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Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant 
hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of 
acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors 
have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, 
including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance 
of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor 
biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX 
protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the 
interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological 
processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.

Keywords RUNX family · Angiogenesis · Tumor cell stemness · Drug resistance · Tumor microenvironment · Signaling 
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Introduction

RUNX proteins belong to a family of transcription factors. 
These proteins are master regulators of embryonic 
development and they play key regulatory roles in a wide 

range of biological processes, such as cell proliferation, 
apoptosis, differentiation, and lineage determination [1, 
2]. In mammals, three different genes encode the three 
RUNX proteins, namely RUNX1, RUNX2, and RUNX3 
[3]. The expression pattern of the RUNX family is highly 
dynamic, depending on the developmental stage and tissue 
microenvironment [4]. Functionally, RUNX1 is indispensable 
for the establishment of definitive hematopoiesis [5]. RUNX2 
is considered to play a key role in osteogenic differentiation 
and bone formation [6]. RUNX3 acts as a tumor suppressor 
in gastric cancer, colon cancer, and some other solid tumors, 
but it is usually inactivated during tumor progression due to 
loss of heterozygosity, promoter hypermethylation, histone 
modification, and protein mislocalization [7]. All three 
RUNX proteins have a highly conserved DNA-binding 
domain, called the Runt domain, which heterodimerizes with 
the common non-DNA-binding core binding factor β (CBF-
β) subunit. This interaction results in a structural change that 
replaces the repression domain and stabilizes the binding 
of RUNX proteins to their consensus motifs [8]. Deletion 
of any of the RUNX genes in mice results in lethality [9, 
10], highlighting their fundamental and essential role in the 
process of development. The RUNX family is functionally 
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related to major developmental pathways including the TGFβ 
signaling pathway [11], Wnt/β-catenin signaling pathway 
[12], Hedgehog signaling pathway [13–15], Notch signaling 
pathway [16], MAPK signaling pathway [17], and Hippo-YAP 
pathway [18].

RUNX1, encoded by the RUNX1 gene located on human 
chromosome 21, was first characterized in 1991. It is also 
known as acute myeloid leukemia 1 (AML1) because it is 
known to be involved in the t(8;21) chromosome translocation 
in patients with acute myeloid leukemia [19]. It is a transcrip-
tion factor involved in hematopoietic processes [20] and is 
essential for the maturation of lymphocytes and megakaryo-
cytes in adults [21]. Meanwhile, an increasing number of stud-
ies have revealed the pro- or anti-cancer roles of RUNX1 in 
solid tumors. Abnormal overexpression of RUNX1 has been 
observed in ovarian epithelial cancer [22], renal clear cell carci-
noma [23], gastric cancer [24], colorectal cancer [25], and pan-
creatic cancer [26]. RUNX2, also known as core binding factor 
α1 (CBFα1), is the most specific marker gene in the early stages 
of bone formation, and plays a key role in the regulation of cell 
proliferation in osteoblasts and endothelial cells [27]. Similarly, 
several studies have shown that RUNX2 is also closely associ-
ated with the occurrence and development of tumors, such as 
breast cancer [28], colorectal cancer [29], thyroid cancer [30], 
and pancreatic cancer [31]. RUNX3 has been defined as both 
a tumor suppressor and a tumor promoter, and it can play such 
contradictory roles even in the same tumor, which may reflect 
the complex role of RUNX3 in tumorigenesis [32]. Compared 
with normal gastric epithelial cells, gastric cancer cells gradu-
ally lose RUNX3 expression as they gain high invasiveness 
with cancer progression. After the first study demonstrating that 
RUNX3 has a tumor suppressive role [33], an increasing stud-
ies have reached the same conclusion, suggesting that RUNX3 
also plays a tumor suppressive role in solid tumors, such as 
colon cancer [34], lung cancer [35], breast cancer [36], glioma 
[37], renal cancer [38], and hepatocellular carcinoma [39].

Signaling pathways involving or dependent on RUNX 
play crucial roles in different processes of tumor progression, 
including tumor proliferation, metastasis, angiogenesis, 
tumor stemness, and chemoresistance. In this review, we aim 
to summarize and provide an overview of recent research 
on RUNX-mediated biological effects in tumors. With key 
examples, we will discuss how RUNX participates in different 
signaling pathways and biological processes to regulate 
proliferation and affect the progression of solid tumors.

RUNX proteins in the landscape of cancer 
expression

RUNX1 in carcinogenesis: a dual function

Among the RUNX family, RUNX1 exhibits a particularly 
complex role across different types of cancer. RUNX1 
is one of the genes significantly mutated in luminal 
estrogen-receptor-positive (ER+) breast cancer. Its 
expression is lost during the development of ER+ breast 
cancer, suggesting the tumor-suppressive role of RUNX1 
[40]. A follow-up study supported the idea that RUNX1 
mainly acts as a tumor suppressor in ER+ breast cancer, 
and it can exert oncogenic effects by suppressing the 
estrogen-mediated inhibition of AXIN1 and activation of 
the Wnt/β-catenin signaling pathway [41]. In contrast, it 
has also been shown that RUNX1 levels are abnormally 
elevated in triple-negative breast cancer (TNBC) and 
this is associated with a poor prognosis, indicating that 
RUNX1 plays a pro-tumor role in TNBC [42]. An analysis 
of data from multiple databases confirmed the abnormally 
high expression levels of RUNX1 in cervical cancer [43]. 
However, research by Zhu et al. contradicts this by showing 
that RUNX1 can be downregulated in cervical cancer via 
miR-20a, thereby attenuating the cytotoxic effects of NK 
cells against cervical cancer cells [44]. The methylation 
level of the RUNX1 promoter is low in renal clear cell 
carcinoma, and the expression of RUNX1 is upregulated 
in renal clear cell carcinoma tissues compared with normal 
tissues [45]. Research by Janta et al. has confirmed that 
RUNX1 is aberrantly upregulated in prostate cancer and 
facilitates the EMT phenotype [46]. Elevated expression 
of RUNX1 has also been observed in glioblastoma (GBM) 
samples [47, 48]. Qiu et al. demonstrated that aberrant 
activation of the USP10/RUNX1 signaling axis in GBM 
maintains the mesenchymal properties of GBM cells, 
thereby promoting the progression of GBM [49]. Xu et al. 
substantiated that RUNX1 is markedly upregulated in 
GBM tissues, particularly in recurrent GBM tissues and 
in temozolomide-resistant GBM cells [50]. Intriguingly, 
in neuroblastoma, RUNX1 exhibits elevated expression 
levels in benign ganglioneuromas (GN) and well-
differentiated tissues, while displaying reduced expression 
in poorly differentiated and undifferentiated tissues, 
suggesting its tumor-suppressive role in neuroblastoma 
[51]. Moreover, RUNX1 is also aberrantly upregulated in 
human pituitary tumors, contributing to tumor progression 
[52]. In an osteosarcoma study, the expression levels of 
RUNX1 mRNA and protein were found to be higher in 
tumor tissues than in normal tissues adjacent to the tumor 
[25]. Similarly, Jin et al. substantiated that RUNX1 is 
upregulated in oral squamous cell carcinoma (OSCC) 
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tissues and cells, promoting cellular proliferation, 
adhesion, and migration while inhibiting apoptosis [53]. 
Complementing these findings, He et al. demonstrated 
an upregulation of RUNX1 expression in lung cancer, 
where it fosters cellular proliferation by binding to the 
promoter of tartrate-resistant acid phosphatase 5 (ACP5) 
[54]. Pertaining to digestive system malignancies, Liu 
et  al. found that RUNX1 expression was significantly 
upregulated in human pancreatic cancer samples and they 
confirmed the role of RUNX1 in promoting pancreatic 
cancer cell proliferation [26]. Another study on pancreatic 
cancer showed consistent results, with quantitative 
polymerase chain reaction results indicating that the 
mRNA level of RUNX1 was significantly higher in human 
pancreatic cancer samples than in normal pancreatic 
tissues [55]. Pharmacological inhibition of RUNX1 can 
significantly suppress tumor growth in patient-derived 
organoids of primary pancreatic cancer [56]. In a study of 
gastric cancer, Mitsuda et al. demonstrated that elevated 
levels of RUNX1 in gastric cancer activated the ErbB2/
HER2 signaling pathway by up-regulating SOS1, which 
served to promote the proliferation of gastric cancer 
cells [24]. However, the opposite conclusion has also 
been reached, namely, that RUNX1 is downregulated in 
gastric cancer tissues [57], suggesting a complex role 
of RUNX1 in the progression of this type of cancer. In 
hepatocellular carcinoma, elevated RUNX1 levels have 
been shown to upregulate COL4A1 expression, thereby 
activating the FAK-Src signaling pathway and promoting 
the proliferation, migration, and invasion of hepatocellular 
carcinoma cells [58]. In colorectal cancer, Zhou et al. 
showed that the high expression levels of LRG1 also 
resulted in abnormally high expression levels of RUNX1 
[59]. Meanwhile, several studies have demonstrated 
that the abnormally high expression level of RUNX1 in 
colorectal cancer is closely associated with the occurrence 
of epithelial-mesenchymal transition (EMT) [25, 60]. To 
sum up, RUNX1 serves as a double-edged sword in cancer 
development, acting as either a tumor suppressor or a pro-
tumor agent, depending on the type of cancer.

