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Abstract
The involvement of necroptosis in the immunosuppressive tumor microenvironment has been established and has been 
shown to contribute to the growth of pancreatic ductal adenocarcinoma, indicating its role in promoting tumor development. 
However, the relationship between necroptosis and bladder urothelial carcinoma (BUC) has yet to be fully understood. To 
shed light on this issue, our study aimed to uncover the impact of necroptosis on immune cell infiltration and immuno-
therapy response in BUC patients. We conducted an analysis of 67 necroptosis genes to assess their expression and genomic 
changes across pan-cancer and identified 12 necroptosis genes that are prognostically relevant and associated with immune 
subtypes and tumor stemness in BUC. Using a public database of 1841 BUC samples, we then performed Unsupervised 
Cluster Analysis and discovered two distinct necroptotic phenotypes in BUC. These phenotypes showed significant differ-
ences in molecular subtypes, immune infiltration patterns, and gene mutation profiles. We confirmed this discovery in BUC 
through qPCR and WB experiments. To evaluate the impact of necroptosis on prognosis, chemotherapy sensitivity, and 
immunotherapy response (such as anti-PD-L1), we developed a principal component analysis model called NecroScore. 
Finally, we validated the effects of RIPK3 and MLKL through a nude mouse transplantation model for BUC. Our study 
has uncovered that necroptosis plays a role in shaping the tumor immune microenvironment in BUC. The high necroptosis 
phenotype (Cluster B) was characterized by a higher abundance of tumor immunosuppressive cells and more key biological 
processes driving tumor progression, while the low necroptosis group (Cluster A) had higher FGFR3 mutations. We found 
that the infiltration levels of immune cells, including CD8+ T cells, were significantly different between FGFR3 mutated 
and wild-type (WT) samples. Our results confirmed the reliability of NecroScore as a comprehensive assessment tool for 
evaluating the immunotherapeutic effect and prognosis of BUC patients, with high NecroScore values favoring basal-like 
differentiation and lower FGFR3 alterations. We also observed that high expression of MLKL had a significant inhibitory 
effect on tumor growth and increased neutrophil infiltration in vivo. In our study, we uncovered the regulation pattern of 
necroptosis in the tumor immune microenvironment of BUC. Additionally, we developed a scoring tool called NecroScore 
that can be utilized to predict the most suitable chemotherapy and immunotherapy strategy for bladder urothelial carcinoma 
patients. This tool can effectively guide the chemotherapy and immunotherapy regimens for patients with advanced BUC.

Keywords Necroptosis · BUC · Immunotherapy · Chemotherapy · Tumor immune microenvironment · Pan-cancer · 
Prognosis · Diagnosis · ICIs

Introduction

Bladder cancer (BCa) is a major health concern, ranking 
as the eleventh most common cancer globally, with an esti-
mated 573,000 new cases and 212,000 deaths annually [1]. 
The majority of newly diagnosed BCas are non-muscle 
invasive (NMIBC) and are typically treated with transure-
thral resection and intravesical chemotherapy or Bacillus 
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Calmette-Guerin (BCG). Muscle-invasive BCa (MIBC) 
accounts for the remaining cases and can also occur in 10 
to 20 percent of NMIBC patients that progress over time 
[2]. Platinum-based chemotherapy is widely accepted as a 
first-line treatment strategy for advanced urothelial carci-
noma, with the combination of gemcitabine and cisplatin 
being the most common treatment regimen for BUC [3–5]. 
For patients with advanced/metastatic urothelial carcinoma 
that is either platinum-refractory or platinum-ineligible, the 
FDA has approved a range of treatment options, including 
PD-1/PD-L1-based immune checkpoint inhibitors (ICIs), 
FGFR3 inhibitors, and antibody drug conjugates. Pem-
brolizumab and atezolizumab, two checkpoint inhibitors, 
have been approved by the FDA and European Medicines 
Agency (EMA) for first-line treatment in cisplatin-unsuitable 
patients with a positive PD-L1 status [6].

Necroptosis is a form of immunogenic cell death in which 
death receptors, such as FAS and tumor necrosis factor 
receptor 1 (TNFR1), or pattern recognition receptors, such 
as toll-like receptor 3 (TLR3), trigger the death process in 
response to adverse signals from the microenvironment [7]. 
This type of necrosis is heavily dependent on the presence of 
RIPK3 and MLKL, with MLKL activation being a defining 
characteristic [8]. RIPK3 activates MLKL by phosphorylat-
ing it, causing it to oligomerize and translocate to the cell 
membrane, where it forms pores, leading to calcium influx 
and the release of danger-associated molecular patterns 
(DAMPs). These DAMPs can activate both innate and adap-
tive immune responses and trigger phagocytosis of dying 
cells [9]. Necroptosis has been extensively studied in pan-
creatic ductal adenocarcinoma (PDAC) and has been shown 
to enhance the tumor microenvironment in a manner depend-
ent on CXCR2- and SAP130-macrophage-induced calcium 
(Mincle)-dependent paracrine [10]. In PDAC, upregulation 
of RIPK1 in tumor-associated macrophages contributes to 
immune tolerance and resistance to immunotherapy [11]. 
The mechanism by which necroptosis occurs in BUC is not 
well understood, though previous studies have shown that 
shikonin, a PKM2 inhibitor, can induce necroptosis in BUC 
and overcome cisplatin resistance [12].

In our study, we investigated the impact of necroptosis 
on tumor immune infiltration and immunotherapy efficacy. 
We started by examining the expression and genetic changes 
of 67 necroptosis genes across 33 different cancer types 
and then identified two necroptosis modules in 1841 BUC 
cases, based on 12 necroptosis genes related to prognosis. 
We observed strong differentiation between the two modules 
in terms of differences in tumor immune cell infiltration and 
gene mutation patterns. Lastly, we developed a scoring sys-
tem, named NecroScore, to assess the level of necroptosis, 
which can be used to predict the sensitivity to chemotherapy 
and the efficacy of immunotherapy. A recent study has dem-
onstrated that providing first-line maintenance Avelumab 

after initial platinum-containing chemotherapy (in the 
absence of progressive disease) can significantly enhance the 
survival rate of patients diagnosed with advanced BUC [13]. 
Our scoring tool exhibits high accuracy in evaluating the 
sensitivity of chemotherapy and immunotherapy. Therefore, 
this tool is of great significance for patients with advanced 
bladder urothelial carcinoma.

Materials and methods

Data sources and process

The research design and methodology are briefly illus-
trated in Supplementary Fig. 1. Further information on data 
sources can be found in the Supplementary Methods section 
[14].

Construction of necroptosis regulator phenotypes

We analyzed the expression levels of 12 necroptosis-related 
molecules and summarized the data through univariate Cox 
analysis and unsupervised cluster analysis [15, 16]. The 
procedure used to carry out this analysis is detailed in the 
Supplementary Methods section.

PCA scoring calculation

For gene expression score analysis, we conducted principal 
component analysis to extract the first principal component 
as the gene feature score. Further details on the procedure 
can be found in the Supplementary Methods section [17].

Statistical analysis

All statistical analysis was conducted using R software 
(https:// www.r- proje ct. org/). A complete rundown of the 
procedures can be found in the Supplementary Methods 
section.

Additional information on bioinformatics methods and 
experimental methods is also available in the Supplementary 
Methods.

Results

The genetic characteristics and transcriptional 
variations of 67 necroptosis molecules

This study presents the research ideas and processes 
through Fig. S1. The study analyzed 67 molecules asso-
ciated with necroptosis from previous studies [18]. A 
pan-cancer analysis of necroptosis-related genes was 
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carried out, and the mRNA expression levels of necrop-
tosis molecules in 18 cancer types were evaluated. The 
analysis was based on the comparison of expression lev-
els between tumor and normal samples obtained from the 
TCGA database. The results showed that CDKN2A and 
PLK1 were significantly overexpressed in tumor samples 
compared to normal samples across the 18 cancer types. 
Conversely, KLF9 was significantly overexpressed in 
normal samples compared to tumor samples. The expres-
sion levels of MLKL and CASP8 in tumor samples were 
higher than those in normal tissues in KIRC (Renal Clear 
Cell Carcinoma), KIRP (Papillary Renal Cell Carcinoma), 
and BLCA (Bladder Urothelial Carcinoma) (Fig. S2A, 
S3B, Table S1). Moreover, the study revealed that high 
expression of PLK1 had a poor prognosis in 11 tumor 
types, including KIRC, KIRP, etc., while high expression 
of KLF9 was associated with a better prognosis in KIRC 
(Fig. S3E). The study also conducted a correlation analysis 
of the expression of the 67 necroptosis-related molecules 
among 33 cancer types in the TCGA database. The results 
showed that MLKL had a strong positive correlation with 
CASP8, ZBP1, FASLG, RIPK1, and RIPK3 in all 33 can-
cer types, and RIPK3 was also strongly correlated with 
CASP8, MLKL, and ZBP1 (Fig. S2C). Additionally, 
the average expression of TNF-related genes, including 
TNFRSF1A, TNFRSF1B, TNFSF10, and TNFRSF21, was 
higher than that of most other necroptosis genes in pan-
cancer (Fig. S3A).

