 779 tumors from each cohort according to intrinsic subtype

Cohort Subtype # of tumors % that relapsed Site of first relapse (%)

Brain Lung Bone Liver LN

EMC192 Basal 40 90.0 8.3 41.7 30.6 19.4 NA

Claudin-low 23 73.9 17.6 41.2 35.3 17.6 NA

HER2 32 100.0 9.4 18.8 62.5 59.4 NA

Luminal A 57 89.5 2.0 7.8 76.5 31.4 NA

Luminal B 31 90.3 3.6 17.9 71.4 14.3 NA

EMC286 Basal 45 37.8 23.5 47.1 41.2 17.6 NA

Claudin-low 32 28.1 22.2 33.3 44.4 22.2 NA

HER2 54 38.9 9.5 14.3 76.2 28.6 NA

Luminal A 72 22.2 0.0 18.8 87.5 0.0 NA

Luminal B 49 46.9 8.7 34.8 87.0 13.0 NA

MSK82 Basal 17 29.4 20.0 100.0 40.0 NA NA

Claudin-low 10 50.0 20.0 100.0 40.0 NA NA

HER2 10 20.0 50.0 50.0 50.0 NA NA

Luminal A 23 30.4 14.3 14.3 57.1 NA NA

Luminal B 16 18.8 0.0 0.0 100.0 NA NA

NKI295 Basal 38 36.8 28.6 42.9 35.7 57.1 42.9

Claudin-low 25 28.0 28.6 42.9 42.9 57.1 0.0

HER2 48 43.8 23.8 33.3 71.4 57.1 28.6

Luminal A 91 11.0 30.0 10.0 70.0 30.0 30.0

Luminal B 66 40.9 22.2 18.5 74.1 44.4 25.9

Combined Basal 140 51.4 16.7 47.2 34.7 28.1 42.9

Claudin-low 90 42.2 21.1 47.4 39.5 23.1 0.0

HER2 144 52.8 14.5 22.4 68.4 59.7 28.6

Luminal A 243 34.6 6.0 10.7 76.2 23.5 30.0

Luminal B 162 50.0 11.1 22.2 77.8 22.6 25.9

Any subtype 779 45.1 12.8 27.4 62.7 29.1 27.8

Several tumors had multiple first relapses: basal-like 22/69, claudin-low 12/44, HER2-enriched 35/64, luminal A 19/88, luminal B 31/86, and

these were thus counted as being sites of first relapse for each site
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previously published stem cell signatures contained within

our set of 298 gene modules [12] were associated with site

of relapse. Univariate Cox proportional hazards models

identified that many of the signatures with the strongest

associations for brain (and lung) relapse were either

expressed in normal brain and/or have been identified as

essential components of embryonic stem cells and tumor

initiating cells [26, 27] (Supplemental Table 4). Of the 13

embryonic stem cell signatures analyzed in Ben-Porath

et al. [27], all were significantly associated with relapse to

brain/lung, 11 with LN metastasis, 10 with liver, and 5 with

bone. Nearly all the signatures that predicted for brain

relapse correlated with low DS, and those not strongly

correlated with DS were correlated with proliferation.

Some of these signatures further identified subsets of basal-

like and claudin-low tumors most likely to metastasize to

the brain (log-rank test: PRC2_targets; P = 0.0090,

MM_WapINT3; P = 0.0001). Thus, ES cell signatures,

DS, and proliferation appear to be strong predictors of CNS

and lung metastases, and in general, the signatures most

predominant for brain/lung relapse were weakly expressed

in tumors that spread to the bone.

