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820 L. Rizzi, F. Zucconi

1 Introduction

Let X be an m-dimensional smooth projective variety and F be a rank n locally free sheaf
over it. A way to study F is to study its extensions 0 → L → E → F → 0 which, up to
isomorphism, are parametrized by Ext1(F,L). In [2,3,5,6,10–13] and [1] the adjoint forms
associated to ξ ∈ Ext1(OX ,F) are deeply studied and many applications are given. Let us
recall the notion of adjoint form in the case L = OX .

Given ξ ∈ Ext1(OX ,F), take an (n + 1)-dimensional subspace W of the kernel of the
cup-product homomorphism ∂ξ : H0(X,F) → H1(X,OX ). Denote by λiW the image of
∧i W through the natural homomorphism λi : ∧i H0(X,F) → H0(X,

∧i F). If B :=
〈η1, . . . , ηn+1〉 is a basis of W and s1, . . . , sn+1 ∈ H0(X, E) are liftings of η1, . . . , ηn+1,
respectively, then the map �n+1 : ∧n+1 H0(X, E) → H0(X,

∧n+1 E) gives the top form
� := �n+1(s1 ∧ s2 ∧ . . . ∧ sn+1) ∈ H0(X, det E). The section � corresponds to a top form
ωξ,W,B̂ ∈ H0(X, detF) via the isomorphism detF � det E , where B̂ = 〈s1, . . . , sn+1〉; the
form ωξ,W,B̂ is called an adjoint form of W and ξ . To the basis B there are also naturally
associated n + 1 elements ωi := λn(η1 ∧ . . . ∧ ηi−1 ∧ η̂i ∧ ηi+1 ∧ . . . ∧ ηn+1), i =
1, . . . , n + 1, obtained by the basis 〈η1 ∧ . . . ∧ ηi−1 ∧ η̂i ∧ ηi+1 ∧ . . . ∧ ηn+1〉n+1

i=1 of∧n W . Note that if we change the liftings s1, . . . , sn+1 ∈ H0(X, E) with other liftings
s̃1, . . . , s̃n+1, then ωξ,W,B̂ is a linear combination of ωξ,W,B̃ and ω1,…, ωn+1. The natural
problem of this theory is to characterize the condition ωξ,W,B̂ ∈ λnW in terms of the fixed

divisor DW of |λnW | ⊂ PH0(X, detF) and of the base locus ZW of the moving part
MW ∈ PH0(X, detF ⊗OX OX (−DW )), where |λnW | = DW + |MW |.

In this paper we consider the general case where L is an invertible sheaf not necessarily
equal to OX . In this case det E = L ⊗ detF and liftings s1, . . . , sn+1 ∈ H0(X, E) of
η1, . . . , ηn+1 ∈ H0(X,F) determine � := �n+1(s1 ∧ s2 ∧ . . . ∧ sn+1) ∈ H0(X, det E)

which is now called a generalized adjoint form. We define as before ωi := λn(η1 ∧ . . . ∧
ηi−1 ∧ η̂i ∧ ηi+1 ∧ . . . ∧ ηn+1), i = 1, . . . , n + 1 and we characterize the case where �

belongs to the image of H0(X,L) ⊗ λnW → H0(X, det E) by the natural tensor product
map. The game is more complicated than in the above-mentioned papers because the linear
system |λnW | is inside PH0(X, detF) and we have to relate the fixed divisor DW of |λnW |
and the base locus ZW of the moving part MW ∈ PH0(X, detF ⊗OX OX (−DW )) to forms
which are not anymore inside H0(X, detF). Nevertheless the result is analogue to the one
of [11, Theorem 1.5.1] and [13, Theorem 2.1.7]:

Theorem [A] Let X be an m-dimensional complex compact smooth variety. Let F be a rank
n locally free sheaf on X and L an invertible sheaf. Consider an extension 0 → L → E →
F → 0 corresponding to ξ ∈ Ext1(F,L). Let W = 〈η1, . . . , ηn+1〉 be an n+1-dimensional
sublinear system of ker(∂ξ ) ⊂ H0(X,F). Let � ∈ H0(X, det E) be a generalized adjoint
form associated to W as above. It holds that if � ∈ Im (H0(X,L)⊗λnW → H0(X, det E))

then ξ ∈ ker(H1(X,F∨ ⊗ L) → H1(X,F∨ ⊗ L(DW ))).
Theorem [A], called Adjoint Theorem, can be thought as a general version of the well-

known Castelnuovo’s free pencil trick; c.f. see Theorem 2.8.
We have also a viceversa of the Adjoint Theorem; see: Theorem 2.9:

Theorem [B] Under the same hypothesis of Theorem [A], assume also that H0(X,L) ∼=
H0(X,L(DW )). It holds that if ξ ∈ ker(H1(X,F∨ ⊗ L) → H1(X,F∨ ⊗ L(DW ))), then
� ∈ Im (H0(X,L) ⊗ λnW → H0(X, det E)).