Figure S2B illustrates the genetic variation of 67 
necroptosis-related molecules in 3907 samples from 32 
cancer types in the TCGA pan-cancer database. The 10 
most frequently mutated necroptosis molecules are shown 
through a pan-cancer single nucleotide variant (SNV) anal-
ysis using a waterfall diagram. Out of the 3907 cases, 2679 
samples (68.57%) had a necroptosis mutation. The muta-
tion with the highest frequency was observed in BRAF 
(19%), followed by ATRX (15%), IDH1 (13%), CDKN2A 
(10%), and EGFR (9%), with missense mutation being 
the most common type. The highest mutation frequency 
of BRAF, ATRX, IDH1, CDKN2A, and EGFR was seen 
in melanoma (SKCM), thyroid carcinoma (THCA), brain 
lower-grade glioma (LGG), head and neck squamous cell 
carcinoma (HNSC), and glioblastoma multiforme (GBM), 
respectively (Figs. S2B, S4C). Our analysis of DNA meth-
ylation in tumor and normal tissues revealed that KLF9 
and GATA3 were significantly higher in tumor tissues 
compared to normal tissues [Lung squamous cell carci-
noma (LUSC), Lung adenocarcinoma (LUAD), Colon 
adenocarcinoma (COAD), etc.]. Conversely, MLKL and 
CASP8 were significantly lower in tumor tissues compared 
to normal tissues (KIRC BLCA LUSC LUAD, etc.) (Fig. 

S2D). Hypermethylation of KLF9 was associated with 
lower survival rates in several cancer types such as LGG, 
thymoma (THYM), and uterine carcinosarcoma (UCS), but 
hypermethylation of KLF9 in KIRC was associated with 
a better prognosis in KIRC (Fig. S3F). The results of the 
spearman correlation analysis between gene methylation 
and gene expression showed that gene methylation was 
negatively correlated with gene expression in most of the 
necroptosis-related genes in 33 cancer types. Interestingly, 
methylation levels of ALK and BCL2 were positively cor-
related with mRNA expression levels of ALK and BCL2 
in most cancer types, as well as the positive correlation 
between methylation level of APP and mRNA expression 
level of APP in liver hepatocellular carcinoma (LIHC) and 
the positive correlation between methylation level of CD40 
and mRNA expression level of CD40 in esophageal car-
cinoma (ESCA) (Fig. S2E). Our findings confirmed that 
copy number variation (CNV) is an important factor affect-
ing the expression of necroptosis molecules. The mutation 
rates of copy number variations (CNV) and the expression 
levels of mRNA were found to be positively correlated in 
most necroptosis-related genes in 33 cancer types, espe-
cially in the cases of FADD and USP22. Conversely, in the 
cases of RIPK3 and FASLG, between the CNV mutation 
rates and the expression levels, showed a negative correla-
tion in THYM and pancreatic adenocarcinoma (PAAD) 
(Fig. S2F). Heterozygous CNV mutations in necroptosis-
associated genes were more prevalent in most tumor types 
(Fig. S3C, S3D).

In this study, we analyzed the differences in gene expres-
sion among the subtypes of necroptosis and investigated 
the characteristics of the associated signaling pathways. 
Our findings showed that many important necroptosis mol-
ecules in the pan-cancer, including PLK1, MLKL, FASLG, 
and ZBP1, demonstrated a high level of activation in the 
apoptosis signaling pathway. Meanwhile, PLK1, DNMT1, 
TARDBP, and HAT1 showed high activation in the cell 
cycle. On the other hand, TNFRSF21, TNFRSF1A, STAT3, 
RIPK1, KLF9, EGFR, and AXL showed high levels of 
inhibition in both the cell cycle and DNA damage response 
(Figs. S2G, S4A). Moreover, both MLKL and RIPK3 play 
a role in inhibiting the cell cycle signaling pathway in 
BUC and also in inhibiting the DNA damage repair sign-
aling pathway, but only MLKL can promote the apoptosis 
signaling pathway. In prostate adenocarcinoma (PRAD), 
both the hormone ER and EMT signaling pathways are 
activated by MLKL and RIPK3 (Fig. S4B). In our study, 
we placed a significant emphasis on necroptosis in BUC. 
Of the 412 samples in BUC, TSC1 and CDKN2A had the 
highest mutation frequencies of 8% and 6%, respectively, 
in the TCGA database (Fig. S2H). Our results showed 
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significant co-mutations between CDKN2A and STAT3, 
CDKN2A and TNFRSF21, CDKN2A and RNF31, ZBP1 
and BRAF, FASLG and PLK1, and FASLG and PANX1 in 
BUC (P < 0.05, Fig. S2I). These findings suggest that the 
occurrence of BUC is strongly related to the imbalanced 
regulation of necroptosis-related genes.

Characteristics of the relationship between 12 
prognosis related necroptosis genes and immunity, 
tumor stemness

Next, we performed a univariate Cox regression analysis 
on 67 necroptosis-related genes in BUC and identified 12 
prognosis-related genes (P < 0.05, Figs. 1A, S5). These 12 

Fig. 1  Characteristics of the relationship between 12 prognosis 
related necroptosis genes and immunity, tumor stemness. A Forest 
plots show the results of Cox regression analysis of the mean survival 
rates of 12 prognosis-related necroptosis genes in the TCGA-BLCA 
cohort. B Multi-forest plot showing the results of univariate Cox 
regression analysis of 12 necroptosis genes in pan-cancer. C Pearson 
correlation analysis of 12 necroptosis gene expression and immune 
subtypes in pan-cancer. D Pearson correlation analysis of 12 necrop-
tosis gene expression and immune subtype in TCGA-BLCA cohort. 
E Pearson correlation analysis of 12 necroptosis gene expression 

and clinical stage in the TCGA-BLCA cohort. F-G Using the "esti-
mate" package to calculate the ImmuneScore and StromalScore of 
tumor tissue in pan-cancer, and then analyze the relationship between 
the expression of 12 necroptosis genes and them. H-I Correlation 
between the expression of necroptosis genes and tumor stemness in 
pan-cancer. RNAss represents the tumor stemness index estimated 
by the expression of classical genes, and DNAss represents the 
tumor stemness estimated by the methylation modification of classi-
cal genes. J The plot depicts the association between 12 necroptosis 
genes and immune-related scores, tumor stemness in BUC



896 Apoptosis (2023) 28:892–911

1 3

genes play different roles in 33 cancer types (Fig. 1B). Our 
analysis of the correlation between these 12 necroptosis-
related genes and different immune subtypes in Pan-cancer 
showed significant differences in gene expression among 
subtypes. The FASLG, MLKL, and HAT1 genes showed the 
highest expression in the IFN-γ Dominant (C2) and TGF-
beta Dominant (C6) subtype, but the lowest expression in 
the Immunologically Quiet (C5) subtype. Conversely, the 
EGFR, APP, and TNFRSF21 genes had the highest expres-
sion in the C5 subtype (Fig. 1C, Table S12.1). In BUC, the 
FASLG, MLKL, HAT1, MYC, PANX1 and EGFR gene 
expression levels were significantly higher in the C2 subtype 
compared to other immune subtypes including Wound Heal-
ing (C1), Inflammatory (C3) and Lymphocyte Depleted (C4) 
subtypes (Fig. 1D, Table S12.2). The MYC and SLC39A7 
gene expressions were lower in stage I compared to stage 
IV, whereas the IMPK gene expressions were higher in 
stage I compared to stage IV (Fig. 1E, Table S12.3). We 
performed an EstimateScore analysis of the 12 prognosis 
necroptosis genes in Pan-cancer and found that FASLG and 
MLKL were strongly positively correlated with the Stro-
malScore and ImmuneScore in 33 cancer types, while ID1, 
GATA3, and TNFRSF21 showed a negative correlation 
with the StromalScore and ImmuneScore in BUC (Fig. 1F, 
G, J). The correlation between gene expression and tumor 
StemnessScore was evaluated to determine the correla-
tion between a necroptosis gene and the degree of tumor 
differentiation. The StemnessScore was calculated using 
RNA stemness indices assessed by RNA gene expression 
and DNA stemness indices assessed by DNA methylation. 
The StemnessScores in both RNAss and DNAss were nega-
tively correlated with FASLG and MLKL expressions in 
cancers such as Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma (DLBC), GBM, KICH, and LUSC (Fig. 1H, I). 
Interestingly, we found that the expression of MLKL and 
APP in BUC was positively correlated with immune cell 
infiltration, but negatively correlated with tumor stemness 
(Fig. 1J). Our findings indicate that the 12 necroptosis genes, 
particularly MLKL, play a crucial role in tumor immune cell 
infiltration and tumor cell stemness.

