

Generalized adjoint forms on algebraic varieties

Luca Rizzi¹ · Francesco Zucconi¹

Received: 22 September 2015 / Accepted: 25 July 2016 / Published online: 10 August 2016 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2016

Abstract We prove a full generalization of the Castelnuovo's free pencil trick. We show its analogies with Rizzi and Zucconi (Differential forms and quadrics of the canonical image. arXiv:1409.1826, Theorem 2.1.7); see also Pirola and Zucconi (J Algebraic Geom 12(3):535–572, Theorem 1.5.1). Moreover we find a new formulation of the Griffiths's infinitesimal Torelli Theorem for smooth projective hypersurfaces using meromorphic 1-forms.

Keywords Extension class of a vector bundle · Torsion freeness · Castelnuovo's free pencil trick · Infinitesimal Torelli problem · Projective hypersurface · Meromorphic forms

Mathematics Subject Classification 14C34 · 14D07 · 14J10 · 14J40 · 14J70

Contents

1	Introduction	820
2	The theory of generalized adjoint forms	821
	2.1 Definition of generalized adjoint form	821
	2.2 Castelnuovo's free pencil trick	823
	2.3 The Adjoint Theorem	824
	2.3.1 The proof of the Adjoint Theorem	825
	2.3.2 An inverse of the Adjoint Theorem	826
3	Infinitesimal Torelli Theorem for projective hypersurfaces	828
	3.1 Meromorphic 1-forms on a smooth projective hypersurface	829
	3.2 A canonical choice of adjoints on a hypersurface of degree $d > 2$	831
	3.3 The adjoint sublinear systems obtained by meromorphic 1-forms	833
	3.4 On Griffiths's proof of infinitesimal Torelli Theorem	834
Re	eferences	835

Luca Rizzi rizzi.luca@spes.uniud.it

> Francesco Zucconi francesco.zucconi@uniud.it

¹ D.I.M.I., The University of Udine, 33100 Udine, Italy

1 Introduction

Let *X* be an *m*-dimensional smooth projective variety and \mathcal{F} be a rank *n* locally free sheaf over it. A way to study \mathcal{F} is to study its extensions $0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{F} \to 0$ which, up to isomorphism, are parametrized by $\text{Ext}^1(\mathcal{F}, \mathcal{L})$. In [2,3,5,6,10–13] and [1] the adjoint forms associated to $\xi \in \text{Ext}^1(\mathcal{O}_X, \mathcal{F})$ are deeply studied and many applications are given. Let us recall the notion of adjoint form in the case $\mathcal{L} = \mathcal{O}_X$.

Given $\xi \in \operatorname{Ext}^1(\mathcal{O}_X, \mathcal{F})$, take an (n + 1)-dimensional subspace W of the kernel of the cup-product homomorphism $\partial_{\xi} \colon H^0(X, \mathcal{F}) \to H^1(X, \mathcal{O}_X)$. Denote by $\lambda^i W$ the image of $\bigwedge^i W$ through the natural homomorphism $\lambda^i \colon \bigwedge^i H^0(X, \mathcal{F}) \to H^0(X, \bigwedge^i \mathcal{F})$. If $\mathcal{B} := \langle \eta_1, \ldots, \eta_{n+1} \rangle$ is a basis of W and $s_1, \ldots, s_{n+1} \in H^0(X, \mathcal{E})$ are liftings of $\eta_1, \ldots, \eta_{n+1}$, respectively, then the map $\bigwedge^{n+1} \colon \bigwedge^{n+1} H^0(X, \mathcal{E}) \to H^0(X, \bigwedge^{n+1} \mathcal{E})$ gives the top form $\Omega := \bigwedge^{n+1}(s_1 \land s_2 \land \ldots \land s_{n+1}) \in H^0(X, \det \mathcal{E})$. The section Ω corresponds to a top form $\omega_{\xi,W,\widehat{\mathcal{B}}} \in H^0(X, \det \mathcal{F})$ via the isomorphism det $\mathcal{F} \simeq \det \mathcal{E}$, where $\widehat{\mathcal{B}} = \langle s_1, \ldots, s_{n+1} \rangle$; the form $\omega_{\xi,W,\widehat{\mathcal{B}}}$ is called *an adjoint form of* W and ξ . To the basis \mathcal{B} there are also naturally associated n + 1 elements $\omega_i := \lambda^n (\eta_1 \land \ldots \land \eta_{i-1} \land \widehat{\eta_i} \land \eta_{i+1} \land \ldots \land \eta_{n+1})$, $i = 1, \ldots, n + 1$, obtained by the basis $\langle \eta_1 \land \ldots \land \eta_{i-1} \land \widehat{\eta_i} \land \eta_{i+1} \land \ldots \land \eta_{n+1} \rangle_{i=1}^{n+1}$ of $\bigwedge^n W$. Note that if we change the liftings $s_1, \ldots, s_{n+1} \in H^0(X, \mathcal{E})$ with other liftings $\widetilde{s}_1, \ldots, \widetilde{s}_{n+1}$, then $\omega_{\xi,W,\widehat{\mathcal{B}}}$ is a linear combination of $\omega_{\xi,W,\widehat{\mathcal{B}}} \in \lambda^n W$ in terms of the fixed divisor D_W of $|\lambda^n W| \subset \mathbb{P}H^0(X, \det \mathcal{F})$ and of the base locus Z_W of the moving part $M_W \in \mathbb{P}H^0(X, \det \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-D_W))$, where $|\lambda^n W| = D_W + |M_W|$.

In this paper we consider the general case where \mathcal{L} is an invertible sheaf not necessarily equal to \mathcal{O}_X . In this case det $\mathcal{E} = \mathcal{L} \otimes \det \mathcal{F}$ and liftings $s_1, \ldots, s_{n+1} \in H^0(X, \mathcal{E})$ of $\eta_1, \ldots, \eta_{n+1} \in H^0(X, \mathcal{F})$ determine $\Omega := \Lambda^{n+1}(s_1 \wedge s_2 \wedge \ldots \wedge s_{n+1}) \in H^0(X, \det \mathcal{E})$ which is now called a generalized adjoint form. We define as before $\omega_i := \lambda^n (\eta_1 \wedge \ldots \wedge \eta_{i-1} \wedge \widehat{\eta_i} \wedge \eta_{i+1} \wedge \ldots \wedge \eta_{n+1})$, $i = 1, \ldots, n+1$ and we characterize the case where Ω belongs to the image of $H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E})$ by the natural tensor product map. The game is more complicated than in the above-mentioned papers because the linear system $|\lambda^n W|$ is inside $\mathbb{P}H^0(X, \det \mathcal{F})$ and we have to relate the fixed divisor D_W of $|\lambda^n W|$ and the base locus Z_W of the moving part $M_W \in \mathbb{P}H^0(X, \det \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-D_W))$ to forms which are not anymore inside $H^0(X, \det \mathcal{F})$. Nevertheless the result is analogue to the one of [11, Theorem 1.5.1] and [13, Theorem 2.1.7]:

Theorem [A] Let X be an m-dimensional complex compact smooth variety. Let \mathcal{F} be a rank n locally free sheaf on X and \mathcal{L} an invertible sheaf. Consider an extension $0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{F} \to 0$ corresponding to $\xi \in \text{Ext}^1(\mathcal{F}, \mathcal{L})$. Let $W = \langle \eta_1, \ldots, \eta_{n+1} \rangle$ be an n + 1-dimensional sublinear system of ker $(\partial_{\xi}) \subset H^0(X, \mathcal{F})$. Let $\Omega \in H^0(X, \det \mathcal{E})$ be a generalized adjoint form associated to W as above. It holds that if $\Omega \in \text{Im}(H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$ then $\xi \in \text{ker}(H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}) \to H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}(D_W))).$

Theorem [A], called Adjoint Theorem, can be thought as a general version of the wellknown Castelnuovo's free pencil trick; c.f. see Theorem 2.8.