In particular in the case DW = 0 Theorem [B] is a full characterization of the condition
� ∈ Im (H0(X,L) ⊗ λnW → H0(X, det E)).
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Generalized adjoint forms on algebraic varieties 821

Now by the Adjoint Theorem and by Theorem [B] we can study extension classes of
sheaves via adjoint forms. Indeed even if F has no global sections we can always take the
tensor product with a sufficiently ample linear systemM such thatF⊗M has enough global
sections in order to apply the theory of adjoint forms. By applying the above idea to the case
where n > 2, X ⊂ P

n is an hypersurface of degree d > 3 andF := �1
X ⊗OX OX (2)we have

a reformulation of the infinitesimal Torelli Theorem for X in the setting of generalized adjoint
theory. In this paper we will not recall the theory concerning infinitesimal Torelli Theorems,
for which a reference is [16], in any case a quick introduction to this topic is also given in [13].
Here we point out only that given a degree d form F ∈ C[ξ0, . . . , ξn] the Jacobian ideal of F
is the ideal J generated by the partial derivatives ∂F

∂ξi
for i = 0, . . . , n and by [9][Theorem

9.8], any infinitesimal deformation ξ ∈ H1(X,	X ), where X = (F = 0) and 	X is the
sheaf of tangent vectors on X , is given by a class [R] in the quotient C[ξ0, . . . , ξn]/J where
R is a homogeneous form of degree d .
Theorem [C] For a smooth hypersurface X of degree d in P

n with n ≥ 3 and d > 3 the
following are equivalent:

(1) the differential of the period map is zero on the infinitesimal deformation

[R] ∈ (C[ξ0, . . . , ξn]/J )d � H1(X,	X )

(2) R is an element of the Jacobian ideal J
(3) � ∈ Im (H0(X,OX (2)) ⊗ λnW → H0(X,OX (n + d − 1))) for the generic gener-
alized adjoint �

(4) The generic generalized adjoint � lies in J .

Note that Theorem [C] has a different flavor with respect to the analogue [9, Theorem
9.8] since we essentially use meromorphic 1-forms over X ; see Proposition 3.7. Finally we
want to mention that in a forthcoming paper [14] we show how to recover also the Green’s
infinitesimal Torelli Theorem for a sufficiently ample divisor of a smooth variety in terms of
generalized adjoint theory.

2 The theory of generalized adjoint forms

2.1 Definition of generalized adjoint form

Let X be a smooth compact complex variety of dimension m and let F and L be two locally
free sheaves on X of rank n and 1, respectively. Consider the exact sequence of locally free
sheaves

0 → L → E → F → 0 (2.1)

associated to an element ξ ∈ Ext1(F,L) ∼= H1(X,F∨ ⊗L). Recall that the invertible sheaf
detF := ∧n F fits into the exact sequence

0 →
n−1∧

F ⊗ L →
n∧

E → detF → 0, (2.2)

which still corresponds to ξ under the isomorphism Ext1(F,L) ∼= Ext1(detF,
∧n−1 F ⊗

L) ∼= H1(X,F∨ ⊗ L). Furthermore detF satisfies

detF ⊗ L ∼= det E . (2.3)
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822 L. Rizzi, F. Zucconi

Let ∂ξ : H0(X,F) → H1(X,L) be the connecting homomorphism related to (2.1), and let
W ⊂ ker(∂ξ ) be a vector subspace of dimension n+1. Choose a basisB := {η1, . . . , ηn+1} of
W . By definition we can take liftings s1, . . . , sn+1 ∈ H0(X, E) of the sections η1, . . . , ηn+1.
If we consider the natural map

�n :
n∧

H0(X, E) → H0(X,

n∧
E)

we can define the sections

�i := �n(s1 ∧ . . . ∧ ŝi ∧ . . . ∧ sn+1) (2.4)

for i = 1, . . . , n + 1. Denote by ωi , for i = 1, . . . , n + 1, the corresponding sections in
H0(X, detF). Obviously we have that ωi = λn(η1 ∧ . . . ∧ η̂i ∧ . . . ∧ ηn+1), where λn is the
natural morphism

λn :
n∧

H0(X,F) → H0(X, detF).

The vector subspace of H0(X, detF) generated by ω1, . . . , ωn+1 is denoted by λnW .

Definition 2.1 If λnW is nontrivial, it induces a sublinear system |λnW | ⊂ P(H0(X, detF))

that we will call adjoint sublinear system. We call DW its fixed divisor and ZW the base locus
of its moving part |MW | ⊂ P(H0(X, detF(−DW ))).

Definition 2.2 The section � ∈ H0(X, det E) corresponding to s1 ∧ . . . ∧ sn+1 via

�n+1 :
n+1∧

H0(X, E) → H0(X, det E) (2.5)

is called generalized adjoint form.

Remark 2.3 It is easy to see by local computation that this section is in the image of the
natural injection det E(−DW ) ⊗ IZW → det E .

We want to study the condition

� ∈ Im (H0(X,L) ⊗ 〈�i 〉 → H0(X, det E)) (2.6)

or, equivalently,
� ∈ Im (H0(X,L) ⊗ λnW → H0(X, det E)). (2.7)

The first map is given by the wedge product, the second one by (2.3). Note that if H0(X,L) =
0 this condition is equivalent to � = 0.