Two different patterns of necroptosis were 
identified by unsupervised cluster analysis 
in a cohort of 1841 BUC samples

The chromosome circle diagram and network diagram were 
constructed to visually display the chromosomal position 
and the interdependence between the expression of 12 
prognosis-related necroptosis genes. In the TCGA database, 
HAT1 and PANX1 showed greater loss of copy number vari-
ation (CNV) compared to gain of CNV, unlike the other 10 
genes (Fig. 2A). In the TCGA database, the expression lev-
els of HAT1 and SLC39A7 in tumor tissues were higher than 

those in adjacent normal tissues, while the expression level 
of MYC in tumor tissues was lower than that in adjacent 
normal tissues (Fig. S6A). MLKL, FASLG, ID1, GATA3, 
and TNFRSF21 were key contributors to the favorable 
prognosis of BUC patients, compared to the other seven 
necroptosis-related genes (Figs. 2B, S5). However, unlike 
the positive correlation between the expression of most of 
the 12 necroptosis genes, GATA3 displayed a negative cor-
relation with FASLG, APP, MLKL, MYC and PANX1, and 
similarly, ID1 showed a negative correlation with FASLG 
and APP (Fig. 2B).

To uncover the regulatory pattern of 12 necroptosis 
genes, we collected 1841 samples from BUC. We cor-
rected for batch effects by using the 'combat' formula in 
the SVA package of R language. By performing unsuper-
vised cluster analysis with the ‘ConsensusClusterPlus’ 
package of R language, we identified two necroptosis-
related modules, named Cluster A (1163 cases) and 
Cluster B (678 cases) (Figs. 2C, S6B–S6E). Principal 
component analysis showed that the two clusters were 
differentiated by the expression of the 12 necroptosis 
genes (Fig. 2D). A differential expression analysis of the 
12 genes between the two clusters revealed significant 
differences in all genes except SLC39A7, with the excep-
tion of ID1 and GATA3, which were expressed higher 
in Cluster B than in Cluster A (Fig. 2E). We used the 
R packages ‘consensusMIBC’, ;BLCAsubtyping’, and 
‘classifyNMIBC’ to determine the molecular subtype 
of the 1841 BUC samples based on the gene expression 
matrix. Furthermore, we visualized the gene expression 
level, clinical features, and molecular typing of the 12 
necroptosis genes in 1841 BUC samples using heatmap 
package (Table S2, Fig. 2F). The proportion of class_1/3 
was significantly higher in Cluster A than that in Cluster 
B in NMIBC.subtype, whereas compared to Cluster A, the 
proportion of class_2b was significantly higher in Cluster 
B in NMIBC.subtype (Fig. S6F1–7, Table S13.1). Fur-
thermore, the luminal subtype mainly occurred in Cluster 
A, while the basal subtype was more prevalent in Cluster 
B when compared across the 6 typing methods: Baylor.
subtype, UNC.subtype, MDA.subtype, MIBC.subtype, 
and TCGA.subtype (Fig. S6F1–5, Table S13.1). Similarly, 
in lund.subtype, Cluster A was predominantly composed 
of UroA-Prog, UroC and GU, while Cluster B was mainly 
made up of Ba/Sq, Ba/Sq-inf and Mes-like (Fig. S6F6, 
Table S13.1). In CIT.subtype, MC1 type was predomi-
nant in Cluster A, while MC7 type was more abundant 
in Cluster B (Fig. S6F7, Table S13.1). We also compared 
the clinical characteristics between the two clusters and 
found that the proportion of patients with Ta-T1 stage was 
significantly higher in Cluster A compared to Cluster B, 
while the proportion of patients with stage T3 was higher 
in Cluster B compared to Cluster A (Figs.  2F, S6F9, 
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Table S13.1). Finally, by analyzing the overall survival 
and progression-free survival curves in the TCGA dataset 
and the GEO dataset and the EMATB dataset, we found 
that the survival status and time of Cluster A and Cluster 

B were significantly different (Fig. 2G–I). These results 
demonstrate that our necroptosis model is successful and 
highlights the significant correlation between molecular 
subtype and disease prognosis between the two clusters.

Fig. 2  Unsupervised learning to identify two classification of necrop-
tosis. A Chromosome circle map accurately shows chromosomal 
locations and gene copy number changes of 12 necroptosis genes. 
B The network map accurately shows the correlation between the 
12 necroptosis genes. The association of 12 genes with prognosis 
was determined by univariate COX regression analysis. Circle size 
correlates with P value; green represents prognostic favorable fac-
tors; purple represents prognostic risk factors. The red line indicates 
the positive correlation between the gene expression levels of the 
two, and vice versa. C Unsupervised cluster learning divides 1841 
BLCA cohorts into two clusters. D Principal component analysis 

results for two clusters. E Expression comparison of 12 necroptosis 
genes between the two clusters. F Composite heatmap shows corre-
lations between two types of necroptosis and molecular subtypes of 
BUC, and differential expression of 12 necroptosis-related molecules. 
G–I Kaplan–Meier curves show significant differences in survival 
between the two necroptotic phenotypes in the TCGA, GEO and 
E-MTAB-4321 databases. G and H show overall survival rates for 
patients with TCGA and GEO databases respectively, while I shows 
disease progression survival rates for E-MTAB-4321 datasets (Color 
figure online)
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Differences in signaling pathways, single nucleotide 
variants and copy number variants in two 
necroptosis modules

To identify the molecular features, we first conducted a dif-
ferential analysis of gene expression between the two groups 
(Table  S3). Results from gene set enrichment analysis 
showed that metabolism-related gene sets such as 'FATTY_
ACID_CATABOLIC_PROCESS' and 'MONOCARBOX-
YLIC_ACID_CATABOLIC_PROCESS' were primarily 
enriched in Cluster A, while immune-related gene sets such 
as 'GRANULOCYTE_CHEMOTAXIS,' 'MYELOID_LEU-
KOCYTE_MIGRATION,' and 'NEUTROPHIL_MIGRA-
TION' were primarily enriched in Cluster B (Fig. 3A). This 
result was consistent with the findings from KEGG gene set 
variation analysis (GSVA), which also showed that metab-
olism-related gene sets were primarily enriched in Cluster 
A, while Cluster B was not only enriched in immune cell-
related signaling pathways, but also in cytokine-related sign-
aling pathways (Fig. 3B). Additionally, hallmark gene set 
enrichment analysis (GSEA) revealed that Cluster B was 
enriched in apoptosis-related and hypoxia-related gene sets, 
as well as cytokine-related signaling pathways such as 'IL2_
STAT5_SIGNALING,' 'IL6_JAK_STAT3_SIGNALING' 
(Fig. 3C, Table S4). We further collected gene sets of key 
molecular features of BUC and identified two subgroups of 
molecular characteristics through GSEA (Table S5.1). Our 
findings aligned with the previous analysis results, show-
ing that the enrichment fraction of luminal differentiation 
was significantly higher in Cluster A, while that of basal 
differentiation and immune cell differentiation was signifi-
cantly higher in Cluster B (Fig. 3D, Table S5.2). This sug-
gests that Cluster A is primarily characterized by luminal 
differentiation and tumor metabolism, while Cluster B is 
primarily associated with immune cell infiltration and stro-
mal differentiation.