We have also a viceversa of the Adjoint Theorem; see: Theorem 2.9:

Theorem [B] Under the same hypothesis of Theorem [A], assume also that $H^0(X, \mathcal{L}) \cong H^0(X, \mathcal{L}(D_W))$. It holds that if $\xi \in \ker(H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}) \to H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}(D_W)))$, then $\Omega \in \operatorname{Im}(H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$.

In particular in the case $D_W = 0$ Theorem [B] is a full characterization of the condition $\Omega \in \text{Im} (H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E})).$ Now by the Adjoint Theorem and by Theorem [B] we can study extension classes of sheaves via adjoint forms. Indeed even if \mathcal{F} has no global sections we can always take the tensor product with a sufficiently ample linear system \mathcal{M} such that $\mathcal{F} \otimes \mathcal{M}$ has enough global sections in order to apply the theory of adjoint forms. By applying the above idea to the case where $n > 2, X \subset \mathbb{P}^n$ is an hypersurface of degree d > 3 and $\mathcal{F} := \Omega_X^1 \otimes_{\mathcal{O}_X} \mathcal{O}_X(2)$ we have a reformulation of the infinitesimal Torelli Theorem for X in the setting of generalized adjoint theory. In this paper we will not recall the theory concerning infinitesimal Torelli Theorems, for which a reference is [16], in any case a quick introduction to this topic is also given in [13]. Here we point out only that given a degree d form $F \in \mathbb{C}[\xi_0, \ldots, \xi_n]$ the Jacobian ideal of F is the ideal \mathcal{J} generated by the partial derivatives $\frac{\partial F}{\partial \xi_i}$ for $i = 0, \ldots, n$ and by [9][Theorem 9.8], any infinitesimal deformation $\xi \in H^1(X, \Theta_X)$, where X = (F = 0) and Θ_X is the sheaf of tangent vectors on X, is given by a class [R] in the quotient $\mathbb{C}[\xi_0, \ldots, \xi_n]/\mathcal{J}$ where R is a homogeneous form of degree d.

Theorem [C] For a smooth hypersurface X of degree d in \mathbb{P}^n with $n \ge 3$ and d > 3 the following are equivalent:

(1) the differential of the period map is zero on the infinitesimal deformation

 $[R] \in (\mathbb{C}[\xi_0, \dots, \xi_n]/\mathcal{J})_d \simeq H^1(X, \Theta_X)$

(2) *R* is an element of the Jacobian ideal \mathcal{J} (3) $\Omega \in \text{Im} (H^0(X, \mathcal{O}_X(2)) \otimes \lambda^n W \to H^0(X, \mathcal{O}_X(n+d-1)))$ for the generic generalized adjoint Ω (4) The generic generalized adjoint Ω lies in \mathcal{J} .

Note that Theorem [C] has a different flavor with respect to the analogue [9, Theorem 9.8] since we essentially use meromorphic 1-forms over X; see Proposition 3.7. Finally we want to mention that in a forthcoming paper [14] we show how to recover also the Green's infinitesimal Torelli Theorem for a sufficiently ample divisor of a smooth variety in terms of generalized adjoint theory.

2 The theory of generalized adjoint forms

2.1 Definition of generalized adjoint form

Let *X* be a smooth compact complex variety of dimension *m* and let \mathcal{F} and \mathcal{L} be two locally free sheaves on *X* of rank *n* and 1, respectively. Consider the exact sequence of locally free sheaves

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{F} \to 0 \tag{2.1}$$

associated to an element $\xi \in \text{Ext}^1(\mathcal{F}, \mathcal{L}) \cong H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L})$. Recall that the invertible sheaf det $\mathcal{F} := \bigwedge^n \mathcal{F}$ fits into the exact sequence

$$0 \to \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L} \to \bigwedge^{n} \mathcal{E} \to \det \mathcal{F} \to 0,$$
(2.2)

which still corresponds to ξ under the isomorphism $\operatorname{Ext}^1(\mathcal{F}, \mathcal{L}) \cong \operatorname{Ext}^1(\det \mathcal{F}, \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L}) \cong H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L})$. Furthermore det \mathcal{F} satisfies

$$\det \mathcal{F} \otimes \mathcal{L} \cong \det \mathcal{E}. \tag{2.3}$$

Let $\partial_{\xi} : H^0(X, \mathcal{F}) \to H^1(X, \mathcal{L})$ be the connecting homomorphism related to (2.1), and let $W \subset \ker(\partial_{\xi})$ be a vector subspace of dimension n+1. Choose a basis $\mathcal{B} := \{\eta_1, \ldots, \eta_{n+1}\}$ of W. By definition we can take liftings $s_1, \ldots, s_{n+1} \in H^0(X, \mathcal{E})$ of the sections $\eta_1, \ldots, \eta_{n+1}$. If we consider the natural map

$$\Lambda^n \colon \bigwedge^n H^0(X, \mathcal{E}) \to H^0(X, \bigwedge^n \mathcal{E})$$

we can define the sections

$$\Omega_i := \Lambda^n (s_1 \wedge \ldots \wedge \hat{s_i} \wedge \ldots \wedge s_{n+1})$$
(2.4)

for i = 1, ..., n + 1. Denote by ω_i , for i = 1, ..., n + 1, the corresponding sections in $H^0(X, \det \mathcal{F})$. Obviously we have that $\omega_i = \lambda^n (\eta_1 \wedge ... \wedge \hat{\eta_i} \wedge ... \wedge \eta_{n+1})$, where λ^n is the natural morphism

$$\lambda^n \colon \bigwedge^n H^0(X, \mathcal{F}) \to H^0(X, \det \mathcal{F}).$$

The vector subspace of $H^0(X, \det \mathcal{F})$ generated by $\omega_1, \ldots, \omega_{n+1}$ is denoted by $\lambda^n W$.

Definition 2.1 If $\lambda^n W$ is nontrivial, it induces a sublinear system $|\lambda^n W| \subset \mathbb{P}(H^0(X, \det \mathcal{F}))$ that we will call *adjoint sublinear system*. We call D_W its fixed divisor and Z_W the base locus of its moving part $|M_W| \subset \mathbb{P}(H^0(X, \det \mathcal{F}(-D_W)))$.

Definition 2.2 The section $\Omega \in H^0(X, \det \mathcal{E})$ corresponding to $s_1 \wedge \ldots \wedge s_{n+1}$ via

$$\Lambda^{n+1} \colon \bigwedge^{n+1} H^0(X, \mathcal{E}) \to H^0(X, \det \mathcal{E})$$
(2.5)

is called generalized adjoint form.

Remark 2.3 It is easy to see by local computation that this section is in the image of the natural injection det $\mathcal{E}(-D_W) \otimes \mathcal{I}_{Z_W} \to \det \mathcal{E}$.

We want to study the condition

$$\Omega \in \operatorname{Im} \left(H^0(X, \mathcal{L}) \otimes \langle \Omega_i \rangle \to H^0(X, \det \mathcal{E}) \right)$$
(2.6)

or, equivalently,

$$\Omega \in \operatorname{Im}(H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E})).$$
(2.7)

The first map is given by the wedge product, the second one by (2.3). Note that if $H^0(X, \mathcal{L}) = 0$ this condition is equivalent to $\Omega = 0$.

Remark 2.4 The choice of the liftings is not relevant for this purpose. Take different liftings $s'_1, \ldots, s'_{n+1} \in H^0(X, \mathcal{E})$ of $\eta_1, \ldots, \eta_{n+1}$ and call $\Omega'_i \in H^0(X, \bigwedge^n \mathcal{E})$ and $\Omega' \in H^0(X, \det \mathcal{E})$ the corresponding sections constructed as above. Obviously

$$\operatorname{Im}(H^{0}(X,\mathcal{L})\otimes\langle\Omega_{i}\rangle\to H^{0}(X,\det\mathcal{E}))=\operatorname{Im}(H^{0}(X,\mathcal{L})\otimes\langle\Omega_{i}'\rangle\to H^{0}(X,\det\mathcal{E})), (2.8)$$

since they are both equal to Im $(H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$. It is also easy to see that $\Omega \in \text{Im} (H^0(X, \mathcal{L}) \otimes \langle \Omega_i \rangle \to H^0(X, \det \mathcal{E}))$ iff $\Omega' \in \text{Im} (H^0(X, \mathcal{L}) \otimes \langle \Omega'_i \rangle \to H^0(X, \det \mathcal{E}))$.