RUNX2 in carcinogenesis: a predominant oncogenic 
contributor

RUNX2 expression is another key aspect of cancer pathol-
ogy. In the realm of choroidal melanoma, Zhang et al. corrob-
orated that RUNX2 is markedly upregulated and is directly 
targeted by METTL14 through N6-methyladenosine modi-
fication, contributing to its elevated expression [61]. This is 
in parallel with its overexpression in osteosarcoma, which 
has been linked to the downregulation of p53 and miR-34 
[62]. Moreover, frequent amplification of the RUNX2 gene 
in osteosarcoma cell lines correlates with elevated RUNX2 

levels, subsequently initiating MYC transcription and driving 
osteosarcoma tumorigenesis and progression [63]. Kim et al. 
affirmed the high expression levels of RUNX2 in osteosar-
coma and identified it as a key transcription factor that sus-
tains tumor cell survival, modulating a range of downstream 
target genes such as MYC through the induction of SOX9 and 
interactions with JMJD1C [64]. Research by Green et al. sub-
stantiated the upregulation of RUNX2 expression in tumors 
of patients with high-grade primary bone cancer [65]. In a 
parallel investigation, Onodera et al. scrutinized 137 cases 
of invasive ductal carcinoma of the breast through immu-
nohistochemical staining and documented overexpression of 
RUNX2 [66]. Concurrently, elevated levels of RUNX2 in 
cervical cancer were found to be associated with decreased 
miR-218-5p expression, and this high expression of RUNX2 
positively regulated cervical cancer cell proliferation [67].
Wang et al. found that MRE11 plays a pro-cancer role in 
oral cancer through the RUNX2/CXCR4/AKT/FOXA2 sign-
aling axis, and both MRE1 and RUNX2 have been shown 
to be highly expressed in oral cancer samples [68]. Sancisi 
et al. demonstrated that RUNX2 expression is reactivated in 
thyroid and breast cancers [69]. In epithelial ovarian cancer 
(EOC), RUNX2 promotes cell proliferation and invasion by 
regulating PKD2 and PKD3, thereby activating the MAPK/
ERK1/2 signaling pathway, a finding that is further corrobo-
rated by Tong et al. who also confirmed elevated RUNX2 
expression in EOC tissues and cells [70, 71]. Concurrently, 
both RUNX2 and MAPK11 are overexpressed in clear cell 
renal cell carcinoma (ccRCC) tissues and cell lines, enhanc-
ing the proliferation and migration of ccRCC cells [72]. In 
a study aligned with existing findings, Wu et al. revealed a 
marked upregulation of RUNX2 in ccRCC tissues. Mechanis-
tically, the oncogenic capabilities of RUNX2 were attributed 
to its downregulation of the tumor suppressor NOLC1, which 
subsequently facilitated the growth and metastasis of ccRCC 
cells [73]. In pancreatic cancer, RUNX2 is also abnormally 
overexpressed, and its elevated expression is associated with 
the malignant behavior of the tumor, demonstrating signifi-
cant diagnostic capability [74]. Guo et al. demonstrated the 
upregulation of RUNX2 expression in clinical samples of 
gastric cancer tissues and found that RUNX2 transcriptional 
activation of its downstream target, YAP1, promotes the 
progression of gastric cancer [75]. Moreover, upregulated 
RUNX2 in gastric cancer also promotes gastric cancer pro-
gression through transcriptional activation of MGAT5 and 
MMP13 [76]. RUNX2 is upregulated in gastric cancer, and 
in colorectal cancer patients, the expression levels of RUNX2 
and MSN are significantly correlated, with both being over-
expressed. MSN promotes colorectal cancer progression 
through the β-catenin-RUNX2 signaling axis [77]. Evidently, 
RUNX2 generally acts as a tumor facilitator, often collabo-
rating with other signaling pathways to exacerbate cancer 
progression.
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RUNX3 in carcinogenesis: a primary tumor 
suppressor

Emphasis is placed on RUNX3, widely acknowledged as a 
tumor suppressor, and the implications of its downregulation 
in selected cancer types. For instance, a study by Zhou 
et al. found diminished expression of RUNX3 in OSCC 
specimens [78]. In cutaneous melanoma, RUNX3 acts as 
a tumor suppressor, with its expression being significantly 
downregulated in both primary and metastatic tumors 
[79]. In breast cancer, RUNX3 serves as a frequently 
inactivated or downregulated tumor suppressor that inhibits 
the proliferative and transformative potential of estrogen 
receptor α (ERα)-dependent cells, such as the MCF-7 cell 
line [36]. In a study by Bai et al., RUNX3 was demonstrated 
to be negatively regulated by overexpressed miR-20a-5p in 
TNBC, leading to a significant reduction in both its mRNA 
and protein levels [80]. A study by Paudel et al. examined 
the expression of RUNX3 in 100 cases of ovarian epithelial 
carcinoma (EOC) and 20 normal ovarian tissues, and the 
results suggested that RUNX3 expression is significantly 
elevated in EOC tissues [81]. Another study found that 
RUNX3 expression is lost in non-small cell lung cancer 
(NSCLC), leading to the upregulation of CCL5 and CCL19 
in NSCLC cells, which was associated with tumor-associated 
bone destruction [82]. In addition, RUNX3 has been shown 
to destabilize the oncogenic protein MYC, thereby exerting 
a suppressive effect on gastrointestinal and lung cancers 
[83]. Zheng et al. demonstrated that RUNX3 expression is 
significantly down-regulated in renal cancer tissues, and that 
the loss of RUNX3 function in renal cancer tissues promotes 
the proliferation, migration, and invasion of renal cancer 
cells [84]. Complementing these findings, additional research 
has verified that RUNX3 expression is notably suppressed 
in metastatic renal cancer tissues due to hypermethylation 
of CpG islands [85]. Rehman et al. examined the expression 
of RUNX3 in 58 cases of esophageal cancer and matched 
adjacent normal tissues, and found that the expression level 
of RUNX3 mRNA was significantly increased in the tumor 
tissues from 31/57 esophageal cancer patients compared 
with its level in the corresponding normal tissues, suggesting 
that RUNX3 also plays a pro-cancer role [86]. However, 
the opposite conclusion has been made for esophageal 
squamous cell carcinoma (ESCC). Tonomoto et al. studied 
61 ESCC clinical samples and found that methylation of the 
RUNX3 promoter region resulted in the absence of RUNX3 