Subsequently, we examined the characteristics of gene 
mutations between the two groups in the TCGA database. 
Our analysis revealed that Cluster A had a significantly 
higher gain of CNVs on chromosomes 1, 12, 17, and 19, 
and a higher loss of CNVs on chromosomes 4, 5, and 6, 
compared to Cluster B (Fig. S7). Furthermore, Cluster A had 
a significantly higher tumor mutational burden (TMB) than 
Cluster B. Visualizing the SNVs between the two groups 
using differential genes, we found that most of the SNVs 
were missense mutations. The waterfall chart indicated that 
the mutation frequency of FGFR3 and ELF3 was signifi-
cantly different between the two groups, with higher muta-
tion frequency of FGFR3 and ELF3 in Cluster A compared 
to Cluster B (Fig. 3F, G, Table S13.2). To understand the dif-
ferences in gene mutations of FGFR3 and ELF3 between the 
two groups, we conducted differential analysis on the gene 
expression levels of WT and mutated samples of FGFR3 

and ELF3, respectively. The results showed that the expres-
sion levels of EGFR, FASLG, HAT1, MYC, PANX1 and 
SLC39A7 were higher in WT FGFR3 samples than that 
in mutated FGFR3 samples, while the expression levels of 
GATA3, ID1 and TNFRSF21 were lower in WT FGFR3 
samples than that in mutated FGFR3 samples (Fig. S8A). 
Furthermore, in WT ELF3 samples, the expression level 
of MYC was higher than that in mutated ELF3 samples, 
while the expression levels of GATA3 and ID1 were lower 
in WT ELF3 samples than that in mutated ELF3 samples 
(Fig. S8B). The co-mutation analysis of necroptosis-related 
differential genes between the two groups screened out sig-
nificant co-occurrence and mutually exclusive genes, with 
MUC16 co-occurring with ERBB3, FREM2, FBN1, FN1, 
and FRY in Cluster A, whereas MUC16 co-occurred with 
ASPM and DSP in Cluster B. In Cluster A, FGFR3 was 
found to co-occur with COL6A3, whereas in Cluster B, this 
co-occurrence was absent. In addition, ERBB2 was observed 
to co-occur with DSP in Cluster A, whereas ERBB2 was co-
occurring with SACS in Cluster B (Fig. 3E). Since the two 
necroptotic modules are capable of distinguishing immune 
patterns, we conducted a simultaneous differential analysis 
of immune cell infiltration levels between WT and mutated 
samples of genes including FGFR3 and ELF3. The results 
showed that samples with different genotypes of FGFR3 
and ELF3 had different levels of immune cell infiltration, 
with significantly lower levels of immune cell infiltration 
in mutated FGFR3 samples than that in WT FGFR3 sam-
ples, including CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells (Fig. S8C). Only dendritic 
cells showed different levels of immune cell infiltration in 
WT and mutated samples of ELF3 (Fig. S8D). These find-
ings suggest that the single nucleotide variant of FGFR3 is 
strongly related to the necroptosis patterns in BUC.

Characteristics in immune infiltration 
and checkpoint of the tumor immune 
microenvironment in necroptosis phenotypes

We conducted a detailed investigation into the immune 
cell infiltration and immune checkpoint characteristics 
of the two necroptotic modules, as they exhibit different 
immune patterns. Using seven different scoring methods, 
including ssGSEA, MCPimmunescore, Timer, Epic, CIB-
ERSORT, Quantiseq, and Xcellimmunescore, we analyzed 
the immune cell infiltration levels in 1841 BUC samples 
using R language based on gene expression characteristics. 
Additionally, we evaluated the samples for ImmuneScore 
and StromalScore using the 'estimate' R package and for 
signs of T cell dysfunction and exclusion (TIDE) to predict 
immunotherapy response (Table S6). Our results revealed 
that the level of macrophage infiltration in BUC was sig-
nificantly higher in Cluster B compared to Cluster A, as 
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Fig. 3  Differences in signaling pathways and genetic mutations of 
necroptosis modules. We performed differential genetic analysis of 
two necroptosis modules followed by signaling pathway enrichment. 
A Differences between the two groups were analyzed by multi-gsea 
enrichment of GO gene set. A positive enrichment score indicates 
that the signaling pathway is enriched in Cluster A, while a negative 
enrichment score indicates that the signaling pathway is enriched in 
Cluster B. The larger the absolute value of the enrichment score, the 
more genes are enriched in the signaling pathway, and vice versa. 
B The expression of all samples was analyzed by GSVA enrich-
ment analysis of KEGG gene set, and the top 20 enriched signaling 
pathways are displayed. C The circle plot shows the enrichment of 
the two clusters on the hallmark gene set. LogFC represents the dif-
ference between the gene expression level of Cluster A and Cluster 
B. If it is negative, it means that the gene expression level in Cluster 

B is higher than that in Cluster A. D All samples were subjected to 
GSVA enrichment analysis of important signaling pathways in BUC. 
Ridge plot shows the distribution of enrichment scores of important 
signaling pathway in two clusters of BUC samples. We explored the 
gene mutational landscape of the two clusters by using the “maftools” 
package. E The correlation heatmap shows the co-mutation of the 
two groups of differentially expressed genes, and highlights the top 
20 genes of gene mutation frequency. Green indicates co-occurrence, 
and yellow indicates co-exclusion. F and G Waterfall chart shows the 
gene mutation frequency and mutation type of the two clusters. The 
upper part of the figure shows the TMB, and the lower part of the fig-
ure shows the patient's clinical information and molecular subtypes. F 
displays the gene mutation information of Cluster A, while G displays 
that of Cluster B (Color figure online)
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seen in all seven immune cell scoring methods. Specifically, 
the infiltration level of tumor-associated macrophages M2 
was significantly higher in Cluster B (Fig. 4A). The tumor 
immune microenvironment also showed a high concentra-
tion of myeloid-derived suppressor cells (MDSCs), myeloid 
dendritic cells, and monocytes in Cluster B (Figs. S9A4, 
4A). Furthermore, a substantial accumulation of T cells, 
including CD4+ and CD8+ T cells, was observed in Clus-
ter B, resulting in significantly higher ImmuneScore and 

StromalScore compared to Cluster A, despite lower tumor 
purity (Fig. S9B). The higher scores for T cell dysfunction 
and exclusion in Cluster B indicated a severe impairment 
of T cell immunity (Fig. S9A). In conclusion, although 
Cluster B has a higher T cell infiltration, its T cell function 
is severely compromised due to a large presence of tumor 
immunosuppressive cells, such as MDSCs, carcinoma-asso-
ciated fibroblasts (CAFs), and macrophages. This may con-
tribute to a lower overall survival rate for patients in Cluster 

Fig. 4  Characteristics in immune infiltration and checkpoint of the 
tumor immune microenvironment in necroptosis phenotypes. A Heat-
map shows frequency and immune score of TME infiltrating cells 
(Kruskal–Wallis test) in the two necroptotic phenotypes. Asterisks 
indicate P-values (*****P < 0.00001). B Heatmap shows correlation 
between MCP-immunescore and 12 necroptosis genes. C Circle map 
shows connections between tumor immune-infiltrating cells assessed 
by MCP method. Red represents positive correlation and blue repre-
sents negative correlation between different immune cell. The darker 

line color indicates the stronger correlation between different immune 
cell, and the larger line width indicates the stronger correlation. D–F 
Radar plots show differences in immune checkpoints and core sign-
aling pathways between two necroptotic phenotypes (Wilcoxon test). 
G The heatmap shows variations in mRNA expression of antigen 
processing and presentation, BCR signaling pathway, TCR signal-
ing pathway, natural killer cells, chemokines, interleukins, and other 
cytokines in the two necroptosis modules (Wilcoxon test). Asterisks 
indicate P values (*****P < 0.00001) (Color figure online)
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B (Fig. 4A). To further understand the impact of necroptosis 
on the tumor microenvironment, we analyzed the correla-
tion between tumor immune cells and necroptosis genes. 
Our findings showed positive correlations between FASLG 
and MLKL and most immune cells using the seven immune 
scoring methods, while GATA3 ID1 and TNFRSF21 showed 
negative correlations (Figs. 4B, S10B–C). With the excep-
tion of a few immune infiltration cells between each other 
that showed negative correlation, such as between CD4+ T 
cells and CD8+ T cells, most tumor immune cells exhibited 
mutual promotion (Figs. 4C, S9C).