Remark 2.5 Consider another basis $\mathcal{B}' := \{\eta'_1, \ldots, \eta'_{n+1}\}$ of W and let A be the matrix of the basis change. The sections s'_1, \ldots, s'_{n+1} obtained from s_1, \ldots, s_{n+1} through the matrix A are liftings of $\eta'_1, \ldots, \eta'_{n+1}$. The section $\Omega' := \Lambda^{n+1}(s'_1 \wedge \ldots \wedge s'_{n+1})$ satisfies $\Omega' = \det A \cdot \Omega$. Moreover $\Omega \in \operatorname{Im}(H^0(X, \mathcal{L}) \otimes \langle \Omega_i \rangle \to H^0(X, \det \mathcal{E}))$ iff $\Omega' \in \operatorname{Im}(H^0(X, \mathcal{L}) \otimes \langle \Omega'_i \rangle \to H^0(X, \det \mathcal{E}))$.

Lemma 2.6 If $\Omega \in \text{Im}(H^0(X, \mathcal{L}) \otimes \langle \Omega_i \rangle \to H^0(X, \det \mathcal{E}))$, then we can find liftings $\tilde{s}_i \in H^0(X, \mathcal{E}), i = 1, ..., n + 1$, such that $\tilde{\Omega} := \Lambda^{n+1}(\tilde{s}_1 \wedge ... \wedge \tilde{s}_{n+1}) = 0$.

Proof By hypothesis there exist $\sigma_i \in H^0(X, \mathcal{L})$ such that

$$\Omega = \sum_{i=1}^{n+1} \sigma_i \wedge \Omega_i \tag{2.9}$$

We can define new liftings for the element η_i :

$$\tilde{s_i} := s_i + (-1)^{n-i} \sigma_i$$

Now, since

$$\tilde{s_1} \wedge \ldots \wedge \tilde{s_{n+1}} = s_1 \wedge \ldots \wedge s_{n+1} - \sum_{i=1}^{n+1} s_1 \wedge \ldots \wedge \hat{s_i} \wedge \ldots \wedge s_{n+1} \wedge \sigma_i, \qquad (2.10)$$

we immediately deduce $\tilde{\Omega} = 0$.

From the natural map

$$\mathcal{F}^{\vee}\otimes\mathcal{L}\to\mathcal{F}^{\vee}\otimes\mathcal{L}(D_W)$$

we have a homomorphism

$$H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}) \xrightarrow{\rho} H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}(D_W));$$

we call $\xi_{D_W} = \rho(\xi)$.

2.2 Castelnuovo's free pencil trick

Consider the case where both \mathcal{L} and \mathcal{F} are of rank one, while *X* has dimension *m*. In this case $W = \langle \eta_1, \eta_2 \rangle \subset H^0(X, \mathcal{F})$ has dimension two; as usual we choose liftings $s_1, s_2 \in H^0(X, \mathcal{E})$ of η_1, η_2 . Note also that $\omega_1 = \eta_2$ and $\omega_2 = \eta_1$, in particular $W = \lambda^1 W$ so D_W is the fixed part of *W* and Z_W is the base locus of its moving part. Call $\tilde{\eta}_i \in H^0(X, \mathcal{F}(-D_W))$ the sections corresponding to the η_i 's via $H^0(X, \mathcal{F}(-D_W)) \rightarrow H^0(X, \mathcal{F})$. The following lemma is well known and it is the core of the Castelnuovo base point free pencil trick.

Lemma 2.7 We have an exact sequence

$$0 \to \mathcal{F}^{\vee}(D_W) \xrightarrow{i} \mathcal{O}_X \oplus \mathcal{O}_X \xrightarrow{\nu} \mathcal{F}(-D_W) \otimes \mathcal{I}_{Z_W} \to 0$$
(2.11)

where the morphism *i* is given by contraction with $-\tilde{\eta}_1$ and $\tilde{\eta}_2$, while *v* is given by evaluation with $\tilde{\eta}_2$ on the first component and $\tilde{\eta}_1$ on the second one.

It is easy to see by local computation that sequence (2.11) fits into the following commutative diagram

The morphism $\mathcal{E}^{\vee} \to \mathcal{O}_X \oplus \mathcal{O}_X$ is given by contraction with the sections $-s_1$ and s_2 , the morphism $\mathcal{L}^{\vee} \to \mathcal{F}(-D_W) \otimes \mathcal{I}_{Z_W}$ by contraction with the adjoint Ω . We can prove now the following

Theorem 2.8 Let X be an m-dimensional complex compact smooth variety. Let \mathcal{F} , \mathcal{L} be invertible sheaves on X. Consider $\xi \in H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L})$ associated to the extension (2.1). Define $W = \langle \eta_1, \eta_2 \rangle \subset \ker(\partial_{\xi}) \subset H^0(X, \mathcal{F})$ and Ω as above. We have that $\Omega \in \operatorname{Im}(H^0(X, \mathcal{L}) \otimes W \to H^0(X, \det \mathcal{E}))$ if and only if $\xi_{D_W} = 0$.

Proof Tensoring (2.12) by \mathcal{L} and passing to cohomology we have the following diagram

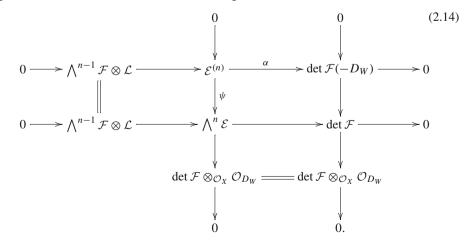
Obviously $\beta(1) = \Omega$ and, by commutativity, $\delta(\beta(1)) = \xi_{D_W}$. We have then $\xi_{D_W} = 0$ if and only if $\Omega \in \text{Im} (H^0(\mathcal{L} \oplus \mathcal{L}) \xrightarrow{\nu} H^0(\mathcal{F}(-D_W) \otimes \mathcal{I}_{Z_W} \otimes \mathcal{L}))$. Since ν is given by the sections $\tilde{\eta}_2$ and $\tilde{\eta}_1$, this condition is equivalent to $\Omega \in \text{Im} (H^0(X, \mathcal{L}) \otimes W \to H^0(X, \det \mathcal{E}))$, since det $\mathcal{E} = \mathcal{F} \otimes \mathcal{L}$.

2.3 The Adjoint Theorem

We go back now to the general case with \mathcal{F} locally free of rank *n*. By obvious identifications the natural map

$$\operatorname{Ext}^{1}(\operatorname{det}\mathcal{F},\bigwedge^{n-1}\mathcal{F}\otimes\mathcal{L})\to\operatorname{Ext}^{1}(\operatorname{det}\mathcal{F}(-D_{W}),\bigwedge^{n-1}\mathcal{F}\otimes\mathcal{L})$$

gives an extension $\mathcal{E}^{(n)}$ and a commutative diagram:



2.3.1 The proof of the Adjoint Theorem

By the hypothesis $\Omega \in \text{Im} (H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$ and by lemma (2.6), we can choose liftings $s_i \in H^0(X, \mathcal{E})$ of η_i with $\Omega = 0$.