expression in tumor tissues [87]. Similarly, Horiguchi's 
research confirmed the downregulation of RUNX3 
expression in pancreatic cancer [88]. The expression of 
RUNX3 is notably diminished in gallbladder cancer tissues 
and cells, largely attributed to DNA Methyltransferase 
1 (DNMT1)-mediated methylation [89]. An analysis of 
108 clinical samples of hepatocellular carcinoma showed 
that miR-106b-5p, which is upregulated in hepatocellular 
carcinoma, exerted a pro-cancer effect through the inhibition 
of RUNX3, and that the targeting of RUNX3 by miR-
106b-5p resulted in its decreased expression in tumor tissues 
[90]. Concurrently, research conducted by Sakakura et al. 
identified a notable downregulation of RUNX3 in gastric 
cancer and its peritoneal metastases, primarily attributable 
to methylation in the RUNX3 gene's promoter region 
[91]. Likewise, in gastric cancer, Ju et al. confirmed that 
RUNX3 principally inhibits the Wnt signaling pathway 
through its interaction with the TCF4/β-catenin complex. 
Intriguingly, in certain gastric cancer cell lines such as 
KatoIII and SNU668, RUNX3 paradoxically elevated Wnt 
signaling activity, implying a cell-context-dependent role 
for RUNX3 [92]. Additionally, in gastric cancer, RUNX3 
plays a role in suppressing cell proliferation and tumor 
growth, an effect mediated through the co-activation of the 
transcription factor Ets-1 by JMJD1A and the reduction in 
H3K9me1/2 levels [93]. Investigations in colorectal cancer 
confirmed that a decline in RUNX3 expression correlates 
with increased cell proliferation and invasion [94]. This was 
further corroborated by Wu et al., who detected a marked 
downregulation of RUNX3 in colorectal cancer, concomitant 
with an inverse correlation with HER2 expression [95]. 
Cumulatively, these findings underscore RUNX3's 
predominant function as a tumor suppressor, consistently 
found to be downregulated in diverse cancer types.

Further substantiating our discussion on the expression 
profiles of RUNX family proteins in tumor tissues, an 
analysis utilizing data from TCGA and GTEx databases 
provides additional insights into their pan-cancer expression 
patterns (Fig. 1). Our comprehensive analysis of RUNX 
family expression across various cancer types further 
elucidates their role in tumorigenesis.

Prognostic implications of RUNX proteins

Expanding on the aforementioned roles of RUNX proteins 
in tumorigenesis, this section focuses on their clinical utility 
as prognostic markers.

RUNX1: a diverse prognostic indicator

RUNX1 is implicated in diverse prognostic outcomes across 
various cancer types. For instance, in patients with head and 

Fig. 1  Pan-cancer assessment of RUNX family members' expression 
in comparison with normal tissues, sourced from the TCGA and 
GTEx databases. The violin plots consistently illustrate differences 
between normal tissues (depicted in orange) and tumor samples 
(depicted in gray). A RUNX1, B RUNX2, and C RUNX3 expression 
variations among different malignancies. *P < 0.05, **P < 0.01, 
***P < 0.001

◂
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neck squamous cell carcinoma (HNSCC), elevated levels of 
RUNX1 are associated with more advanced disease stages, 
as indicated by American Joint Committee on Cancer stag-
ing, T-staging, and N-staging. Furthermore, multivariate 
Cox regression analyses have substantiated that elevated 
RUNX1 levels serve as an independent prognostic factor for 
poor overall survival (OS) in this patient population [96]. 
In TNBC patients, elevated levels of RUNX1 are associated 
with poor prognosis and have been established as an inde-
pendent prognostic marker through multivariate Cox regres-
sion analysis [42]. However, certain studies have also reached 
the opposite conclusion, finding that the absence of RUNX1 
expression in breast cancer is associated with activation of 
the TGF-β and WNT signaling pathways, and that a low 
RUNX1 expression level suggests a poor prognosis in breast 
cancer [97]. Moreover, diminished RUNX1 expression is 
associated with reduced OS in patients with NSCLC, serving 
as a predictive factor for adverse prognosis in this malignancy 
[98]. Research by Ramsey et al. substantiates that RUNX1 
functions as a tumor suppressor in lung adenocarcinoma 
(LUAD), where its downregulation correlates with worse OS 
[99]. In high-grade serous ovarian cancer, RUNX1 stands 
as an independent prognostic marker for patient outcomes 
or therapeutic response [100]. Elevated expression levels of 
both RUNX1 and its downstream target, REXO2, in isocitrate 
dehydrogenase wild-type low-grade gliomas are indicative 
of unfavorable prognosis [101]. Zhang et al. performed an 
online database analysis and demonstrated that RUNX1 is an 
independent prognostic factor in low-grade gliomas, and that 
it may target interferon-γ receptor 2 (IFNGR2) to regulate the 
proliferation, invasion, and migration of glioma cells. Zhang 
et al. also confirmed that glioma patients with high RUNX1 
expression have a significantly lower survival rate compared 
to those with low RUNX1 expression [48]. Additionally, 
patients with low-grade gliomas with high expression levels 
of RUNX1 and/or IFNGR2 have a worse prognosis, with a 
significant increase in the infiltration of M2 macrophages 
[102]. Abnormally high expression levels of RUNX1 are 
associated with poorer OS in patients with ccRCC [45]. Simi-
larly, Rooney et al. confirmed that RUNX1 acts as an onco-
genic driver in ccRCC, associating elevated RUNX1 expres-
sion with significantly poorer clinical outcomes compared 
to lower expression levels [103]. In a study of pancreatic 
cancer, the results of Kaplan–Meier survival analysis based 
on immunohistochemistry score data for RUNX1 suggested 
that a high expression level of RUNX1 is associated with a 
shorter OS time [55]. These findings underscore the context-
dependent role of RUNX1 as a prognostic marker.

RUNX2: generally a poor prognostic marker

Elevated levels of RUNX2 consistently serve as an 
adverse prognostic marker across multiple cancer types. 