Given the distinct patterns of immune cell infiltra-
tion between the two necroptotic modules, we compared 
the expression differences in key biological processes, 
cytokines, and immune checkpoints between the two Clus-
ters. We utilized PCA to obtain 17 core biological path-
way scores of all samples based on related gene expression 
(Table S7). Interestingly, the core biological pathway scores, 
particularly the CD8+ T cell effector scores, were signifi-
cantly higher in Cluster B than in Cluster A, encompassing 
processes such as antigen presentation, immune checkpoint 
regulation, epithelial-mesenchymal transition (EMT), cell 
cycle, DNA damage repair, tumor immune cell infiltration, 
and angiogenesis. On the other hand, the score of FGFR3-
related genes was higher in Cluster A compared to Cluster 
B, which could be attributed to the higher rate of FGFR3 
mutations in cluster A as depicted in Fig. 3F (Figs. 4D, 3F). 
Furthermore, by examining the expression of 44 immune 
checkpoint-related genes, we discovered that the expres-
sion of most immune checkpoint genes in Cluster B was 
significantly higher than that in Cluster A, particularly in the 
case of co-inhibitory immune checkpoints like PD1, PD-L1, 
PD-L2, and CTLA4 (Fig. 4E, F). Additionally, the expres-
sion levels of cytokine genes revealed the distinct differ-
ences between the two necroptotic modules. The cytokines 
analyzed mainly covered areas such as antigen processing 
and presentation, BCR signaling, TCR signaling, natural 
killer cells, chemokines and their receptors, interleukins and 
their receptors, and other cytokines. Most cytokines were 
expressed at higher levels in Cluster B than in Cluster A, 
particularly in the case of the HLA family and the CC and 
CXC families of chemokines (Figs. 4G, S10A).

Validation of expression of necroptosis genes 
in bladder tissues

Initially, we detected the mRNA expression of 12 prog-
nostic necroptosis-related genes and CD8 in eight samples 
(Table S14). Based on the expression level of CD8 mRNA, 
we divided the samples into two groups: high and low, using 
the median value as a cutoff. To investigate the relationship 
between CD8 and the remaining 12 genes, we randomly 
paired the high CD8 group samples with the low CD8 group 

samples, resulting in four pairs for comparison. Our find-
ings, presented in Fig. 5, indicate that BUC tissues with high 
CD8 expression exhibited higher expression levels of genes 
such as FASLG, MLKL, MYC, IPMK, PANX1, HAT1, 
and EGFR, and lower expression levels of genes such as 
ID1, GATA3, and TNFRSF21 compared to those with low 
CD8 expression. Furthermore, we confirmed the relation-
ship between EGFR, MLKL, TNFRSF21, GATA3, MYC 
and CD8 in the protein expression levels, and the results 
were consistent with the above findings (Fig. 5). Regretta-
bly, we did not identify any significant relationship between 
the expression of CD8 and clinicopathological indicators 
(Table S15). The correlation between the expression of these 
genes and CD8 expression was consistent with the correla-
tion between the expression of necroptosis genes and the 
infiltration level of CD8+ T cells.

Immune characteristics of key necroptosis genes 
RIPK3 and MLKL in BUC

We analyzed the association between the CNVs of necrop-
tosis key genes, RIPK3 and MLKL, and the level of immune 
infiltration of various immune cells using the Tumor 
Immune Estimation Resource (TIMER) database. The 
results revealed a correlation between arm-level deletion of 
MLKL and the infiltration levels of B cells and CD4+ T cells 
(Fig. S11A). Furthermore, arm-level deletion of RIPK3 was 
strongly linked to the infiltration levels of CD8+ T cells, 
CD4+ T cells, neutrophils, and dendritic cells. In contrast, 
arm-level gain of RIPK3 showed an association with the 
immune infiltration levels of B cells, CD4+ T cells, neutro-
phils, and dendritic cells (Fig. S11B).

Next, we evaluated the relationship between the copy 
number variations of RIPK3 and MLKL, the key genes of 
necroptosis in pan-cancer, and the levels of immune infiltra-
tion of different immune cells using the TIMER database. 
Our findings showed that MLKL was positively correlated 
with the expression of immune checkpoints such as PD1, 
PD-L1, PD-L2, and CTLA4 in most cancer types, except 
for ICOSLG, CD200, CEACAM1, HHLA2, and VTCN1 
in BUC. Additionally, MLKL expression was positively 
correlated with the level of all immune cell infiltration in 
most cancer types (Fig. S11C, Table S8.1 and Fig. S11D, 
Table S8.2). On the other hand, the expression of RIPK3 
showed a positive correlation with most immune check-
points, only in nine cancer types such as KIRC, KIRP, 
PRAD, SARC, SKCM, and TCGT. However, in BUC, 
RIPK3 expression was not significantly related to impor-
tant immune co-inhibitory checkpoints like PD1, PD-L1, 
PD-L2, and CTLA4 (Fig. S11E, Table S8.3). The expression 
of RIPK3 was positively correlated with the level of immune 
cell infiltration in cancers like ACC and GBM, but in BUC, 
it was not strongly correlated with the level of immune cell 
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infiltration (Fig. S11F, Table S8.4). In conclusion, our find-
ings showed that MLKL promotes the infiltration of vari-
ous immune cells and co-expression of immune checkpoints, 
especially in BUC, while the type of copy number variation 
of RIPK3 has a significant effect on the level of immune 
cell infiltration.

Clinical and immunological characteristics 
of NecroScore

To predict the prognosis and immunotherapy effect of BUC 
patients, we created a PCA model named NecroScore using 
the differential genes between two necroptosis modules that 
showed significant survival differences and immune correla-
tions. We applied the NecroScore scoring formula to 1841 
BUC samples based on gene expression data (Table S10). 
Our analysis revealed that the NecroScore of Cluster B was 
significantly higher than that of Cluster A (Fig. 6A). Of the 

12 necroptosis genes that make up the necroptosis mod-
ule, 11 genes were found to be strongly correlated with the 
NecroScore (Fig. S12A). The genes PANX1, MYC, FASLG, 
and MLKL had a positive correlation with NecroScore, 
while ID1, TNFRSF21, and GATA3 were negatively cor-
related. The gene SCL39A7 had no significant correlation 
with NecroScore. Furthermore, our investigation into the 
relationship between NecroScore and the clinical molecular 
typing of BUC showed that as the NecroScore increased, 
the molecular typing of BUC tended to shift from non-mus-
cle-related molecular typing and luminal molecular typing 
to basal molecular typing (Fig. S12B, Table S13.4). The 
overall survival rates of the BUC samples with high and 
low NecroScore scores were significantly different in the 
TCGA and GEO datasets and the progression survival rates 
in the EMTAB dataset also differed significantly (Figs. 6B, 
C, S14A).

Fig. 5  The experimental validation of necroptosis genes in four pairs BUC tissues by RT-qPCR (A-M) and Western Blot (N). The asterisks rep-
resent the P value (*P < 0.05; **P < 0.01; ***P < 0.001)
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The TCGA dataset reveals similarities between the SNV 
mutations in the high and low NecroScore groups and the 
necroptosis module, as evidenced by the waterfall plot and 
correlation pheatmap of gene co-mutation (Fig. S13A–C, 
Table S13.3). In particular, the high NecroScore group is 
comparable to Cluster B, while the low NecroScore group is 

comparable to Cluster A in the TCGA mutation data (Tables 
S13.2, S13.3). Furthermore, the molecular typing of BUC 
shows improved accuracy in differentiating the high and low 
NecroScore groups. The low NecroScore group is primarily 
comprised of class_1, class_2a and class_3 molecular typ-
ing in NMIBC_subtype, while the high NecroScore group 

Fig. 6  Clinical significance and immune characteristics of Necro-
Score. A The Kruskal–Wallis test showed NecroScore scores for two 
necroptotic phenotypes. B Kaplan–Meier curves show significant dif-
ferences in overall survival between high or low NecroScore in the 
TCGA database. C Kaplan–Meier curves show significant differences 
in disease progression survival between high or low NecroScore in 
the E-MTAB-4321 database. D Sankey diagram shows correlation 
between NecroScore and molecular subtypes, T cell functional sta-
tus in BUC. E Histogram shows the relationship between NecroScore 
and level of immune cell infiltration. F The bubble chart shows the 
correlation between NecroScore and TME scores, core signaling 

pathways. Brown bubbles indicate positive correlations, and blue 
indicate negative correlations. Color depth and bubble size indicate 
the strength of the correlation (***P < 0.001). G Images represent 
pathological HE staining changes between high and low NecroScore 
groups in the TCGA database. H The Wilcoxon test measures Necro-
Score differences between pathological immunophenotypes. The 
points represent the NecroScore value for each sample, with the upper 
and lower ends representing the interquartile range for that value. 
Lines in boxes represent median values; black dots represent outliers 
(Color figure online)
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primarily consists of basal-related subtypes in MIBC_sub-
type, MDA_subtype, TCGA_subtype, Lund_subtype, UNC_
subtype, and Baylor_subtype. The luminal-like subtype and 
other subtypes are predominantly found in the low NecroScore 
group. Of utmost significance, the NecroScore can effectively 
identify patients with defective toxic T lymphocytes (CTL.
flag). Furthermore, a higher level of defective cytotoxic T lym-
phocyte infiltration may be one of the reasons for the lower 
survival rate observed among patients in the high NecroScore 
group. In the CIT_subtype, the MC7 subtype is primarily 
found in the high NecroScore group, while the MC1 subtype is 
mostly located in the low NecroScore group (Figs. 6D, S13D, 
Table S13.4).