Since D_W is the fixed divisor of the linear system $|\lambda^n W|$ and the sections ω_i generate this linear system, then the ω_i are in the image of

$$\det \mathcal{F}(-D_W) \to \det \mathcal{F},$$

so we can find sections $\tilde{\omega}_i \in H^0(X, \det \mathcal{F}(-D_W))$ such that

$$\tilde{\omega}_i \cdot d = \omega_i, \tag{2.15}$$

where *d* is a global section of $\mathcal{O}_X(D_W)$ with $(d) = D_W$. Hence, using the commutativity of (2.14), we can find liftings $\tilde{\Omega}_i \in H^0(X, \mathcal{E}^{(n)})$ of the sections Ω_i . The evaluation map

$$\bigoplus_{i=1}^{n+1} \mathcal{O}_X \xrightarrow{\tilde{\mu}} \mathcal{E}^{(n)}$$

given by the global sections $\tilde{\Omega}_i$, composed with the map α of (2.14), induces a map μ which fits into the following diagram

$$\begin{array}{cccc}
\bigoplus_{i=1}^{n+1} \mathcal{O}_X & & & \bigoplus_{i=1}^{n+1} \mathcal{O}_X \\
& & & & & \downarrow^{\mu} & & & \downarrow^{\mu} \\
0 & & & & & \mathcal{E}^{(n)} & \stackrel{\alpha}{\longrightarrow} \det \mathcal{F}(-D_W) & & \longrightarrow 0.
\end{array}$$

We point out that the morphism μ is given by multiplication by $\tilde{\omega}_i$ on the *i*-th component. The sheaf Im $\tilde{\mu}$ is torsion free since it is a subsheaf of the locally free sheaf $\mathcal{E}^{(n)}$. Moreover, since $\Omega = 0$, a local computation shows that Im $\tilde{\mu}$ has rank one outside Z_W . On the other hand the sheaf Im μ is by definition

Im
$$\mu = \det \mathcal{F}(-D_W) \otimes \mathcal{I}_{Z_W}$$
.

The morphism

 $\alpha \colon \mathcal{E}^{(n)} \to \det \mathcal{F}(-D_W)$

induces a surjective morphism, that we continue to call α ,

$$\operatorname{Im} \tilde{\mu} \xrightarrow{\alpha} \operatorname{Im} \mu$$

between two sheaves that are locally free of rank one outside Z_W . This morphism is also injective, because its kernel is a torsion subsheaf of the torsion free sheaf Im $\tilde{\mu}$, hence it is trivial.

We have proved that

Im
$$\tilde{\mu} \cong \det \mathcal{F}(-D_W) \otimes \mathcal{I}_{Z_W}$$
,

so

$$\mathcal{E}^{(n)} \supset (\operatorname{Im} \tilde{\mu})^{\vee \vee} \cong \det \mathcal{F}(-D_W)$$

This isomorphism gives the splitting

$$0 \longrightarrow \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L} \longrightarrow \mathcal{E}^{(n)} \longrightarrow \det \mathcal{F}(-D_W) \longrightarrow 0.$$

Deringer

Since ξ_{D_W} is the element of $H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}(D_W))$ associated to this extension, we conclude that $\xi_{D_W} = 0$.

We have proved the Adjoint Theorem.

2.3.2 An inverse of the Adjoint Theorem

We prove now an inverse of the Adjoint Theorem.

Theorem 2.9 Let X be an m-dimensional complex compact smooth variety. Let \mathcal{F} be a rank n locally free sheaf on X and \mathcal{L} an invertible sheaf. Consider an extension $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$ corresponding to $\xi \in \text{Ext}^1(\mathcal{F}, \mathcal{L})$. Let $W = \langle \eta_1, \ldots, \eta_{n+1} \rangle$ be a n + 1-dimensional sublinear system of $\text{ker}(\partial_{\xi}) \subset H^0(X, \mathcal{F})$. Let $\Omega \in H^0(X, \det \mathcal{E})$ be an adjoint form associated to W as above. Assume that $H^0(X, \mathcal{L}) \cong H^0(X, \mathcal{L}(D_W))$. If $\xi \in \text{ker}(H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}) \rightarrow H^1(X, \mathcal{F}^{\vee} \otimes \mathcal{L}(D_W)))$, then $\Omega \in \text{Im}(H^0(X, \mathcal{L}) \otimes \lambda^n W \rightarrow H^0(X, \det \mathcal{E}))$.

Proof If \mathcal{F} is a rank one sheaf, then (2.8) gives the thesis without the extra assumption $H^0(X, \mathcal{L}) \cong H^0(X, \mathcal{L}(D_W))$. We assume then rank $\mathcal{F} \ge 2$.

By (2.3), we can write $(\Omega) = D_W + F$ with F effective. In the first step of the proof we want to find a global section

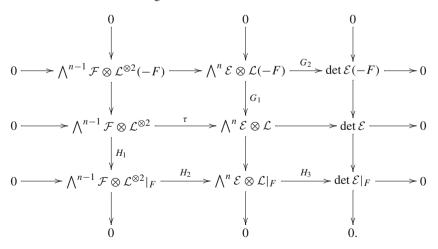
$$\Omega' \in H^0\left(X, \bigwedge^n \mathcal{E} \otimes \mathcal{L}(-F)\right)$$

which restricts, through the natural map

$$\bigwedge^{n} \mathcal{E} \otimes \mathcal{L}(-F) \to \det \mathcal{E}(-F),$$

to the section $d \in H^0(\det \mathcal{E}(-F))$, where $(d) = D_W$.

Consider the commutative diagram:



By the hypothesis $\xi_{D_W} = 0$ it follows easily that there exists a lifting $\tilde{\Omega} \in H^0(X, \bigwedge^n \mathcal{E} \otimes \mathcal{L})$ of Ω . Indeed, tensor (2.14) by \mathcal{L} and take a global lifting $f \in H^0(X, \det \mathcal{E}(-D_W))$ of Ω . Since $\xi_{D_W} = 0$, f can be lifted to a section $e \in H^0(X, \mathcal{E}^{(n)} \otimes \mathcal{L})$. Define $\tilde{\Omega} := \psi(e)$. By commutativity, $H_3(\tilde{\Omega}|_F) = 0$ hence we call $\bar{\mu} \in H^0(X, \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L}^{\otimes 2}|_F)$ the lifting of $\tilde{\Omega}|_F$. A local computation shows that the connecting homomorphism

$$\delta \colon H^0(X, \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L}^{\otimes 2}|_F) \to H^1(X, \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L}^{\otimes 2}(-F))$$

maps $\bar{\mu}$ to ξ_{D_W} , which is zero by hypothesis. Then there exists a global section

$$\mu \in H^0(X, \bigwedge^{n-1} \mathcal{F} \otimes \mathcal{L}^{\otimes 2})$$

which is a lifting of $\bar{\mu}$. The section

$$\hat{\Omega} := \Omega - \tau(\mu) \in H^0(X, \bigwedge^n \mathcal{E} \otimes \mathcal{L})$$

is a new lifting of Ω that, by construction, vanishes when restricted to F. We call

$$\Omega' \in H^0(X, \bigwedge^n \mathcal{E} \otimes \mathcal{L}(-F))$$

the global section which lifts $\hat{\Omega}$. It is easy to see that $G_2(\Omega') = d$ so Ω' is the section we wanted.

In the second part of the proof we prove that $\Omega \in \text{Im} (H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$. The global sections

$$\omega_i := \lambda^n (\eta_1 \wedge \ldots \wedge \hat{\eta_i} \wedge \ldots \wedge \eta_{n+1}) \in H^0(X, \det \mathcal{F})$$

generate $\lambda^n W$ and by definition they vanish on D_W , that is there exist global sections $\tilde{\omega}_i \in H^0(X, \det \mathcal{F}(-D_W))$ such that

$$\omega_i = \tilde{\omega}_i \cdot d.$$

We consider the commutative diagram

The map β is locally defined by

$$(f_1, \ldots, f_{n+1}) \mapsto (-1)^n f_1 \cdot s_1 + \cdots + f_{n+1} \cdot s_{n+1}.$$

The map α is defined in the following way: if $f \in \mathcal{L}(-F)(U)$ is a local section, then, locally on U, α is given by

$$f \mapsto (\tilde{\omega}_1(f), \dots, \tilde{\omega}_{n+1}(f)),$$

where we observe that the sections $\tilde{\omega}_i$ are global sections of the dual sheaf of $\mathcal{L}(-F)$. The sheaf $\bar{\mathcal{F}}$ is by definition the cokernel of the first row. Now, tensoring by \mathcal{L}^{\vee} , we have