For instance, in cervical cancer, high RUNX2 expression 
correlates with poor prognosis, and both RUNX2 and its 
inhibitory counterpart, miR-218-5p, are identified as poten-
tial prognostic markers [67]. Research by Li et al. indicated 
that the upregulation of RUNX2 in EOC is likely asso-
ciated with tumor progression and unfavorable outcomes 
[104]. Similarly, heightened expression of RUNX2 is indic-
ative of a poor prognosis in breast cancer patients [105]. 
Zhang et al. also confirmed that abnormal overexpres-
sion of RUNX2 in breast cancer correlates with advanced 
TNM stages, metastasis, and unfavorable prognosis [106]. 
Elevated levels of Parathyroid hormone-like hormone 
(PTHLH), an autocrine/paracrine ligand in HNSCC, not 
only serve as a marker of poor prognosis but also exhibit 
a significant positive correlation with RUNX2 expression, 
which, in conjunction with the RUNX2-PTHLH signaling 
axis, contributes to HNSCC progression [107]. Overex-
pression of RUNX2 is significantly associated with poor 
survival in patients with ccRCC [73]. Liu et al. revealed 
that aberrant overexpression of RUNX2 in bladder urothe-
lial carcinoma (BLCA) is indicative of both high infil-
tration of cancer-associated fibroblasts (CAFs) and poor 
prognosis in BLCA patients [108]. Notably, in prostate 
cancer, particularly under conditions of bone metastasis, 
RUNX2 expression is significantly upregulated [109]. In 
hepatocellular carcinoma, elevated RUNX2 expression is 
likewise associated with shorter survival times [110]. Simi-
larly, research by Guo et al. corroborated that RUNX2 is 
highly expressed in the early stages of gastric cancer and 
is positively correlated with unfavorable clinical outcomes 
[75]. In another gastric cancer study, RUNX2 was found to 
promote metastasis through the upregulation of COL1A1 
expression, with patients displaying elevated levels of 
both RUNX2 and COL1A1 experiencing reduced survival 
times, thereby indicating a poor prognosis [111]. Comple-
menting these findings, a study by Yi et al. significantly 
correlated elevated RUNX2 expression levels with meta-
static progression and poor survival rates in patients with 
colon cancer [112]. Overall, RUNX2 is commonly associ-
ated with poor survival and could serve as an independent 
prognostic marker in multiple types of cancer.

RUNX3: primarily a tumor suppressor 
with prognostic implications

RUNX3, predominantly recognized as a tumor 
suppressor, serves as a crucial prognostic marker, 
with its downregulation often indicative of adverse 
prognoses. For instance, in papillary thyroid cancer 
(PTC), hypermethylation at specific CpG sites leading to 
downregulated RUNX3 expression has been significantly 
associated with an elevated risk of tumor recurrence [113]. 
In neuroblastoma clinical samples, research conducted 
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by Yu et al. corroborated that patients with low RUNX3 
expression exhibited significantly reduced survival rates, 
whereas higher levels of RUNX3 expression were frequently 
observed in patients at favorable stages 1 and 2 [114]. In 
EOC, Heinze et al. substantiated that methylation of RUNX3 
is correlated with patients' progression-free survival (PFS) 
and OS, indicating that a combination of RUNX3 and 
CAMK2N1 methylation serves as an independent prognostic 
marker [115]. In GBM, LMTK2 mediates tumor suppression 
by upregulating RUNX3, which in turn inhibits the Notch 
signaling pathway; low levels of LMTK2 are associated with 
poor overall survival, thereby suggesting that both LMTK2 
and RUNX3 collectively influence the prognosis of GBM 
patients [116]. Kitago et al. confirmed that downregulation 
of RUNX3 in melanoma is indicative of poor prognosis for 
patients [79]. Moreover, low expression of RUNX3 in OSCC 
tissues is associated with inferior 5-year overall survival 
rates [78]. In NSCLC, Yu et al. tested clinical samples and 
found that methylation of the RUNX3 promoter led to its 
reduced or absent expression, suggesting a poor prognosis 
[117]. The down-regulation of RUNX3 expression and its 
loss of function in renal cancer tissues are closely related to 
a poor prognosis of patients with renal cancer [84]. Cai et al. 
demonstrated that RUNX3 expression is down-regulated 
in gallbladder cancer due to DNMT1-mediated promoter 
hypermethylation, and its downregulation is associated 
with a poor prognosis of patients with gallbladder cancer 
[89]. In a study of ESCC, the results of clinical sample 
analysis suggested that a low expression level of RUNX3 
is closely associated with more advanced T-staging and the 
occurrence of lymph node metastasis, and that inactivation 
of RUNX3 leads to a poor prognosis for patients with ESCC 
[118]. Similarly, research conducted by Fujimoto et al. has 
demonstrated that in pancreatic cancer, downregulation of 
RUNX3 expression and its subsequent methylation serve as 
negative prognostic indicators, especially when combined 
with CA19-9 levels, enhancing the sensitivity for detecting 
early-stage pancreatic cancer [119]. Research by Horiguchi 
et al. corroborated a significant downregulation of RUNX3 
in pancreatic cancer, with median survival durations for 
patients exhibiting normal and reduced RUNX3 expression 
being 1006 and 643 days, respectively, thereby establishing 
the negative prognostic impact of RUNX3 downregulation 
[88]. Ning et al. disclosed that reduced JMJD1A expression 
in gastric cancer is associated with invasive phenotypes and 
poor prognosis, and this association is further substantiated 
by a positive correlation between JMJD1A and RUNX3 
expression, indicating that reduced RUNX3 expression 
serves as an indicator of unfavorable prognosis [93]. In 
colon cancer, increased RUNX3 expression levels in tumor 
epithelial cells and stromal cells are independent predictors 
of a good prognosis [120]. Complementing these findings, 
Zhang et al. confirmed that decreased expression of RUNX3 

in CRC tissues and cells is linked to poor prognosis, 
accentuating its function as a tumor suppressor [94]. As 
the evidence suggests, low expression levels of RUNX3 are 
generally associated with a poor prognosis, highlighting its 
role as a tumor suppressor.

Moreover, an assessment of the association between 
RUNX family genes and OS in multiple tumor types was 
conducted using the Kaplan–Meier plotter online database 
(Fig.  2). These database findings corroborate the dual 
prognostic implications of RUNX1, underline the primary 
negative prognostic influence of RUNX2, and validate the 
tumor-suppressive role of RUNX3. Collectively, these data 
provide substantial evidence for the integral association 
between RUNX family genes and tumor prognostic 
outcomes, further solidifying their clinical utility as 
prognostic markers.