To further evaluate the role of NecroScore, we investi-
gated its ability to predict immune cell infiltration levels and 
its relationship with core biological pathways. In 1841 BUC 
samples, it was found that all co-inhibitory and co-stimu-
latory immune checkpoints, except for TMIGD2, CD160, 
ICOSLG, BTN2A1, and TNFRSF25, were significantly dif-
ferent between the high and low NecroScore groups. The high 
NecroScore group exhibited significantly higher expression 
of co-suppressive immune checkpoints, such as PD1, PD-L1, 
PD-L2, and CTLA4, compared to the low NecroScore group 
(Fig. S12C–D). The correlation analysis between NecroScore 
and the level of immune cell infiltration revealed that most 
immune cell infiltration levels increased with the increase of 
NecroScore, particularly in natural killer T cells, regulatory 
T cells, neutrophils, and macrophages. In contrast, there was 
a strong negative correlation between NecroScore and tumor 
purity (Figs. 6E, S13E). NecroScore had a positive effect on 
most core pathways and showed a positive correlation with 
CD8 T effector, immune checkpoint, and EMT. The negative 
correlation between NecroScore and FGFR3-related genes was 
consistent with the previously observed low mutation rate of 
FGFR3 in the high NecroScore group (Figs. 6F, S13B). To 
validate the role of NecroScore in predicting immune infiltra-
tion levels, we selected BUC HE samples from the TCGA 
database. The results showed that HE samples with high levels 
of lymphocyte infiltration also had high NecroScore, while HE 
samples lacking immune cell infiltration had low NecroScore 
(Fig. 6G, H). This confirms the efficacy of NecroScore as a 
model for analyzing immune infiltration levels and its accuracy 
in predicting important immune checkpoints such as PD1 and 
PD-L1.

Prediction of prognosis of BUC patients 
by NecroScore

Based on the results of our analysis, we found that the 
prognosis of BUC patients in the high and low NecroScore 
groups was significantly different. To determine the impact 
of NecroScore on BUC patient prognosis, we performed 
a multivariate Cox regression analysis. Five factors were 

considered in the analysis, including Age, Gender, Grade, 
TMB, and NecroScore. Of these, Age, Grade, TMB, and 
NecroScore had a significant impact on BUC patient survival 
rate (Fig. 7A). It was observed that TMB was positively 
associated with survival in BUC patients, unlike NecroScore 
and Stage (Fig. S14B). To further understand the impact of 
NecroScore and TMB, we divided the TCGA BUC dataset 
into four groups based on these two factors and found that 
there were significant differences in survival rate among the 
groups, with the highest survival rate in the low-NecroScore-
high-TMB group and the lowest in the high-NecroScore-
low-TMB group (Fig. 7B). To predict the prognosis of BUC 
patients, we developed a comprehensive evaluation model 
that took into account Age, Stage, TMB, and NecroScore 
(Fig. 7C). This model was effective in predicting 1-year and 
3-year survival rate but less accurate in predicting 5-year 
survival rate [Fig. 7D). The model was verified by the ROC 
curve, which showed that the AUC value increased with 
increased survival time. However, the use of a single index, 
such as Stage or TMB, is not considered reliable enough for 
predicting BUC patient prognosis. To evaluate the prediction 
accuracy of the model, we used the C index and found that 
the evaluation model is reliable (Figs. 7E, S14C–H).

NecroScore predicts sensitivity of BUC patients 
to anti‑tumor therapy

Based on the drug response data from the public phar-
macogenomics databases, Genomics of Drug Sensitiv-
ity in Cancer (GDSC) and Therapeutics Response Portal 
(CTRP), we analyzed the relationship between necrop-
tosis-related molecules and the efficacy of clinical treat-
ment for BUC. The genomic drug resistance analysis data 
were obtained from GDSC/CTRP IC50 drug data, and the 
correlation between gene expression and drug efficacy 
was analyzed using the Spearman correlation method. 
A negative correlation indicates that high gene expres-
sion makes a patient more sensitive to the drug, while 
a positive correlation indicates the opposite. Our results 
demonstrate that most genes exhibit high resistance to 
these drugs, but EGFR, TNFRSF21, and ID1 display 
significant synergistic effects against ERBB therapeutic 
drugs, including lapatinib, gefitinib, erlotinib, cetuximab 
and afatinib. Additionally, we observed synergistic effects 
of multiple genes on drugs such as 17-AAG (Tanespimy-
cin, an Hsp90 inhibitor), trametinib (a MEK inhibitor), 
and docetaxel (a paclitaxel antineoplastic drug). Patients 
with high MLKL expression were found to be sensitive 
to 17-AAG, Trametinib, RDEA119 (Refametinib, MEK 
inhibitors), and CI-1040 (MEK inhibitors) (Fig. S15A). To 
our surprise, nearly all antineoplastic drugs in the CTRP 
database were found to be strongly sensitive to patients 
with high MYC expression (Fig. S15B). To gain a more 
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comprehensive understanding of the relationship between 
necroptosis-related molecules and antitumor drug sensitiv-
ity, we analyzed the correlation between gene expression 
and drug sensitivity in various cancer cell lines using the 
CellMiner database. A positive correlation implies that 
a drug is more sensitive to higher gene expression. The 
results revealed that several drugs had synergistic effects 
on necroptosis genes, including AMG-900 (pan-Aurora 
kinase inhibitor), BLU-667 (Pralsetinib, RET inhibitor), 

BOS-172722 (MPS1 inhibitor), CH5132799 (PI3K inhibi-
tor), Dexrazoxane (cardioprotective), IDH-C227 (IDH1 
inhibitor), Irofulven (DNA alkylating agents), P529 (Palo-
mid 529, mTORC1 and mTORC2 complex inhibitors), and 
PQR530 (PI3K/mTORC1/2 dual inhibitor) etc. Drugs such 
as AMG900, BOS-172722, and Dexrazoxane were found 
to be strongly sensitive to several necroptosis-related mol-
ecules, including MLKL (Fig. S15C, Table S11).

Fig. 7  Prediction of prognosis of BUC patients by NecroScore. A We 
performed a multivariate COX analysis of the TCGA cohort using 
five metrics, Age Gender Stage TMB and NecroScore. B Kaplan–
Meier curve analysis of survival for patients in the TCGA cohort 
using NecroScore and TMB. C Use the "regplot" package to score 
four prognostic indicators (Age Stage TMB NecroScore) to estab-
lish a new prognostic model. Survival nomogram shows scoring and 
prognostic results for the first patient in the TCGA BUC cohort. D 

Calibration curve plot showing the relationship between the patient 
prognosis predicted by the survival nomogram and the actual patient 
prognosis. The closer the curve is to the central axis, the more accu-
rate the prediction results. E We tested model sensitivity and speci-
ficity using ROC curves for Nomogram, Stage, TMB, and Age. The 
abscissa represents survival time, and the ordinate represents the area 
under the curve (AUC). The higher AUC value indicates the higher 
the authenticity of the detection method
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The significance of necroptosis-related molecules in 
chemotherapy prompted us to evaluate the accuracy of 
NecroScore in predicting chemotherapy outcomes in BUC 
patients. We examined gene expression differences between 
high and low NecroScore groups of BUC with common 
drug targets, including Chemotherapy, Immune-therapy, 
ERBB-therapy, FGFR-therapy, and antiangiogenic-therapy. 
The results showed that most common drug targets were 
highly expressed in the high NecroScore group, except for 
Afatinib (ERBB2, ERBB4), Trastuzumab (ERBB2), Lapat-
inib (ERBB2), Infigratinib (FGFR2, FGFR3), and Sorafenib 
(BRAF, RAF1) (Fig. S16A). To further validate the thera-
peutic effect of chemotherapy drugs in BUC patients, we uti-
lized the GDSC database and the “pRRophetic” R package 
to predict the response of common chemotherapy drugs in 
patients with high and low NecroScore. The results showed 
that the IC50 values of cisplatin, doxorubicin, gemcitabine, 
and other chemotherapeutics were lower in the highNecro-
Score group, indicating that patients with high NecroScore 
may be more sensitive to these drugs (Fig. S16B–I).