Dualizing and tensoring again by $\mathcal{O}_X(D_W)$, we obtain the commutative square

Deringer

$$\bigwedge^{n} W \otimes \mathcal{L}(D_{W}) \xrightarrow{\alpha^{\vee}} \det \mathcal{E}$$

$$\beta^{\vee} \uparrow \qquad \cdot F \uparrow \quad \cdot F \downarrow \quad F \downarrow \quad \cdot F \downarrow \quad F \downarrow$$

where we have used the isomorphism of vector spaces $W^{\vee} \cong \bigwedge^n W$, given by

$$\eta^{i} \mapsto \eta_{1} \wedge \ldots \wedge \hat{\eta_{i}} \wedge \ldots \wedge \eta_{n+1} =: e_{i}$$

where $\eta^1, \ldots, \eta^{n+1}$ is the basis of W^{\vee} dual to the basis $\eta_1, \ldots, \eta_{n+1}$ of W. By definition of α we have that α^{\vee} is the evaluation map given by the global sections $\tilde{\omega}_i$. Note that $\mathcal{E}^{\vee} \otimes \mathcal{L}(D_W) \cong \bigwedge^n \mathcal{E} \otimes \mathcal{L}(-F)$. Taking global sections we have

$$\bigwedge^{n} W \otimes H^{0}(X, \mathcal{L}(D_{W})) \xrightarrow{\overline{\alpha^{\vee}}} H^{0}(X, \det \mathcal{E})$$

$$\xrightarrow{\overline{\beta^{\vee}}} \bigwedge^{h} \cdot F \bigwedge^{h}$$

$$H^{0}(X, \mathcal{E}^{\vee} \otimes \mathcal{L}(D_{W})) \xrightarrow{} H^{0}(X, \mathcal{O}_{X}(D_{W})).$$

The section $\Omega' \in H^0(X, \mathcal{E}^{\vee} \otimes \mathcal{L}(D_W))$ produces in $H^0(X, \det \mathcal{E})$ the adjoint Ω , so by commutativity

$$\Omega = \overline{\alpha^{\vee}}(\overline{\beta^{\vee}}(\Omega')).$$

We have

$$\overline{\beta^{\vee}}(\Omega') = \sum_{i=1}^{n+1} c_i \cdot e_i \otimes \sigma_i,$$

where $c_i \in \mathbb{C}$ and $\sigma_i \in H^0(X, \mathcal{L}(D_W))$. By our hypothesis $H^0(X, \mathcal{L}) \cong H^0(X, \mathcal{L}(D_W))$, there exists sections $\tilde{\sigma_i} \in H^0(X, \mathcal{L})$ with $\sigma_i = \tilde{\sigma_i} \cdot d$. So

$$\Omega = \overline{\alpha^{\vee}}(\overline{\beta^{\vee}}(\Omega')) = \overline{\alpha^{\vee}}(\sum_{i=1}^{n+1} c_i \cdot e_i \otimes \sigma_i) = \sum_{i=1}^{n+1} c_i \cdot \tilde{\omega}_i \cdot \sigma_i = \sum_{i=1}^{n+1} c_i \cdot \tilde{\omega}_i \cdot d \cdot \tilde{\sigma}_i = \sum_{i=1}^{n+1} c_i \cdot \omega_i \cdot \tilde{\sigma}_i.$$

This is exactly our thesis.

By the Adjoint Theorem and (2.9) we deduce the following

Corollary 2.10 If $D_W = 0$, then $\xi = 0$ iff $\Omega \in \text{Im}(H^0(X, \mathcal{L}) \otimes \lambda^n W \to H^0(X, \det \mathcal{E}))$.

3 Infinitesimal Torelli Theorem for projective hypersurfaces

In this section we want to study adjoint images in the case of smooth hypersurfaces of the projective space \mathbb{P}^n .

3.1 Meromorphic 1-forms on a smooth projective hypersurface

Let $V \subset \mathbb{P}^n$ be a smooth hypersurface defined by a homogeneous polynomial $F \in \mathbb{C}[\xi_0, \ldots, \xi_n]$ of degree deg F = d. An infinitesimal deformation $\xi \in \text{Ext}^1(\Omega_V^1, \mathcal{O}_V)$ of V gives an exact sequence for the sheaf of differential forms Ω_V^1 :

$$0 \to \mathcal{O}_V \to \Omega^1_{\mathcal{V}|V} \to \Omega^1_V \to 0. \tag{3.1}$$

We assume that $n \ge 3$, hence $H^0(V, \Omega_V^1) = 0$ and we can not construct the adjoint of this sequence directly, so we twist (3.1) by a suitable integer *a* such that $\Omega_V^1(a)$ has at least $n = \operatorname{rank} (\Omega_V^1) + 1$ global sections. A standard computation shows that a = 2 is enough for this purpose, so from now on we will consider the sequence

$$0 \to \mathcal{O}_V(2) \to \Omega^1_{\mathcal{V}|\mathcal{V}}(2) \to \Omega^1_V(2) \to 0 \tag{3.2}$$

which again corresponds to $\xi \in \operatorname{Ext}^1(\Omega^1_V(2), \mathcal{O}_V(2)) \cong \operatorname{Ext}^1(\Omega^1_V, \mathcal{O}_V) \cong H^1(V, \Theta_V)$, where Θ_V denotes the sheaf of vector fields on *V*. Denote by \mathcal{J} the Jacobian ideal of *F*, that is the ideal of $\mathbb{C}[\xi_0, \ldots, \xi_n]$ generated by the partial derivatives $\frac{\partial F}{\partial \xi_i}$ for $i = 0, \ldots, n$. Following [9][Theorem 9.8], the deformation ξ is given by a class [*R*] of degree *d* in the quotient $\mathbb{C}[\xi_0, \ldots, \xi_n]/\mathcal{J}$. If we choose a representative *R* of degree *d* for this class, then F + tR = 0, for small *t*, is the equation of the hypersurface that is the associated deformation of *V*.

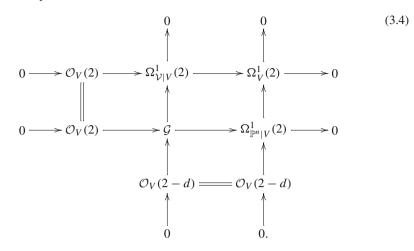
Together with (3.2), we have the conormal exact sequence

$$0 \to \mathcal{O}_V(-d) \to \Omega^1_{\mathbb{P}^n|V} \to \Omega^1_V \to 0.$$
(3.3)

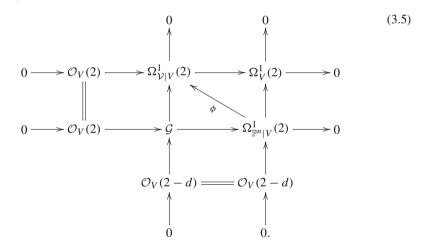
If we put these sequences together we obtain the diagram

Springer

which can be completed as follows



By [9] the deformation ξ of (3.2) comes from $R \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}}^n(d))$, then it gives the zero element in $H^0(V, \Theta_{\mathbb{P}^n|V})$, hence we have that the sheaf \mathcal{G} in (3.4) is a direct sum $\mathcal{G} = \mathcal{O}_V(2) \oplus \Omega^1_{\mathbb{P}^n|V}(2)$ and we have a natural morphism $\phi \colon \Omega^1_{\mathbb{P}^n|V}(2) \to \Omega^1_{\mathcal{V}|V}(2)$ which fits in the diagram



The morphism ϕ gives in a natural way a morphism

$$\phi^{n} \colon H^{0}(V, \det(\Omega^{1}_{\mathbb{P}^{n}|V}(2))) \cong H^{0}(V, \mathcal{O}_{V}(n-1)) \to H^{0}(V, \det(\Omega^{1}_{\mathcal{V}|V}(2)))$$
$$\cong H^{0}(V, \mathcal{O}_{V}(n+d-1)).$$

We can write explicitly the isomorphism between $H^0(V, \det(\Omega^1_{\mathbb{P}^n|V}(2))) = H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n))$ (2n)) and $H^0(V, \mathcal{O}_V(n-1))$. Note that $H^0(\mathbb{P}^n, \Omega^n_{\mathbb{P}^n}(2n)) \to H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n))$ is surjective, so we will focus on the rational *n*-forms on \mathbb{P}^n . By [9][Corollary 2.11] this forms may be written as $\omega = \frac{P\Psi}{Q}$ where $\Psi = \sum_{i=0}^n (-1)^i \xi_i (d\xi_0 \wedge \ldots \wedge d\hat{\xi_i} \wedge \ldots \wedge d\xi_n)$ gives a generator of $H^0(\mathbb{P}^n, \Omega^n_{\mathbb{P}^n}(n+1))$ and deg $Q = \deg P + (n+1)$. In our case Q is a polynomial of degree 2n, hence P has degree n-1. This identification depends on the (noncanonical) choice of the polynomial Q and gives an isomorphism $H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n)) \to H^0(V, \mathcal{O}_V(n-1))$ defined by $\omega|_V \mapsto P$.