Univariate and multivariable survival analyses

The ability to predict the presence and/or location of a

tumor recurrence could influence the location and fre-

quency of radiographic surveillance for patients with a

history of breast cancer. Therefore, we sought to identify

the most informative signature, or combination of signa-

tures that predicts metastasis to specific sites. First, we

performed univariate survival analyses for multiple signa-

tures, including the many described above and our previ-

ously published VEGF/hypoxia signature [28]. As shown

in Table 2A, all signatures tested were highly prognostic

overall and, interestingly, both BrMS and LMS signatures

predicted lung and brain relapse, providing evidence that

metastases to these two organs utilize similar genetic

B
as

al

C
la

ud
in

H
er

2

Lu
m

A

Lu
m

B

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

p=2.24e−41

B
as

al

C
la

ud
in

H
er

2

Lu
m

A

Lu
m

B

−1.0

−0.5

0.0

0.5

1.0

1.5

p=4.13e−26

B
as

al

C
la

ud
in

H
er

2

Lu
m

A

Lu
m

B

−2

−1

0

1

2

3

p=4.54e−46
B

as
al

C
la

ud
in

H
er

2

Lu
m

A

Lu
m

B

−1

0

1

2

p=3.6e−25

B
rM

S
 U

p
re

g
u
la

te
d
 G

e
n
e
s

M
e
a
n
 E

xp
re

ss
io

n

L
M

S
 U

p
re

g
u
la

te
d
 G

e
n
e
s

M
e
a
n
 E

xp
re

ss
io

n

NKI295+EMC192

UNC308

NKI295+EMC192+EMC286

UNC308

B
rM

S
 U

p
re

g
u
la

te
d
 G

e
n
e
s

M
e
a
n
 E

xp
re

ss
io

n

L
M

S
 U

p
re

g
u
la

te
d
 G

e
n
e
s

M
e
a
n
 E

xp
re

ss
io

n

A

B

C

D

Fig. 3 Association of the brain (BrMS) and lung (LMS) cell line-

based metastasis signatures with intrinsic subtype. Box-and-whisker
plots are shown for each signature on multiple breast tumor

microarray data sets according to intrinsic subtype. P values were

calculated with ANOVA. Shown are the same data sets used for the

testing of the BrMS (a) or LMS (c) signatures, as well as an

independent UNC dataset (b, d)
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mechanisms. Second, we performed multivariate analysis

using the backward stepwise procedure and observed that

subtype information (i.e., subtype calls or risk of relapse

categories based on subtype [ROR-S]) was selected in each

evaluation (Table 2B). For liver relapse, specifically,

knowing the subtype call instead of the ROR-S risk cate-

gory was found particularly informative; indeed, the risk of

liver relapse of the HER2-enriched subtype was 4.0 times

higher compared to the luminal A subtype despite that the

HER2 status (as determined by gene expression) was also

included. In addition to intrinsic subtype information, other

signatures were found statistically significant in the various

MVA final models, such as the upregulated genes of the

BrMS in brain relapse, or the VEGF/hypoxia signature and

the downregulated genes of the LMS in lung relapse.

Interestingly, the BrMS and VEGF/hypoxia-signature were

found highly correlated with DS (Pearson = -0.68), and

correspondingly, the BrMS, DS, and VEGF/hypoxia-sig-

nature identify a subset of basal-like/claudin-low tumors

that spread to the brain (P \ 0.05). Thus, when each

metastatic site is individually examined, a unique combi-

nation of signatures is chosen that includes intrinsic sub-

type (individual subtype or ROR-S) as well as another

signature or two, ultimately resulting in the optimal set of

variables for predicting relapse to that organ.

Discussion

Metastases are the main cause of death for breast cancer

patients and predicting a tumor’s likelihood to spread, and

organ of relapse, is clinically important information.

Analysis of 265 breast tumors and 85 metastases found that

a breast tumor’s overall gene expression phenotype is lar-

gely maintained in its metastases. The gene expression

differences that do occur may be due to a combination of

different amounts of epithelial/stromal cells (Fig. 1, Sup-

plemental Table 1), and/or clonal expansion of a more

aggressive subclone of a tumor [4, 29]. The microenvi-

ronment also effects gene expression and response to

therapeutics [30], therefore, targeting the host organ cells,

vascular cells, as well as tumor cell specific targets may be

the best approach to inhibit disease progression [31]. This

overall similarity, however, does suggest that important

information about metastatic potential can be revealed by

studying primary tumors.

Basal-like and claudin-low breast cancers both exhibit a

high probability to metastasize to the brain and lung while

HER2-enriched subtype tumors preferentially colonize the

liver (Fig. 2; Table 1). The basal-like and claudin-low

tumor types are genomically related [6], exhibit similar

treatment response characteristics, and as shown here, have
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Fig. 4 Differentiation Score analysis of the 779 human breast

tumors, NCI60 cell lines, and MDA-MB-231 cell lines. a Differen-

tiation axis diagram based on FACS fractions Lim et al. [8], which is

described in Prat et al. [6]. b Box-and-whisker plots of the

distributions of scores from the 779 tumor dataset according to

intrinsic subtype. c NCI60 cancer cell lines gene DS values [21], with

the breast cancer cell lines divided into claudin-low (dashed circle
value for MDA-MB-231) or luminal cell lines. d MDA-MB-231

parental, lung-tropic, brain-tropic, and bone-tropic cell lines from the

studies of Massagué and colleagues. The asterisk indicates statistical

significance difference in DS between parental and brain-tropic lines

(T test P = 0.002)
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similar metastasis patterns. The CD49f?/Epcam-/low frac-