NecroScore predicts immunotherapy response 
in BUC patients

We conducted NecroScore analysis on patients in the 
IMvigor210 cohort and divided them into high and low 
NecroScore groups. The results showed that patients in 
the high NecroScore group had better outcomes after anti-
PD-L1 treatment compared to those in the low NecroScore 
group. (Figs. 8A, S17A, B). Our analysis revealed a sig-
nificant correlation between NecroScore and the effective-
ness of anti-PD-L1 treatment, with a higher proportion of 
complete responses (CR) observed in the high NecroScore 
group compared to the low NecroScore group (Fig. 8B, C). 
Interestingly, we discovered that as NecroScore increased, 
the proportion of positive cells (PD-L1 expression ≥ 1%) 
also increased in both immune cells and tumor cells in the 
IMvigor210 cohort, especially in the TC2+ (TC ≥ 5%) and 
IC2+ (IC ≥ 5%) ratios, which were significantly higher in 
the high NecroScore group compared to the low Necro-
Score group (Figs.  8D, E, S17C, D). Furthermore, the 
expression levels of PD1 and PD-L1 were significantly 
higher in the high NecroScore group compared to the low 
NecroScore group (Fig. S17F, G). The immune phenotype 
of BUC patients in the high NecroScore group was more 
inclined towards an inflamed phenotype, while the low 
NecroScore group was more inclined towards a desert phe-
notype (Figs. 8F, S17E). Our evaluation of the relationship 
between gene copy number alterations and NecroScore in 
the IMvigor210 cohort showed that short variants (< 49 bp 
long) of FGFR3 were more prevalent in patients with lower 
NecroScore, while the opposite was true for short variants 

of TP53. Deletions of the cell cycle-related genes CDKN2A 
and CDKN2B were the main form of mutation (Fig. 8G).

Previous studies have shown that TMB is a key factor 
in determining the effectiveness of immunotherapy [19]. 
By combining NecroScore with TMB, we found that the 
prediction of CR improved significantly compared to using 
a single factor (Fig. 8H). The combination of NecroScore 
and TMB provided a more accurate prognostic prediction 
compared to using a single factor in the IMvigor210 cohort 
(Figs. 8, I, S17H). Additionally, using the submap module, 
we predicted the immunotherapy response to anti-PD1 and 
anti-CTLA4 in both the high and low NecroScore groups. 
Results showed that the high NecroScore group had a better 
response to anti-PD1 treatment (Fig. 8J). Our NecroScore 
model also demonstrated high accuracy in predicting the 
immunotherapy effects of anti-PD-L1 and anti-PD1.

RIPK3 and MLKL can regulate the tumor growth rate 
and the degree of tumor immune cell infiltration 
in vivo

We successfully established a subcutaneous BUC model 
in nude mice using control, shRIPK3, shMLKL, and over-
expressed MLKL T24 cells. The growth rate of subcuta-
neous BUC tumors with knockout of RIPK3 and MLKL 
was significantly faster compared to the ordinary T24 cell-
transfected nude mice. On the other hand, the growth rate of 
subcutaneous BUC tumors with overexpression of MLKL 
was the reverse (Fig. 9A, B). Our results showed that the 
expression of the corresponding phosphorylated proteins 
of RIPK3 and MLKL decreased in the knockout groups, 
while the expression of phosphorylated MLKL increased 
in the overexpressed group (Fig. 9C–E). Furthermore, the 
proliferation capacity of subcutaneous BUC tumors with 
overexpressed MLKL was significantly lower, while that 
with knockout of RIPK3 and MLKL improved (Fig. 9D). 
The subcutaneous tumor tissues with MLKL overexpression 
displayed a large number of neutrophil infiltrations, while 
the subcutaneous tumor tissues with knockout MLKL had 
virtually no neutrophil infiltration. This is consistent with 
previous findings that higher RNA expression of MLKL 
leads to more neutrophil infiltration (Figs. 9D, S11D).

Discussion

The impact of necroptosis on tumor immunity is not fully 
understood, despite evidence suggesting that it plays a 
crucial role in inducing antitumor immunity [20]. In this 
study, we analyzed the genetic and transcriptomic diver-
sity of 67 necroptosis genes in normal and tumor tissues 
across 33 cancer types. Our findings suggest that imbal-
ances in the expression of necroptosis molecules may be 
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linked to gene methylation modifications, genetic muta-
tions, and key signaling pathways such as EMT and the cell 
cycle. By using univariate COX regression analysis, we 

screened 12 necroptosis genes that have a significant impact 
on prognosis and found that they play a crucial role in the 
immune subtypes of BUC, particularly MLKL. Through a 

Fig. 8  NecroScore predicts immunotherapy response in BUC 
patients. A Kaplan–Meier curves show a significant difference 
in survival between the high and low NecroScore groups of the 
IMvigor210 dataset. B The stacked histograms show differences in 
anti-PD-L1 responses between high and low NecroScore. CR (com-
plete response), PR (partial response), SD (stable disease), PD (pro-
gressive disease). C Boxplots show the anti-PD-L1 reactivity of 
NecroScore variables, using the Wilcoxon test between pairs. The 
upper and lower bounds represent the interquartile range of values, 
and the lines in the boxes represent the median. D and E Boxplots 
show NecroScore variables for immune cells (D) and tumor cells (E) 
with different PD-L1 expression levels, using the Kruskal–Wallis 
test between pairs. The upper and lower ends represent the interquar-
tile range of the value, and the lines in boxes indicate the median. F 
NecroScore was tested in three immune subtypes using the Kruskal–

Wallis test. The upper and lower bounds represent the interquartile 
range of values, and the lines in boxes indicate the median. G Corre-
lation between NecroScore and gene copy number variation in BUC. 
Histograms represent NecroScore, with each column representing one 
patient, red for copy number amplification, green for copy number 
loss, purple for copy number short mutation, and grey for no muta-
tion. H ROC curve analysis of NecroScore and TMB predictive value 
of CR in patients with anti-PD-L1 immunotherapy. I Kaplan–Meier 
curve analysis of survival in patients receiving anti-PD-L1 immuno-
therapy using NecroScore and TMB. J Probabilities of anti-PD1 and 
anti-CTLA4 immunotherapy responses in high and low NecroScore 
groups were predicted using the submap algorithm. The high Necro-
Score group may have a better response on anti-PD-1 treatment (Bon-
ferroni-corrected P = 0.04). R: Respond, noR: no Response
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comprehensive analysis of 1841 BUC samples, we identi-
fied two subtypes of necroptosis and observed significant 
differences in clinical characteristics, gene mutation pat-
terns, and immune cell infiltration between the two clusters. 
While previous research has shown that RIPK3-dependent 
necroptosis of pancreatic cancer cells leads to the recruit-
ment of immunosuppressive cells such as MDSCs to create 
an immunosuppressive tumor microenvironment [10], our 
study highlights a strong association between necroptosis 
subtypes and the tumor immune microenvironment in BUC.