RUNX family proteins and tumor stemness

RUNX1: multifaceted influences on stem cell 
properties

RUNX1 plays a significant role in the regulation of tumor 
stemness, warranting closer examination. RUNX1 critically 
influences the stem-like properties of cancer cells, with evi-
dence pointing to its role in the stabilization of leukemia 
stem cell attributes in a pluripotent model [121]. Research 
by Jain et al. demonstrated that RUNX1 potentially pro-
moted stem cell activation in hair follicle stem cells and 
skin and oral squamous cell carcinoma through the regula-
tion of lipid metabolism and its impact on the Wnt signaling 
pathway [122]. In glioblastoma stem cells (GSCs), research 
by Santoni et al. demonstrated overexpression of RUNX1 
splice variants Aml1b and Aml1c during GSC differentia-
tion [123]. In breast cancer, RUNX1 critically influences 
both the EMT and stemness, both of which are robustly 
linked to invasive tumor characteristics [124]. A study by 
Fernandez et al. corroborated the observation that elevated 
RUNX1 expression predominantly facilitates the manifes-
tation of cancer stem cell (CSC) markers in TNBC [125]. 
Conversely, some reports offer contrasting perspectives. For 
instance, Hong et al. observed that RUNX1 inhibits stem cell 
activities in breast cancer, consequently restraining tumor 
progression [126]. Additional evidence by Kulkarni et al. 
suggested that RUNX1, in conjunction with RUNX3, cur-
tails the expression of YAP, thereby mitigating YAP-induced 
EMT and stemness [127]. Similarly, Chimge et al. disclosed 
that in ER + breast cancer, the lack of RUNX1 triggers an 
increased expression of stem cell markers [41]. Fritz et al. 
elucidated that RUNX1 and RUNX2 have divergent effects 
on breast cancer stem cells; specifically, the downregulation 
of RUNX1 accompanied by RUNX2 upregulation fosters 
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Fig. 2  Prognostic implications of RUNX family gene expressions 
in various cancers. A RUNX1, B RUNX2, and C RUNX3: Kaplan–
Meier curves depict the correlation of high RUNX expression (in 
red) with overall survival (OS). Data sourced from the Kaplan–Meier 

plotter database. P-values and hazard ratios (HR) were calculated 
using the logrank test to indicate the statistical significance of the 
survival outcomes
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EMT and sustains stem cell-like properties [128]. Overall, 
the data indicates that RUNX1's regulatory role in tumor 
stemness varies in a cancer subtype-specific manner.

RUNX2: predominantly a promoter of cancer stem 
cell traits

RUNX2 exerts a pivotal influence on the regulation of 
tumor stemness across a diverse array of cancer subtypes. 
Zhang et al. showed that RUNX2 promotes the stem cell 
properties of CD44+/CD24− breast cancer, while miR-205 
reverses the stemness by inhibiting RUNX2 [129]. Moreo-
ver, elevated RUNX2 expression in breast cancer has been 
linked to enhanced tumor stem cell characteristics, thereby 
facilitating breast cancer cell metastasis [106]. Similarly, 
Yin et al. corroborated that in breast cancer, RUNX2 pro-
motes the tumor stem cell phenotype through the recruit-
ment of the NuRD(MTA1)/CRL4B complex [130]. Further 
substantiating the role of RUNX2 in breast cancer, Knutson 
et al. revealed that RUNX2 is instrumental in maintaining 
tumor stem cell activity, a mechanism intricately connected 
with phospho-progesterone receptors and EGF signaling 
pathways [131]. In LUAD, a cigarette extract was found 
to promote the expression of RUNX2, which then induced 
the upregulation of stemness markers in airway epithelial 
cells (AECs), leading to increased migration, invasion, and 
tumorsphere formation by tumor stem cells at the molecular 
level in AECs [132]. Senbanjo et al. demonstrated that CD44 
regulates RUNX2 expression in prostate cancer, and that 
the interaction between RUNX2 and CD44 promotes the 
expression of metastasis-associated genes, such as osteopon-
tin (OPN) and MMP-9, which in turn promotes the migra-
tion and invasion of prostate cancer cells [133]. In colorectal 
cancer, Yan et al. demonstrated that RUNX2 induces a stem 
cell phenotype in colon cancer cells by binding to BRG1 as 
a tight complex, thereby upregulating the transcription and 
expression of CD44, and promoting the invasion and migra-
tion of colon cancer cells [134]. Overall, evidence predomi-
nantly supports RUNX2's role in enhancing stem cell-like 
characteristics in a range of cancers, which is often linked 
to worse patient outcomes.

RUNX3: mainly a negative modulator of tumor 
stemness

RUNX3 engages in intricate regulatory mechanisms gov-
erning tumor stemness, generally aligning with the prevail-
ing notion that it serves as a suppressive modulator. In line 
with its recognized role as a suppressive modulator of tumor 
stemness, Jiang et al. substantiated that in LUAD, RUNX3 is 
directly downregulated by miR-1275, resulting in the activa-
tion of Wnt/β-catenin and Notch signaling pathways; this 
mechanism consequently enhances the stem-like properties 

of LUAD cells, thereby promoting tumorigenesis, recur-
rence, and metastasis [135]. Further research has indicated 
its negative regulation of the TEAD-YAP oncogenic com-
plex, thereby reversing EMT and stem-like phenotypes in 
tumor cells, particularly in gastric cancer [136]. Voon et al. 
also demonstrated that if RUNX3 expression is absent in 
gastric cancer, it is prone to spontaneous EMT and aberrant 
TGF-β and Wnt signaling, which leads to an increase in a 
subpopulation of tumor cells with stem-cell-like properties 
[137]. Moreover, the deficiency of RUNX3 in murine gas-
tric epithelial cells (GIF-14) is associated with enhanced 
stem-cell-like characteristics [138]. Balinth et al. showed 
that EZH2 inhibits the tumor suppressor RUNX3, which 
activates SETDB1 and ΔNp63α, driving an invasive tumor 
stem cell phenotype, and that the use of an EZH2 inhibitor 
reactivates RUNX3, thereby reversing this process [139]. 
In colorectal cancer, RUNX3 suppresses the stem cell phe-
notype of colorectal cancer cells by inhibiting Hedgehog 
signaling [13]. Overall, RUNX3 predominantly acts as a 
dampener of tumor stemness, distinguishing it from RUNX1 
and RUNX2.

RUNX proteins and angiogenesis

RUNX1: multifaceted roles in angiogenesis

Angiogenesis, the formation of new blood vessels from pre-
existing ones, plays a pivotal role in the progression and 
metastasis of tumors [140]. Within this complex biological 
process, the transcription factor RUNX1 has emerged as a 
multifaceted regulator, exhibiting both pro-angiogenic and 
anti-angiogenic activities depending on the cancer type. 
RUNX1 promotes angiogenesis by downregulating insulin-
like growth factor binding protein-3 (IGFBP-3) [141]. In 
GBM, knockdown of RUNX1 in U-87 MG cells inhibits 
the angiogenesis of human umbilical vein endothelial cells, 
and a p38 MAPK inhibitor (SB203580) reduces RUNX1 
expression levels; thus, RUNX1 may promote angiogenesis 
in gliomas through activation of the p38 MAPK signaling 
pathway [17]. However, there are also studies suggesting 
the opposite. For example, Liu et al. demonstrated that 
RUNX1 exerts an inhibitory effect on vascular endothelial 
growth factor (VEGF) A in hepatocellular carcinoma, 
hindering angiogenesis and thus, inhibiting the progression 
of hepatocellular carcinoma [142]. Similarly, Hong et al. 
demonstrated that RUNX1 inhibits angiogenesis and 
promotes apoptosis in neuroblastoma, thus preventing its 
progression [51]. Rada et al. found that activation of the 
RUNX1-Ang1 pathway was responsible for the high level of 
neutrophil infiltration through vessel co-opting in colorectal 
cancer liver metastases, and that high levels of neutrophil 
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infiltration is a potential factor promoting the development 
of liver metastases [143]. Thus, RUNX1 emerges as a 
complex regulator of angiogenesis, with both pro-angiogenic 
and anti-angiogenic roles varying by cancer type.