Proposition 3.1 ϕ^n is given via the multiplication by the polynomial R (modulo F).

Proof Locally we can see \mathcal{V} in the product $\Delta \times \mathbb{P}^n$ of the projective space with a disk; here \mathcal{V} is defined by the equation F + tR = 0. Hence d(F + tR) = 0 in $\Omega^1_{\mathcal{V}}$, that is $dF + dt \cdot R + dR \cdot t = 0$.

Call $F_i := \frac{\partial F}{\partial \xi_i}$. Since V is smooth, there exist *i* such that $U_i = (F_i \neq 0)$ is a nontrivial open subset; let for example U_1 be nontrivial. Take local coordinates $z_i = \frac{\xi_i}{\xi_0}$ in the open set $(\xi_0 \neq 0) \cap U_1$. Then we have

$$dz_1 = -\frac{Rdt}{F_1} - \frac{tdR}{F_1} - \sum_{i>1} \frac{F_i}{F_1} dz_i$$
(3.6)

which gives in V (that is for t = 0)

$$dz_1 = -\frac{Rdt}{F_1} - \sum_{i>1} \frac{F_i}{F_1} dz_i$$
(3.7)

The image $\phi^n(\omega|_V)$ is then obtained by the substitution of (3.7) in $\frac{P(z)}{Q(z)}dz_1 \wedge \ldots \wedge dz_n$, which is the local form of $\frac{P(\xi)\Psi}{Q(\xi)}$. Hence

$$\frac{P(z)}{Q(z)}dz_1 \wedge \ldots \wedge dz_n = -\frac{P(z)R(z)}{Q(z)F_1(z)}dt \wedge dz_2 \wedge \ldots \wedge dz_n.$$
(3.8)

If we homogenize we obtain on U_1

$$\frac{P\Psi}{Q} = -\frac{PR}{QF_1} \sum_{i \neq 1} (-1)^{i-1} \operatorname{sgn}(i-1)\xi_i dt \wedge d\xi_0 \wedge \widehat{d\xi_1} \dots \wedge \widehat{d\xi_i} \wedge \dots \wedge d\xi_n$$

Hence

$$\phi^{n}(\omega|_{V}) = -\frac{PR}{QF_{1}} \sum_{i \neq 1} (-1)^{i-1} \operatorname{sgn}(i-1)\xi_{i} dt \wedge d\xi_{0} \wedge \widehat{d\xi_{1}} \dots \wedge \widehat{d\xi_{i}} \wedge \dots \wedge d\xi_{n} \quad (3.9)$$

and it is clear that ϕ^n is given by multiplication with *R*.

3.2 A canonical choice of adjoints on a hypersurface of degree d > 2

We want now to construct adjoint forms associated to the sequence (3.2).

Assume that $n \ge 3$, so that $H^1(V, \mathcal{O}_V(2)) = H^1(V, \mathcal{O}_V(2-d)) = 0$, and we can lift all the global sections of $H^0(V, \Omega^1_V(2))$ both in the horizontal and in the vertical sequence of (3.5).

We take $\eta_1, \ldots, \eta_n \in H^0(V, \Omega^1_V(2))$ global forms and we want to find liftings $s_1, \ldots, s_n \in H^0(V, \Omega^1_{V|V})$. This can be done since $H^1(V, \mathcal{O}_V(2))$ is zero. A generalized adjoint is then the global section of the sheaf $\det(\Omega^1_{V|V}(2)) = \mathcal{O}_V(n + d - 1)$ given by $\Omega := \Lambda^n(s_1 \wedge \ldots \wedge s_n) \in H^0(V, \det(\Omega^1_{V|V}(2))).$

We point out another interesting way to compute this generalized adjoint form using Proposition (3.1).

Consider the sequence (3.3), that is the vertical sequence in (3.5). Since $H^1(V, \mathcal{O}_V (2-d)) = 0$, we can find liftings $\tilde{s_1}, \ldots, \tilde{s_n} \in H^0(V, \Omega^1_{\mathbb{P}^n | V}(2))$ of the sections η_1, \ldots, η_n .

🖄 Springer

Furthermore they are unique if d > 2. We can thus consider the adjoint form associated to (3.3) given by $\widetilde{\Omega} := \Lambda^n(\widetilde{s_1} \wedge \ldots \wedge \widetilde{s_n})$. This adjoint is independent from the deformation ξ ; it depends only on *V* and its embedding in \mathbb{P}^n . If d > 2, then $\widetilde{\Omega}$ is unique.

To describe $\hat{\Omega}$ explicitly we first consider the exact sequence

$$0 \to \Omega^1_{\mathbb{P}^n}(2-d) \to \Omega^1_{\mathbb{P}^n}(2) \to \Omega^1_{\mathbb{P}^n|V}(2) \to 0.$$
(3.10)

If d > 2, the vanishing of $H^0(\mathbb{P}^n, \Omega^1_{\mathbb{P}^n}(2-d))$ and $H^1(\mathbb{P}^n, \Omega^1_{\mathbb{P}^n}(2-d))$ (c.f. Bott Formulas) gives the isomorphism $H^0(\mathbb{P}^n, \Omega^1_{\mathbb{P}^n}(2)) = H^0(V, \Omega^1_{\mathbb{P}^n|V}(2))$. Hence, the forms $\tilde{s_i}$ are the restriction on V of global rational 1-forms. By [9][Theorem 2.9] we can write

$$\tilde{s}_i = \frac{1}{Q} \sum_{j=0}^n L_j^i d\xi_j \tag{3.11}$$

where deg Q = 2 and L_j^i is a homogeneous polynomial of degree 1 which does not contain ξ_i in its expression. Hence

$$\widetilde{\Omega} = \Lambda^n (\widetilde{s_1} \wedge \ldots \wedge \widetilde{s_n}) = \frac{1}{Q^n} \sum_{i=0}^n M_i d\xi_0 \wedge \ldots \wedge \widehat{d\xi_i} \wedge \ldots \wedge d\xi_n$$
(3.12)

where M_i is the determinant of the matrix obtained by

$$\begin{pmatrix} L_0^1 \dots L_n^n \\ \vdots & \vdots \\ L_n^1 \dots L_n^n \end{pmatrix}$$
(3.13)

removing the *i*-th row. Since $\widetilde{\Omega}$ is a rational *n*-form on \mathbb{P}^n , following [9][Corollary 2.11] it can be written as $\frac{P\Psi}{Q^n}$, and we deduce that

$$\frac{M_i}{(-1)^i \xi_i} = P \tag{3.14}$$

for all i = 0, ..., n. *P* is a polynomial of degree n - 1 and it corresponds to $\widetilde{\Omega}$ via the isomorphism $H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n)) \cong H^0(V, \mathcal{O}_V(n-1))$. Hence by (3.1) we have that the form $\Omega \in H^0(V, \mathcal{O}_V(n+d-1))$ given by *PR* is a canonical choice of adjoint form for $W = \langle \eta_1, ..., \eta_n \rangle$ and ξ .