tion of the SUM149PT cell line (which is enriched for

claudin-low tumor features) was significantly more

migratory than the more differentiated basal-like compo-

nent cells. Interestingly over time, the SUM149PT cells

with claudin-low characteristics asymmetrically divide into

two distinct populations of more (i.e., basal-like) and less-

differentiated cells, whereas the more differentiated frac-

tion produces similarly differentiated cells [6]. Since the

less-differentiated claudin-low-like cells contain higher

levels of genes that facilitate cellular movement (Supple-

mental Figs. 4, 5), we hypothesize that these cells may

initiate the metastatic cascade; after seeding a host organ,

they asymmetrically divide, spawning both more and less

differentiated cells. Precisely why these cells show predi-

lection for the brain and lung requires further investigation,

however, the cell line studies of Massagué and colleagues

using the claudin-low MDA-MB-231 cells are providing

for some initial candidates. These studies have shown that

the cells that are relatively more capable of spreading to the

CNS express genes that function to increase cellular

extravasation and blood brain barrier penetration [16],

while also upregulating glycolytic pathways and increasing

vascularization [28].

Our re-analyses of the data presented by Bos et al. [16]

find that the DS of brain-tropic breast cancer cells is sig-

nificantly lower than the parental cell line (Fig. 4); corre-

spondingly, low DS was also found to associate with brain

relapse in patients (Fig. 5). While basal-like and claudin-

low breast tumors can relapse in bone, recurrence in vital

organs, such as the brain and lung is more symptomatic.

Thus, first site of recorded relapse for basal-like and

claudin-low tumors is typically not bone. DS, however, is

not the only factor that determines metastagenicity. For

example, luminal A and B tumors have similar DS, yet

luminal B tumors are much more likely to relapse. Perhaps

all luminal tumors can effectively seed certain organs,

however, the faster proliferation rate inherent to luminal B

tumors accounts for the differential relapse frequency.

Correspondingly, 58% of luminal B tumors present with
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each site of metastasis were estimated by grouping a sliding window

of 50 samples with consecutive DS and contrasting against those

outside the window. Estimates were then smoothed with Lowess prior

to plotting. b Hierarchical clustering of all genes. Below the

dendogram is a colored bar identifying the intrinsic subtype of each

tumor (yellow claudin-low, red basal-like, pink HER2-enriched, dark
blue luminal A, light blue luminal B)
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multiple organs as first relapse events, compared to only

21% from luminal A.

After observing the metastasis patterns of the less-dif-

ferentiated basal-like and claudin-low breast tumors, it was

not surprising that the BrMS and LMS signatures associate

with subtype and DS. The BoMS was not strongly

expressed in any subtype, a finding which may reflect the

fact that bone was the most common site of metastasis in

our study. These findings complement analyses by Culhane

and Quackenbush [32] who found that a different lung

metastasis signature [33] was a surrogate for the basal-like

subtype. This does not argue, however, that these signa-

tures are not biologically important. In fact, the BrMS

identifies some of the least differentiated tumors within the

claudin-low and basal-like subtypes and these data support

continued investigation of select genes within the BrMS as

targeting these genes, along with others that function to

increase cellular differentiation, may serve to slow meta-

static progression.

To gain a mechanistic understanding for site-specific

tumor colonization, we tested a compendium of 298

expression signatures as individual predictors of site of

relapse. These analyses showed enrichment for stem cell

signatures in brain/lung relapse (Supplemental Table 4).

The majority of these signatures provide information that is

encoded within DS; however, some of the signatures fur-

ther divide ER-negative tumors into two distinct groups

that are more or less likely to metastasize to the brain/lung.

As an example, one such signature is the MM_WapINT3,

which is a signature derived from a transgenic mouse

mammary tumor model that over-expresses Notch4 and

aggressively spreads to the lung [34]. This is a clinically

relevant finding in that half of patients with advanced triple

negative breast cancer relapse within the brain [35], and

survival following CNS relapse is less than 4 months [36],

regardless of receipt of systemic therapy.

Overall, the results from Table 2 reveal shared and

unique features predicting relapse to distinct sites. For

example, intrinsic subtype (as represented by individual

subtypes or the ROR-S score) make every final MVA model,

but then each site of relapse shows individual characteristics.

For brain, the BrMS signature and HER2 status add

important information, while for lung the VEGF/hypoxia

and LMS signature add information, for bone the DS score

was valuable, and for liver, most information was carried by

the HER2-enriched subtype; thus for the most accurate site

of metastasis predictions, multiple signatures and/or clinical

variables are needed. Our ability to predict patients at the

highest risk for CNS relapse may impact the manner in

which we approach CNS screening and future prevention

strategies. The data presented herein provides clinically

useful information that could be used to identify patients

most likely to experience site-specific breast cancer relapse.