RUNX2: a key facilitator of angiogenesis and tumor 
progression

RUNX2's significance is underscored by its involvement in 
multiple physiological and pathological processes, including 
angiogenesis. Angiogenesis and bone formation are closely 
related processes, and it has been shown that RUNX2 over-
expression in mesenchymal cells upregulates the expression 
of hypoxia-inducible factor 1α and VEGF, which stimulates 
angiogenesis [144]. Additional evidence supporting this role 
includes research indicating that RUNX2 mediates vascular 
formation in endothelial cells via glucose-activated phos-
phorylation [145]. Complementing these observations, a 
study by Papachristou et al. affirmed that RUNX2 critically 
contributes to the malignant transformation and progres-
sion of chondrosarcoma through the upregulation of VEGF 
[146]. Corroborating these findings, research by Cecconi 
et al. established that the Runt domain of RUNX2 plays an 
indispensable role in neoangiogenesis in melanoma, serving 
as a potent promoter of new blood vessel formation [147]. 
Similarly, a study by Niu et al. demonstrated that elevated 
RUNX2 levels in thyroid carcinoma induce the expression of 
vasculogenic factors VEGFA and VEGFC, thus promoting 
tumor invasiveness [148]. Furthermore, the angiogenesis-
inhibiting effects of emodin in breast cancer cells may be 
attributable to the downregulation of RUNX2 transcriptional 
activity [149]. In neuroblastoma, extracellular matrix stiff-
ness controls  VEGF165 secretion through the YAP/RUNX2/
SRSF1 axis and regulates tumor angiogenesis [150]. In 
hepatocellular carcinoma, Cao et al. have substantiated that 
elevated RUNX2 expression is implicated in the promotion 
of vasculogenic mimicry (VM), thereby facilitating tumor 
progression [110]. Thus, RUNX2 not only plays a role in 
angiogenesis but also influences tumorigenic processes 
related to vascular growth.

RUNX3: primarily an inhibitor in angiogenic 
regulation

Attention is shifted to RUNX3, another key member of 
the RUNX family, commonly acknowledged as a tumor 
suppressor, to explore its potential role in the regulation 
of angiogenesis. Research by Chen et  al. substantiates 
that RUNX3 serves as a tumor suppressor in prostate 
cancer by diminishing the secretion of VEGF, thereby 
inhibiting tumoral angiogenesis [151]. Complementing 
these findings, RUNX3 is observed to down-regulate 
VEGF expression in gastric cancer cells, thereby limiting 

angiogenesis and impeding tumor growth and metastasis 
[152]. In a complementary vein, Lee et al. have confirmed 
that RUNX3 serves as an inhibitor of HIF-1α in gastric 
cancer cells, promoting the prolyl hydroxylation and 
degradation of HIF-1α through interactions with PHD-
2, ultimately suppressing hypoxia-induced angiogenesis 
within the tumor microenvironment [153]. Similarly, Kim 
et al. revealed that in colorectal cancer, RUNX3 curtails 
VEGF secretion, thereby obstructing endothelial cell 
proliferation and angiogenesis [154]. In oral squamous cell 
carcinoma, RUNX3 also inhibits VEGF activity and exerts 
anti-cancer effects [78]. However, divergent results do exist; 
for example, in EOC, a distinct transcriptional variant of 
RUNX3 appears to promote angiogenesis, thus functioning 
in a pro-oncogenic manner [155]. Taken together, the 
prevailing evidence predominantly supports the role of 
RUNX3 as a key inhibitor of angiogenesis.

RUNX family and the intricate landscape 
of tumor metastasis

RUNX1: the multifaceted orchestrator of metastasis

RUNX1 is a pivotal transcription factor implicated in 
the regulation of metastasis across various cancer types. 
Specifically, RUNX1 interacts with SNORA71C to 
accelerate breast cancer progression and metastasis [156]. 
Browne et al., utilizing the MMTV-PyMT transgenic mouse 
model, demonstrated that RUNX1 not only fosters tumor 
invasion and metastasis in breast cancer but also revealed its 
heightened expression in distal lung metastatic lesions [157]. 
Meanwhile, Liu et al. elucidated that RUNX1 augments the 
MAPK signaling cascade in HNSCC by directly engaging 
with the promoter region of OPN, thereby facilitating 
HNSCC metastasis [158]. In cervical cancer, the RUNX1 
expression level is abnormally elevated, promoting EMT 
and significantly enhancing the invasion and metastasis 
of cervical cancer cells [43]. Doll et al. demonstrated that, 
in endometrial carcinoma, RUNX1 collaborates with an 
array of proteins such as CBFβ and members of the Ets 
transcription factor family to expedite distant metastasis, 
particularly to the lungs and para-aortic lymph nodes 
[159]. RUNX1 plays a role in promoting tumor metastasis 
in EOC, and Keita et  al. demonstrated that RUNX1 is 
hypomethylated in tumor tissues with omental metastases 
[22]. Abnormally elevated RUNX1 levels in prostate cancer 
promote the EMT phenotype and activate the Akt/P38/
JNK-MAPK signaling pathway driving the invasion and 
metastasis of prostate cancer cells [46]. In hepatocellular 
carcinoma, RUNX1 induces tumor cell migration, invasion, 
and metastasis by activating the COL4A1/FAK/Src signaling 
axis [160]. Of particular concern is that, in colorectal cancer, 
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RUNX1 activates the TGF-β signaling pathway, which plays 
a dominant role in the EMT process of colorectal cancer 
cells. Therefore, up-regulation of this signaling pathway 
by RUNX1 can promote colorectal cancer cell migration 
and invasion [60]. Additionally, RUNX1 enhances liver 
metastasis of colorectal cancer by activating vessel co-option 
through ARP2/3 [161]. Meanwhile, it has been found that 
RUNX1 expression is up-regulated in colorectal cancer 
tissues and this promotes colorectal cancer metastasis by 
activating the Wnt/β-catenin signaling pathway and EMT 
[25]. RUNX1 also directly binds to the RNCR3 promoter 
region to transcriptionally upregulate RNCR3 expression. 
Moreover, RNCR3 overexpression blocks the inhibitory 
effect of miR-1301-3p on the proliferation and invasion of 
colorectal cancer cells, while upregulating AKT1 to promote 
colorectal cancer progression [162].Overall, RUNX1 
plays a significant role in modulating metastasis through 
its interactions with multiple signaling pathways, thus 
representing a complex but crucial factor in the progression 
of diverse malignancies.