Remark 3.2 Alternatively this can be seen using the Euler sequence on *V*:

$$0 \to \mathcal{O}_V \to \bigoplus^{n+1} \mathcal{O}_V(1) \to \Theta_{\mathbb{P}^n|V} \to 0.$$
(3.15)

This sequence, dualized and conveniently tensorized gives

$$0 \to \Omega^1_{\mathbb{P}^n|V}(2) \to \bigoplus_{i=1}^{n+1} \mathcal{O}_V(1) \to \mathcal{O}_V(2) \to 0.$$
(3.16)

The sections \tilde{s}_i are associated via the first morphism to an n + 1-uple of linear polynomials (L_i^0, \ldots, L_i^n) . Then, taking the wedge product of (3.16) we obtain an exact sequence

$$0 \to \Omega^n_{\mathbb{P}^n|V}(2n) \cong \mathcal{O}_V(n-1) \to \bigwedge^n \mathcal{O}_V(1) = \bigoplus^{n+1} \mathcal{O}_V(n) \to \Omega^{n-1}_{\mathbb{P}^n|V}(2n) \to 0 \quad (3.17)$$

🖉 Springer

where the morphism $\mathcal{O}_V(n-1) \to \bigoplus^{n+1} \mathcal{O}_V(n)$ is given by

$$G \mapsto (G\xi_0, \dots, (-1)^n G\xi_n). \tag{3.18}$$

Since $\widetilde{\Omega} = \Lambda^n(\widetilde{s_1} \wedge \ldots \wedge \widetilde{s_n}) \in H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n))$ is sent exactly to $(L^0_0, \ldots, L^n_0) \wedge \ldots \wedge (L^0_n, \ldots, L^n_n) = (M_0, \ldots, M_n)$ (using the same notation as above), then we conclude that $\widetilde{\Omega}$ corresponds in $H^0(V, \mathcal{O}_V(n-1))$ to a polynomial P which satisfies

$$\frac{M_i}{(-1)^i \xi_i} = P. (3.19)$$

3.3 The adjoint sublinear systems obtained by meromorphic 1-forms

To study the conditions given in (2.6) and (2.7), we need to describe the sections

$$\widetilde{\Omega_i} := \Lambda^{n-1}(\tilde{s_1} \wedge \ldots \wedge \hat{\tilde{s_i}} \wedge \ldots \wedge \tilde{s_n}) \in H^0(V, \Omega^{n-1}_{\mathbb{P}^n | V}(2n-2))$$

(c.f. (2.4)) and their images in $H^0(V, \Omega_V^{n-1}(2(n-1))) = H^0(V, \mathcal{O}_V(n+d-3))$ that we have denoted by ω_i .

A computation similar to the above shows that

$$\widetilde{\Omega_i} = \Lambda^{n-1}(\widetilde{s_1} \wedge \ldots \wedge \widehat{s_i} \wedge \ldots \wedge \widetilde{s_n}) = \frac{1}{Q^{n-1}} \sum_{j < k} M^i_{jk} d\xi_0 \wedge \ldots \wedge d\hat{\xi}_j \wedge \ldots \wedge d\hat{\xi}_k \wedge \ldots \wedge d\xi_n$$
(3.20)

where M_{jk}^i is the determinant of the matrix obtained by (3.13) removing the *i*-th column and the *j*-th and *k*-th rows. On the other hand, rearranging the expression of [9][Theorem 2.9] we can write

$$\widetilde{\Omega_i} = \frac{1}{Q^{n-1}} \sum_j A_j^i (\sum_{k \neq j} (-1)^{k+j} \operatorname{sgn}(k-j) \xi_k d\xi_0 \wedge \ldots \wedge d\hat{\xi}_j \wedge \ldots \wedge d\hat{\xi}_k \wedge \ldots \wedge d\xi_n)$$
(3.21)

with deg $A_i^i = n - 2$.

Comparing (3.20) and (3.21) gives

$$M_{jk}^{i} = (-1)^{j+k} (A_{j}^{i} \xi_{k} - \xi_{j} A_{k}^{i}).$$
(3.22)

As before this can be computed also via the Euler sequence.

We call $\Xi_j := \sum_{k \neq j} (-1)^{k+j} \operatorname{sgn}(k-j) \xi_k d\xi_0 \wedge \ldots \wedge d\hat{\xi}_j \wedge \ldots \wedge d\hat{\xi}_k \wedge \ldots \wedge d\xi_n$. Note that the sections Ξ_j , for $j = 0, \ldots, n$ give a basis of $H^0(V, \Omega_{\mathbb{P}^n \mid V}^{n-1}(n))$.

Proposition 3.3 $\omega_i = \sum_j A^i_j \cdot F_j$ in $H^0(V, \mathcal{O}_V(n+d-3))$

Proof It is enough to show that the image of Ξ_j through the morphism $\Omega_{\mathbb{P}^n|V}^{n-1}(n) \to \mathcal{O}_V$ (d-1) is F_j . Consider the exact sequence of the tangent sheaf of V:

$$0 \to \Theta_V \to \Theta_{\mathbb{P}^n|V} \to \mathcal{O}_V(d) \to 0. \tag{3.23}$$

The beginning of the Koszul complex is

$$\bigwedge^{n} \Theta_{\mathbb{P}^{n}|V} \otimes \mathcal{O}_{V}(-d) \to \bigwedge^{n-1} \Theta_{\mathbb{P}^{n}|V}$$
(3.24)

which, tensored by $\mathcal{O}_V(-n)$, gives

$$\bigwedge^{n} \Theta_{\mathbb{P}^{n}|V} \otimes \mathcal{O}_{V}(-n-d) \to \bigwedge^{n-1} \Theta_{\mathbb{P}^{n}|V} \otimes \mathcal{O}_{V}(-n).$$
(3.25)

Deringer

This is exactly the dual of $\Omega_{\mathbb{P}^n|V}^{n-1}(n) \to \mathcal{O}_V(d-1)$. Hence we only need to show that the morphism (3.25) composed with the contraction by Ξ_i

$$\bigwedge^{n-1} \Theta_{\mathbb{P}^n|V} \otimes \mathcal{O}_V(-n) \xrightarrow{\Xi_i} \mathcal{O}_V$$
(3.26)

is the multiplication by F_i . This is easy to see by a standard local computation.

Remark 3.4 We immediately have that the polynomials associated to the sections ω_i are in the Jacobian ideal of *V*.

Condition (2.7), that is

$$\Omega \in \operatorname{Im} (H^0(V, \mathcal{O}_V(2)) \otimes \lambda^n W \to H^0(V, \mathcal{O}_V(n+d-1))),$$
(3.27)

can be written, modulo F, as

$$RP = \sum \omega_i \cdot S_i = \sum_{i,j} A^i_j \cdot F_j \cdot S_i, \qquad (3.28)$$

where deg $S_i = 2$. In particular this implies that *RP* is in the Jacobian ideal of *V*.

Proposition 3.5 The base locus D_W of the linear system $|\lambda^n W|$ is zero for the generic W.

Proof By [11][Proposition 3.1.6] it is enough to prove that $H^0(V, \Omega_V^1(2))$ generically generates the sheaf $\Omega_V^1(2)$ and that $D_{H^0(V, \Omega_V^1(2))} = 0$. We have an explicit basis for $H^0(V, \Omega_V^1(2))$ given by

$$\frac{\xi_i d\xi_j - \xi_j d\xi_i}{Q} \tag{3.29}$$

where i < j and deg Q = 2. The vector space $\lambda^n H^0(V, \Omega_V^1(2)) \subset H^0(V, \mathcal{O}_V(n + d - 3))$ is obviously nonzero, hence $H^0(V, \Omega_V^1(2))$ generically generates the sheaf $\Omega_V^1(2)$.