The validation of transcriptome expression in different 
subtypes of necroptosis has been shown to be crucial for 
molecular typing of BUC and understanding its impact on 

immune-related biological pathways. Our study revealed 
an association between necroptosis and BUC molecular 
classification: the low necroptosis group (Cluster A) was 
found to be related to the luminal-like subtype, while the 
high necroptosis group (Cluster B) was linked to the basal-
like subtype. Previous research has shown that necroptosis 
signaling pathways play a role in the immunosuppressive 
microenvironment of tumors in diseases such as pancreatic 
ductal adenocarcinoma (PDAC) and melanoma, leading to 
immune tolerance and resistance to immunotherapy [10, 
11, 21]. Our study found that necroptosis genes are critical 
for promoting tumor immune cell infiltration and leading 
to a worse prognosis in BUC. Additionally, our research 

Fig. 9  Effects of RIPK3 and MLKL on tumor growth and tumor 
immune cell infiltration in vivo. A Four groups of cells constructed 
using T24 cell lines were implanted subcutaneously in nude mice, 
including negative control cells, sh-RIPK3 and sh-MLKL cells, 
and MLKL-OE cells. B The tumor volume was calculated using 

V = �
6
  LW2 (L = tumor length, W = tumor width), and was com-

pared between the two groups using T test (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001). C-E Four groups of subcutaneous 
tumors of BUC were analyzed by WB, HE (hematoxylin–eosin stain-
ing), IHC (immunohistochemistry), IF (immunofluorescence) assay
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validated a strong correlation between the high necroptosis 
group and the hypoxia signaling pathway in BUC. While 
the relationship between hypoxia and necroptosis has been 
found in non-neoplastic diseases such as retinal neovascular 
diseases, hepatic injury, and ischemic heart disease [22–24], 
this study extends these findings to BUC. Previous stud-
ies have also shown that SMAC mimetics, which bind and 
degrade cIAPs and induce necroptosis, can promote antitu-
mor immune responses [25]. Moreover, SMAC mimetics can 
collaborate with immune checkpoint inhibitors to maintain 
a durable therapeutic response for glioblastoma [26, 27]. 
Our study found significant differences in immune check-
point expression, particularly PD1 and PD-L1, between dif-
ferent necroptosis patterns. The high necroptosis modules 
(Cluster B) were also found to have higher enrichment in 
core tumor progression biological processes such as CD8 
T cell effector and EMT. As a result, the combination ther-
apy of necroptosis-inducing SMAC mimetics and immune 
checkpoint inhibitors has great potential for BUC with high 
necroptosis modules.

The frequency of FGFR3 alterations in BUC is generally 
higher in non-muscle-invasive cases compared to muscle-
invasive cases, with alterations being associated with lower 
grades and stages [28]. The frequency of FGFR3 altera-
tions was significantly higher in non-muscle-invasive BUC 
(49%) than in muscle-invasive BUC (10–14%) [28–30]. 
In this study, we analyzed invasive BUCs from TCGA 
and identified two necroptotic modules: high and low. We 
found that the high necroptotic module had a significantly 
lower rate of FGFR3 alterations (6%) compared to the low 
necroptotic module (19%). Our results showed a clear rela-
tionship between necroptosis gene expression and FGFR3 
mutations, contributing to a more accurate classification of 
FGFR3 alterations in muscle-invasive bladder carcinomas 
(MIBC). The luminal papillary subtype of urothelial carci-
noma is associated with FGFR3 genetic mutations [31, 32], 
which is consistent with the high rate of FGFR3 alterations 
observed in the low necroptotic module. Despite FGFR3 
inhibiting key components of the adaptive immune response, 
including lymphocyte infiltration and CD8A T-cell expres-
sion [33], our findings revealed that WT FGFR3 in BUC tis-
sues promote the infiltration of tumor immune cells such as 
CD8+ T cells, macrophages, and dendritic cells, compared 
to mutated FGFR3.

Subsequently, we examined the relationship between the 
two core necroptosis-related genes, RIPK3 and MLKL, and 
tumor immune infiltration across different types of cancer. 
Surprisingly, in the majority of cancers, both RIPK3 and 
MLKL promoted tumor immune cell infiltration, particularly 
in BUC where MLKL increased the infiltration of neutro-
phils, which supports previous findings that necroptosis can 
boost antitumor immunity [34]. Conventional therapeu-
tic drugs primarily function by inducing tumor cell death 

through apoptosis, but this approach often lacks efficacy 
due to resistance to drugs and scattered immune responses. 
Our study found that high expression of MLKL significantly 
inhibited the growth of subcutaneous tumors in BUC, which 
could be a promising therapeutic target. There are also sev-
eral therapeutic agents, including doxorubicin and cisplatin, 
in classical chemotherapy drugs, that can trigger necroptosis 
in tumor cells when combined with other modulators [35]. 
Our study discovered that several antitumor drugs, such as 
17-AAG, AMG900, and BOS-172722, were highly effec-
tive in patients with high expression of cross-necroptosis 
genes, particularly MLKL, which may overcome resistance 
to classical chemotherapy and enhance the anti-tumor effect.

In view of the crucial role of necroptosis in regulating 
BUC immunity and the heterogeneous necroptosis phe-
notype among BUC patients, it is essential to classify the 
expression of necroptosis regulators in these patients. To 
achieve this, we developed a scoring system, NecroScore, to 
evaluate necroptosis patterns in BUC patients. Our findings 
confirmed that NecroScore provides a reliable and compre-
hensive assessment of BUC-related molecules, with a high 
NecroScore indicating basal-like differentiation and low 
FGFR3 alterations. Validation of NecroScore on the prog-
nosis of BUC patients demonstrated its reliability, and we 
constructed a prognostic model incorporating NecroScore 
to accurately predict the outcome of BUC patients. The 
NecroScore was positively correlated with tumor immune 
cell infiltration levels including MDSCs, M2 macrophages 
and defective toxic T lymphocytes etc., and a higher Necro-
Score was closely linked to higher expression of co-inhibi-
tory immune checkpoints such as PD1 and PD-L1. The vali-
dation of the IMvigor210 cohort showed that NecroScore 
can predict the treatment effect of anti-PD-L1, especially 
in patients who achieve complete response. Furthermore, 
the combination of TMB and NecroScore provided a bet-
ter prediction of anti-PD-L1 treatment response. Our study 
also demonstrated that high NecroScore scores had higher 
sensitivity to classical BUC chemotherapy drugs, such as 
cisplatin and gemcitabine. In conclusion, NecroScore can 
be used to assess the expression patterns of necroptosis-
related molecules and corresponding immune cell infiltra-
tion characteristics in BUC patients, thereby guiding their 
chemotherapy. Furthermore, NecroScore plays a critical 
role in predicting the survival rate of BUC patients and 
the therapeutic effect of immune checkpoint inhibitors such 
as anti-PD-L1 in advanced and metastatic BUC. A recent 
study has shown that administering first-line maintenance 
Avelumab following initial platinum-containing chemo-
therapy without PD can significantly increase the survival 
rate of patients with bladder urothelial carcinoma [13]. 
As a predictor of chemotherapeutic drug sensitivity and 
anti-PD-L1 treatment effect, NecroScore can be utilized 
to guide treatment regimens for advanced and metastatic 
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BUC, particularly the combination of PD-L1 inhibitors and 
platinum chemotherapy.

Although we attempted to study the heterogeneity of 
necroptosis in as many samples as possible, this was a cross-
cohort retrospective study that had limitations such as batch 
effects. Despite NecroScore's high accuracy in predicting 
immune effects, further validation is needed through the use 
of patient data from a multicenter clinical cohort. To confirm 
the role of RIPK3 and MLKL in promoting tumor immune 
cell infiltration in BUC, large-scale protein analysis is neces-
sary. Our study suggests that some anti-tumor drugs that are 
highly sensitive to patients with high expression of necropto-
sis genes could be new and promising therapeutic measures, 
especially for those with advanced or chemo-resistant BUC. 
However, more research is needed to fully understand and 
explore the potential of these findings.

In conclusion, the combination therapy of necroptosis-
inducing SMAC mimetics and immune checkpoint inhibitors 
exhibits immense potential for bladder urothelial carcinoma 
patients with high necroptosis modules. It is worth noting 
that the high necroptotic module was associated with a sig-
nificantly lower rate of FGFR3 alterations (6%) compared 
to the low necroptotic module (19%). NecroScore, as a scor-
ing tool, displayed a positive correlation with the infiltration 
levels of tumor immune cells, including MDSCs, M2 mac-
rophages, and defective toxic T lymphocytes, among others. 
A higher NecroScore was also found to be closely linked to 
higher expression of co-inhibitory immune checkpoints such 
as PD1 and PD-L1. As a predictor of chemotherapeutic drug 
sensitivity and anti-PD-L1 treatment effect, NecroScore can 
be utilized to guide treatment regimens for advanced and 
metastatic bladder urothelial carcinoma patients, particularly 
the combination of PD-L1 inhibitors and platinum chemo-
therapy. We hope to obtain more clinical data to support 
our study findings, and NecroScore can play a vital role in 
guiding the chemotherapy and immunotherapy of bladder 
urothelial carcinoma patients in the future.
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