RUNX2: predominantly a promoter of cancer 
metastasis

The seemingly paradoxical relationship between osteogen-
esis and metastasis finds a nexus in RUNX2, a transcription 
factor predominantly expressed in mesenchymal cells with 
an osteoblastic phenotype. Essential for bone formation, 
RUNX2 aberrantly overexpresses in specific tumor cells 
of breast and prostate origin, which eventually manifest 
invasive bone metastases. Such aberrant overexpression 
has been elucidated to bear a significant association with 
bone metastases [163]. In primary bone cancer, RUNX2 
is aberrantly overexpressed and physically interacts with 
YBX1, thereby exerting pro-metastatic effects [65]. In 
osteosarcoma, research by Villanueva et al. substantiated 
that RUNX2 activates the OPN/SPP1 gene, consequently 
enhancing adhesion between osteosarcoma cells and pul-
monary microvascular endothelial cells, which ultimately 
drives lung metastasis [62]. In thyroid cancer, RUNX2 
promotes EMT and tumor invasion by inducing the expres-
sion of EMT-related molecules such as SNAI2, SNAI3, 
TWIST1, and MMP2 [148]. Wang et  al. have corrobo-
rated that, in oral cancer, RUNX2 advances the EMT phe-
notype and metastasis through its synergistic interactions 
with CXCR4, AKT, and FOXA2 [68]. In conjunction with 
this, research by Yi et al. positions RUNX2 as an epige-
netic orchestrator instrumental in facilitating EMT, hence 
suggesting its utility as a potential prognostic biomarker 
for breast cancer metastasis [112]. Additionally, in breast 
cancer, RUNX2 recruits the NuRD(MTA1)/CRL4B com-
plex to catalyze histone deacetylation and ubiquitination, 
affecting a cohort of key genes including PPARα and SOD2, 

which play pivotal roles in promoting EMT and metastasis 
[130]. Li et al. identified ITGA5 as a novel transcriptional 
target of RUNX2 and demonstrated that RUNX2 fosters the 
recruitment and colonization of breast cancer cells in bone 
via ITGA5-dependent mechanisms, culminating in bone 
metastasis [164]. Complementing these findings, research 
by Sancisi et al. underscores that RUNX2 facilitates tumor 
metastasis in both thyroid and breast cancer, modulated 
through the synergistic control of BRD4 and c-JUN [69]. 
In LUAD, RUNX2 functions as a critical transcription fac-
tor that augments tumor cell EMT, migration, and invasion 
through the upregulation of the galectin-3 pathway and ROS 
activation [132]. In ccRCC, RUNX2 is up-regulated by ZIC2 
and it enhances the proliferation and migration of ccRCC 
cells by transcriptionally suppressing the tumor suppressor, 
NOLC1, and dysregulation of ZIC2/RUNX2/NOLC1 signal-
ing promotes ccRCC metastasis [73]. In BLCA, aberrantly 
overexpressed RUNX2 contributes to tumor metastasis 
by inducing an EMT phenotype [108]. Zou et al. showed 
that exosomal miR-1275 secreted by prostate cancer cells 
activates the SIRT2/RUNX2 signaling pathway to promote 
the proliferation and activity of osteoblasts, promoting the 
metastasis of prostate cancer [165]. In highly metastatic 
prostate cancer cells, RUNX2 is aberrantly overexpressed, 
a finding corroborated by the study conducted by Akech 
et al. [166]. RUNX2 phosphorylation plays a crucial role in 
the occurrence and development of prostate cancer, induc-
ing tumor cells to develop an invasive phenotype, which 
ultimately contributes to their metastasis [167]. Corrobo-
rating these observations, Roy et al. affirmed that RUNX2 
serves as a key gene promoting bone metastasis in prostate 
cancer by activating the MEK/ERK1/2 signaling pathway 
[168]. In a complementary study, Senbanjo et al. elucidated 
that within PC3 prostate cancer cells, RUNX2 forms a co-
transcriptional complex with CD44-ICD, resulting in the 
upregulation of metastasis-associated genes and thereby 
promoting cellular invasion and migration [133]. Comple-
menting the data in prostate cancer, Li et al. revealed that 
RUNX2 enhances metastasis in gastric cancer by upregulat-
ing COL1A1 expression [111]. In line with these findings, 
Cao et al. demonstrated that elevated RUNX2 expression in 
hepatocellular carcinoma facilitates EMT as well as tumor 
cell migration and invasion [110]. In summary, RUNX2 is 
not merely a bridge between bone formation and metastasis; 
it serves as a critical player in the metastatic pathways of 
several types of malignancies.

RUNX3: a potential inhibitor of metastasis

Contrary to other RUNX family members predominantly 
implicated in the enhancement of metastasis, RUNX3 
manifests an opposing role. Research conducted by Wang 
et  al. corroborated RUNX3's tumor-suppressive role in 
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melanoma, particularly in inhibiting cell migration and 
metastasis [169]. In renal cell carcinoma, Zheng et  al. 
demonstrated that the downregulation of both RUNX3 and 
TGF-β in metastatic tissues, attributed to hypermethylation 
of CpG islands, is significantly associated with metastatic 
propensity and can be reversed by the application of a 
methylation inhibitor [85]. In prostate cancer, RUNX3 
serves as a tumor suppressor. Its overexpression leads to 
the upregulation of TIMP-2, which in turn inhibits the 
expression and activity of MMP-2, thereby suppressing 
the metastasis of prostate cancer [151]. In esophageal 
squamous cell carcinoma (ESCC), overexpression of 
RUNX3 remarkably suppresses the phosphorylation of 
Smad2/3. Through the TGF-β/Smad signaling pathway, 
RUNX3 reverses EMT, subsequently inhibiting the 
invasion and metastasis of ESCC cells [118]. Notably, 
corroborating research by Whittle et  al. elucidates that 
RUNX3 exhibits a bifunctional role in pancreatic ductal 
adenocarcinoma by simultaneously constraining cell 
proliferation and facilitating cellular migration and 
invasion, a mechanism intricately associated with Dpc4 
(Smad4) status [170]. In cases of gastric cancer, however, 
the absence of RUNX3 accelerates the progression toward 
peritoneal metastasis [91]. Interestingly, in colorectal cancer, 
Zhang et al. demonstrated that hypermethylation-induced 
downregulation of RUNX3 disrupts the circMETTL3/miR-
107/PER3 axis, thereby facilitating cancer metastasis [94]. 
Unlike its counterparts, RUNX3 mainly demonstrates an 
inhibitory function on metastasis, although the specifics can 
be context-dependent, highlighting the complex role it plays 
in the realm of metastasis.

RUNX proteins and drug resistance in tumor 
therapy

RUNX1's regulatory influence in drug resistance

Building upon RUNX1's involvement in angiogenesis and 
metastasis, it is crucial to explore its role in drug resistance. 
Fernández et al. demonstrated that in TNBC, RUNX1 binds 
to the androgen receptor (AR), leading to resistance to AR 
inhibitors in patients with TNBC [125]. In ovarian cancer, 
RUNX1 negatively regulates the expression of the miR-17-
92 cluster, which leads to the upregulation of BCL2, the 
direct target of miR-17-92, resulting in significant inhibition 
of cisplatin-induced apoptosis, which may be associated 
with cisplatin resistance [171]. Hyperactivation of the 
RUNX1/IL-34/CSF-1R signaling axis is associated with the 
resistance of melanoma to BRAF-V600E inhibitors [172]. 
Wang et al. demonstrated that RUNX1 negatively regulates 
miR-101 expression in lung cancer cells, thereby hindering 
the sensitizing effect of miR-101 on cisplatin in lung cancer Ta
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chemotherapy [173]. Xu et al. demonstrated that RUNX1 
plays an oncogenic role in GBM, and that RUNX1 induces 
temozolomide resistance in GBM by up-regulating MRP1, 
which is negatively regulated by miR-128-3p [50]. In EOC, 
RUNX1 synergistically binds to the promoter region of 
insulin-like growth factor 1 receptor (IGF1R) with FOXO3a, 
contributing to the up-regulation of IGF1R expression, 
which can lead to the development of platinum-paclitaxel 
resistance in EOC [174]. Han et  al. demonstrated the 
potential of employing RUNX1 as a biomarker of reference 
in devising chemotherapy regimens for patients diagnosed 
with gastric cancer [175]. In colorectal cancer, RUNX1 is a 
biomarker for the development of chemotherapy programs 
and it can activate the Hedgehog signaling pathway by 
up-regulating the expression of ABCG2, inducing resistance 
to 5-fluorouracil by colorectal tumor cells [15]. The data 
collectively suggests that RUNX1 acts as a key regulatory 
node in the establishment of drug resistance across diverse 
types of cancer, thereby offering multiple therapeutic avenues 
for intervention.