Materials and methods

Human breast tumor microarray datasets

Two distinct microarray data sets were studied here. The first

was based upon Agilent Technologies DNA microarrays

taken from Prat et al., with 42 new additional metastasis

samples profiled here using identical protocols as previously

described [6, 19, 37]. All human tumor and normal tissue

samples were collected using IRB-approved protocols and

all microarray and patient clinical data are available at UNC

Microarray Database (https://genome.unc.edu) and have

been deposited in the Gene Expression Omnibus (GEO)

under the accession number GSE26338. The probes/genes

for these analyses were filtered by requiring the Lowess

normalized intensity values in both sample and control to be

[10. All probes for each gene were averaged. The normal-

ized log2 ratios (Cy5sample/Cy3 control) of probes mapping

to the same gene (Entrez ID as defined by the manufacturer)

were averaged to generate independent expression estimates.

The second data consisted of a combined microarray data

set of four studies taken from the public domain. We utilized

the microarray as presented in the following breast cancer

datasets: GSE2034, GSE12276, GSE2603, and the NKI295

(microarray-pubs.stanford.edu/wound_NKI/Clinical_Data_

Supplement.xls). The clinical data from these patients was

obtained from previous studies [16, 38]. NCI60 cell line

microarray data was obtained from http://genome-www.

stanford.edu/nci60/. Additional microarrays from the GEO

for the MDA-MB-231 cells were downloaded from

GSE12237 and GSE2603. Probes in these external sets were

assigned to Entrez Gene identifiers and replicate gene names

were collapsed to the median. The data from the four tumor

datasets were then combined using Distance Weighted

Discrimination [14] to remove the systematic biases present

in different microarray datasets. In all datasets, samples were

standardized to zero mean and unit variances before other

analyses were performed.

Microarray data processing

Samples in the final normalized data were assigned to the

five subtypes (luminal A, luminal B, Her2-enriched, basal-

like, and normal-like) using the PAM50 classifier [19].

Assignment of claudin-low and DS were performed

according to the protocol described in Prat et al. [6]. 298

gene expression modules first characterized in Fan et al.

[12] were applied to both data sets and expression esti-

mates obtained for each tumor in each data set; the gene list

corresponding to each module was summarized to the

mean expression within each sample, or the principal

component, or according to a predetermined algorithm.

Testing for differential expression of the modules between
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primary and metastatic pairs from the same individual was

performed with the SAM [39] two class paired test.

Statistics and survival analyses

The intra-class correlation (ICC) [40] was utilized to esti-

mate concordance within specific groups of samples. For

groups of paired samples, the ICC was calculated for each

pair and then summarized by the mean ICC for each group

of interest. ICC values for groups of unpaired samples were

estimated from all samples in the group. ICC estimates

were performed identically for the set of modules or the set

of all genes. All ICC estimates were generated using the R

package ‘‘irr.’’ Principal components analyses were per-

formed in R. Categorical survival analyses were performed

using a log-rank test and visualized with Kaplan–Meier

plots. Box-and-whisker plots were used to observe the

relationship of the intrinsic subtypes with the organ-spe-

cific metastasis signatures and were performed in R. Uni-

variate and multivariable Cox proportional hazard analyses

were used to estimate HR and determine the significance of

the intrinsic subtypes and gene signatures. Subtypes and

DS were compared along with ER status and published

signatures using time to first relapse (for each site) as the

end point. To visualize the association of DS with Subtype

and site of metastasis HR for each site of metastasis were

identified by using a sliding window of 50 samples with

consecutive DS, and the HR was calculated by contrasting

the samples in the window versus those outside the win-

dow. HR estimates were smoothed across DS with Lowess.

Functional analysis of gene sets

261 genes that were differently expressed in the three

undifferentiated NCI 60 cell lines (as compared to the rest)

were uploaded into Ingenuity Systems Pathway Analysis

(www.ingenuity.com) based on their Entrez gene identifi-

cation number.

Boyden chamber migration assays

SUM149PT cells were fluorescence associated cell sorted

after immunolabeling with CD49f and Epcam as previ-

ously described [6]. CD49f?/high/Epcam? and CD49f?/

Epcam-/low cells were plated in 0% FBS Boyden chambers

with 8.0lm pores and chemoattracted to 0.5% FBS for

24 h. Migrated cells were stained with crystal violet, and

then solubilized and read at 470 nm.
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