It remains to prove that $D_{H^0(V,\Omega_V^1(2))} = 0$. An easy computation (for example by induction) shows that $\lambda^n H^0(V, \Omega_V^1(2))$ contains all the polynomials of the form

$$\xi_{i_1}\xi_{i_2}\dots\xi_{i_{n-2}}\frac{\partial F}{\partial\xi_j} \tag{3.30}$$

where $\{i_1, \ldots, i_{n-2}\} \subset \{1, \ldots, n+1\}$ and $j \notin \{i_1, \ldots, i_{n-2}\}$. Since V is smooth, these polynomials do not vanish simultaneously on a divisor, hence $D_{H^0(V,\Omega_V^1(2))} = 0$, and we are done.

3.4 On Griffiths's proof of infinitesimal Torelli Theorem

In this section we will prove Theorem [C] of the Introduction.

It is well known by [9] that the deformation ξ is trivial if and only if *R* lies in the Jacobian ideal \mathcal{J} of the variety *V*. The following lemma gives a translation of this condition in the setting of adjoint forms.

Lemma 3.6 *R* is in the Jacobian ideal \mathcal{J} if and only if $\Omega \in \text{Im}(H^0(V, \mathcal{O}_V(2)) \otimes \lambda^n W \to H^0(V, \mathcal{O}_V(n+d-1)))$ for the generic Ω .

Proof If $\Omega \in \text{Im} (H^0(V, \mathcal{O}_V(2)) \otimes \lambda^n W \to H^0(V, \mathcal{O}_V(n+d-1)))$, then by the Adjoint Theorem, $\xi_{D_W} = 0$. Since $D_W = 0$, the deformation is trivial, hence *R* lies in the Jacobian ideal.

Viceversa if $R \in \mathcal{J}$, the deformation is trivial and by theorem (2.9), we have that $\Omega \in \text{Im}(H^0(V, \mathcal{O}_V(2)) \otimes \lambda^n W \to H^0(V, \mathcal{O}_V(n+d-1)))$.

Our theory gives another characterization for $[R] \in (\mathbb{C}[\xi_0, \dots, \xi_n]/\mathcal{J})_d \simeq H^1(V, \Theta_V)$ to be trivial.

Proposition 3.7 Assume that deg R = d > 3. Then R is in the Jacobian ideal \mathcal{J} if and only if $RP \in \mathcal{J}$ for every polynomial $P \in H^0(V, \mathcal{O}_V(n-1))$ corresponding to a generalized adjoint $\widetilde{\Omega} \in H^0(V, \Omega^n_{\mathbb{P}^n|V}(2n))$.

Proof One implication is trivial.

To prove the other one the idea is to show that every monomial of $H^0(V, \mathcal{O}_V(n-1))$ corresponds to a suitable generalized adjoint. Hence, if $RP \in \mathcal{J}$ for every polynomial $P \in$ $H^0(V, \mathcal{O}_V(n-1))$ corresponding to a generalized adjoint, we have that $R \cdot H^0(V, \mathcal{O}_V(n-1)) \subset \mathcal{J}$ and we are done by Macaulay Theorem (c.f. [16] Theorem 6.19 and Corollary 6.20).

We work by induction at the level of \mathbb{P}^n , since $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(n-1)) \to H^0(V, \mathcal{O}_V(n-1))$ is surjective. The base of the induction is for n = 2. A simple computation shows that the map

$$\bigwedge^{2} H^{0}(\mathbb{P}^{2}, \Omega^{1}_{\mathbb{P}^{2}}(2)) \to H^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1))$$
(3.31)

is surjective because its image contains the canonical basis of degree one monomials.

For the general case we show that every monomial of degree n-1 is given by a generalized adjoint. Consider the natural homomorphism:

$$\bigwedge^{n} H^{0}(\mathbb{P}^{n}, \Omega^{1}_{\mathbb{P}^{n}}(2)) \to H^{0}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(n-1))$$
(3.32)

and take a monomial M with deg M = n - 1. There is a variable ξ_i which does not appear in M. We restrict to the hyperplane $\xi_i = 0$ and we use induction on $\frac{M}{\xi_j}$, where ξ_j appears in M. There exist $s_1, \ldots, s_{n-1} \in H^0(\mathbb{P}^{n-1}, \Omega^1_{\mathbb{P}^{n-1}}(2))$ with $s_1 \wedge \ldots \wedge s_{n-1}$ which corresponds to $\frac{M}{\xi_i}$, that is

$$s_1 \wedge \ldots \wedge s_{n-1} = \frac{M\Psi'}{\xi_j \cdot Q^{n-1}}$$
(3.33)

where $\Psi' = \sum_{k=0, k\neq i}^{n} (-1)^k \xi_k (d\xi_0 \wedge \ldots \wedge d\hat{\xi}_i \ldots \wedge d\hat{\xi}_k \ldots \wedge d\xi_n)$ gives a basis of $H^0(\mathbb{P}^{n-1}, \Omega_{\mathbb{P}^{n-1}}^{n-1}(n))$. It is easy to see that

$$s_1 \wedge \ldots \wedge s_{n-1} \wedge \frac{(\xi_j d\xi_i - \xi_i d\xi_j)}{Q} = \frac{M\Psi}{Q^n},$$
(3.34)

i.e. *M* corresponds to a generalized adjoint, which is exactly our thesis.

From the previous results we deduce immediately Theorem [C] of the Introduction.

Acknowledgements This research is supported by MIUR funds, PRIN project *Geometria delle varietà algebriche* (2010), coordinator A. Verra. The first author is also supported by funds of the Università degli Studi di Udine—Finanziamento di Ateneo per progetti di ricerca scientifica.

References

- Á. Barja, M., González-Alonso, V., Naranjo, J.C.: Xiao's conjecture for general fibred surfaces, arXiv:1401.7502, (2014)
- Collino, A., Naranjo, J.C., Pirola, G.P.: The Fano normal function. J. Math. Pures Appl.(9) 98(3), 346–366 (2012)

- Collino, A., Pirola, G.P.: The Griffiths infinitesimal invariant for a curve in its Jacobian. Duke Math. J. 78(1), 59–88 (1995)
- 4. Donagi, R.: Generic Torelli for projective hypersurfaces. Compositio Math. 50(2-3), 325-353 (1983)
- 5. González-Alonso, V.: Hodge numbers of irregular varieties and fibrations, Ph.D. Thesis, (2013)
- González-Alonso, V.: On deformations of curves supported on rigid divisors. Ann. Mat. Pura Appl. (4) 195(1), 111–132 (2016)
- Green, M.L.: The period map for hypersurface sections of high degree of an arbitrary variety. Compositio Math. 55, 135–156 (1985)
- 8. Green, M.L.: Infinitesimal Methods in Hodge theory. Springer, Berlin (1994). CIME Notes
- Griffiths, P.: On the periods of certain rational integrals: I,II, Ann. Math. (2) 90 (1969), 460–495; ibid. (2) 90 (1969) 496–541
- 10. Pirola, G.P., Rizzi, C.: Infinitesimal invariant and vector bundles. Nagoya Math. J. 186, 95–118 (2007)
- 11. Pirola, G.P., Zucconi, F.: Variations of the Albanese morphisms. J. Algebraic Geom. **12**(3), 535–572 (2003)
- 12. Raviolo, E.: Some geometric applications of the theory of variations of Hodge structures, Ph.D. Thesis
- 13. Rizzi, L., Zucconi, F.: Differential forms and quadrics of the canonical image, arXiv:1409.1826, 23 pages
- 14. Rizzi, L., Zucconi, F.: On Green's proof of infinitesimal Torelli theorem for hypersurfaces, Preprint
- 15. Voisin, C.: Hodge theory and complex algebraic geometry, I. Translated from the French by Leila Schneps.
- Cambridge Studies in Advanced Mathematics, 76. Cambridge University Press, Cambridge, (2002) 16. Voisin, C.: Hodge theory and complex algebraic geometry, II. Translated from the French by Leila Schneps.
- Cambridge Studies in Advanced Mathematics, 77. Cambridge University Press, Cambridge, (2003)