RUNX2: mediator of chemoresistance

RUNX2 contributes to the chemo-resistant phenotype in sev-
eral cancers. In TNBC, RUNX2 leads to chemoresistance 
in breast cancer cells through transcriptional activation of 
the target gene, MMP1 [28]. An analysis of osteosarcoma-
related gene expression indicates that overexpression of 
RUNX2 can be a potential biomarker for chemotherapy fail-
ure in patients with osteosarcoma [176]. Similarly, research 
by Ozaki et al. demonstrated that RUNX2 attenuates cellular 
sensitivity to Adriamycin chemotherapy in human osteosar-
coma by inhibiting the transcriptional activity of TAp73, a 
molecule involved in DNA damage response. This mecha-
nism contributes to chemoresistance, and its disruption 
through RUNX2 knockdown enhances Adriamycin sensi-
tivity while upregulating TAp73 and its target genes [177]. 
In related research, the same team also revealed that RUNX2 
inhibits the transcriptional and pro-apoptotic activities of 
p53 through functional collaboration with HDAC6 in human 
osteosarcoma, potentially implicating a role for RUNX2 in 
Adriamycin resistance in this cancer type [178]. Sugimoto 
et al. demonstrated that RUNX2 confers gemcitabine resist-
ance in pancreatic cancer AsPC-1 cells through the inhibi-
tion of TAp63, suggesting that targeting RUNX2 may serve 
as a novel strategy to enhance the efficacy of gemcitabine 
treatment in p53-deficient pancreatic tumors [179]. RUNX2 
has also been shown to be significantly overexpressed in 
platinum-chemotherapy-resistant gastric cancer cells and tis-
sues, and RUNX2 reduces the response of gastric cancer to 
chemotherapeutic drugs by negatively regulating p53-medi-
ated apoptosis [180]. These findings position RUNX2 as 
a significant actor in the development of chemoresistance Ta
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and a possible target for improving the efficacy of existing 
treatments.

RUNX3: a tumor‑suppressive regulator in cancer 
drug resistance

Kim et  al. demonstrated that re-expression (activation) 
of RUNX3 enhances the susceptibility of NSCLC to 
Sc-conjugated cetuximab, and that clinical efficacy can 
be improved through the combined use of therapeutics 
with RUNX3 activity [181]. Barghout et al. showed that 
RUNX3 expression was elevated in the tumor tissues of 
patients with carboplatin-resistant EOC compared to those 
with carboplatin-sensitive EOC, suggesting that a high 
RUNX3 expression level contributes to the development of 
chemoresistance in EOC [182]. In pancreatic cancer, loss of 
RUNX3 expression leads to the upregulation of multidrug 
resistance proteins (MRP), consequently increasing 
resistance to gemcitabine and adversely affecting patient 
prognosis [88]. Tan et  al. found that in hepatocellular 
carcinoma, HCV core protein reduces sensitivity to cisplatin 
by downregulating RUNX3 via inhibition of NR4A1 and 
upregulation of Smad7 [183]. In gastric cancer, RUNX3 
is targeted and suppressed by miR-106a, particularly in 
multidrug-resistant (MDR) cell lines. This downregulation 
facilitates the efflux of anthracycline drugs (ADR) and 
inhibits drug-induced apoptosis, thereby advancing 
mechanisms of multidrug resistance and chemoresistance 
[184]. Collectively, these findings underscore RUNX3's role 
as a tumor-suppressive gene in mediating drug resistance, 
highlighting its context-dependent impact across various 
cancer types and therapeutic approaches, thereby deepening 
our understanding of the RUNX family's tumor-suppressive 
influence on drug resistance.

Summary and perspectives

RUNX transcription factors function as pivotal 
developmental regulators, indispensable for cellular 
differentiation across diverse tissue types. These proteins, 
despite recognizing the same DNA sequences, have unique 
C-terminal structural domains that lead to varying target 
binding, occasionally yielding contradictory outcomes. 
Depending on the cellular context, RUNX transcription 
factors may transition between roles as tumor suppressors 
and oncogenes. Intricate interplay exists among the various 
members of the RUNX family, with this interplay largely 
dependent on the relative expression levels of each family 
member in different tissues.

RUNX's differential responses to oncogenic stimuli such 
as Wnt, c-Myc, and mutant RAS point towards its capacity 
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for variable oncogenic activities. A core question that 
emerges is how RUNX effectively coordinates the crosstalk 
among multiple signaling pathways to integrate these signals 
and dictate cellular fate. Accumulating evidence implies 
that stringent regulation of RUNX expression is crucial for 
maintaining normal cellular differentiation. Disruption in 
this regulation could potentially lead to aberrant cellular 
differentiation, initiation of tumors, and subsequent tumor 
progression. Consequently, the expression levels of RUNX 
and its downstream targets could serve as early indicators of 
neoplastic development and as prognostic biomarkers. For a 
summarized overview of the differential roles and expression 
statuses of RUNX1, RUNX2, and RUNX3 in various cancers, 
readers are referred to Tables 1, 2, and 3. To encapsulate 
the complex roles and interactions of RUNX family genes 
in modulating the hallmarks of cancer, Fig. 3 serves as a 
representative scheme.

Particularly intriguing is the question of whether the 
oncogenic propensity of RUNX can be mitigated by enhancing 
its oncogenic activity. This line of inquiry could illuminate 
if the restoration of RUNX expression represents a viable 
therapeutic strategy for cancer treatment. For instance, 
RUNX1's role in maintaining tumor cell stemness might be 
counteracted by the restored expression levels of RUNX3. 
In essence, it appears plausible that individual RUNX family 
members could act to mitigate the tumor-promoting effects of 
their counterparts.

The burgeoning field of research focused on the RUNX 
family of transcription factors holds considerable promise. 
As the field continues to expand rapidly, it is expected that 
our understanding of RUNX's pleiotropic roles in cancer 
therapeutics will become increasingly nuanced in the years 
to come. Unquestionably, in-depth and broad-based research 
is imperative and is likely to yield novel avenues for the 
development of anti-cancer pharmaceuticals.
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Fig. 3  Comprehensive roles 
of RUNX family genes in 
oncogenesis. The diagram 
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across diverse cancer hallmarks, 
emphasizing the RUNX-
associated effects on cellular 
proliferation and invasion, 
metastatic dissemination, 
angiogenesis, chemoresistance, 
and maintenance and self-
renewal of cancer stem cells
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