Remark 2.4 The choice of the liftings is not relevant for this purpose. Take different lift-
ings s′

1, . . . , s
′
n+1 ∈ H0(X, E) of η1, . . . , ηn+1 and call �′

i ∈ H0(X,
∧n E) and �′ ∈

H0(X, det E) the corresponding sections constructed as above. Obviously

Im (H0(X,L) ⊗ 〈�i 〉 → H0(X, det E)) = Im (H0(X,L) ⊗ 〈
�′

i

〉 → H0(X, det E)), (2.8)

since they are both equal to Im (H0(X,L) ⊗ λnW → H0(X, det E)). It is also easy to
see that � ∈ Im (H0(X,L) ⊗ 〈�i 〉 → H0(X, det E)) iff �′ ∈ Im (H0(X,L) ⊗ 〈

�′
i

〉 →
H0(X, det E)).
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Generalized adjoint forms on algebraic varieties 823

Remark 2.5 Consider another basisB′ := {η′
1, . . . , η

′
n+1} ofW and let A be the matrix of the

basis change. The sections s′
1, . . . , s

′
n+1 obtained from s1, . . . , sn+1 through the matrix A are

liftings of η′
1, . . . , η

′
n+1. The section �′ := �n+1(s′

1 ∧ . . . ∧ s′
n+1) satisfies �′ = det A · �.

Moreover � ∈ Im (H0(X,L) ⊗ 〈�i 〉 → H0(X, det E)) iff �′ ∈ Im (H0(X,L) ⊗ 〈
�′

i

〉 →
H0(X, det E)).

Lemma 2.6 If � ∈ Im (H0(X,L) ⊗ 〈�i 〉 → H0(X, det E)), then we can find liftings
s̃i ∈ H0(X, E), i = 1, . . . , n + 1, such that �̃ := �n+1(s̃1 ∧ . . . ∧ s̃n+1) = 0.

Proof By hypothesis there exist σi ∈ H0(X,L) such that

� =
n+1∑

i=1

σi ∧ �i (2.9)

We can define new liftings for the element ηi :

s̃i := si + (−1)n−iσi .

Now, since

s̃1 ∧ . . . ∧ s̃n+1 = s1 ∧ . . . ∧ sn+1 −
n+1∑

i=1

s1 ∧ . . . ∧ ŝi ∧ . . . ∧ sn+1 ∧ σi , (2.10)

we immediately deduce �̃ = 0. ��
From the natural map

F∨ ⊗ L → F∨ ⊗ L(DW )

we have a homomorphism

H1(X,F∨ ⊗ L)
ρ→ H1(X,F∨ ⊗ L(DW ));

we call ξDW = ρ(ξ).

2.2 Castelnuovo’s free pencil trick

Consider the case where bothL andF are of rank one, while X has dimensionm. In this case
W = 〈η1, η2〉 ⊂ H0(X,F)has dimension two; as usualwe choose liftings s1, s2 ∈ H0(X, E)

of η1, η2. Note also thatω1 = η2 andω2 = η1, in particularW = λ1W so DW is the fixed part
of W and ZW is the base locus of its moving part. Call η̃i ∈ H0(X,F(−DW )) the sections
corresponding to the ηi ’s via H0(X,F(−DW )) → H0(X,F). The following lemma is well
known and it is the core of the Castelnuovo base point free pencil trick.

Lemma 2.7 We have an exact sequence

0 → F∨(DW )
i→ OX ⊕ OX

ν→ F(−DW ) ⊗ IZW → 0 (2.11)

where the morphism i is given by contraction with−η̃1 and η̃2, while ν is given by evaluation
with η̃2 on the first component and η̃1 on the second one.

It is easy to see by local computation that sequence (2.11) fits into the following commu-
tative diagram
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824 L. Rizzi, F. Zucconi

0 F∨

·DW

E∨

(−s1,s2)

L∨

�

0

0 F∨(DW )
i OX ⊕ OX

ν F(−DW ) ⊗ IZW 0.

(2.12)

The morphism E∨ → OX ⊕ OX is given by contraction with the sections −s1 and s2, the
morphism L∨ → F(−DW )⊗IZW by contraction with the adjoint �. We can prove now the
following

Theorem 2.8 Let X be an m-dimensional complex compact smooth variety. Let F , L
be invertible sheaves on X. Consider ξ ∈ H1(X,F∨ ⊗ L) associated to the extension
(2.1). Define W = 〈η1, η2〉 ⊂ ker(∂ξ ) ⊂ H0(X,F) and � as above. We have that
� ∈ Im (H0(X,L) ⊗ W → H0(X, det E)) if and only if ξDW = 0.

Proof Tensoring (2.12) by L and passing to cohomology we have the following diagram

0 H0(F∨ ⊗ L) H0(E∨ ⊗ L)

(s1 ,−s2)

C

β

H1(F∨ ⊗ L)

ρ

0 H0(F∨(DW ) ⊗ L)
i

H0(L ⊕ L)
ν

H0(F(−DW ) ⊗ IZW ⊗ L)
δ

H1(F∨(DW ) ⊗ L).

(2.13)

Obviously β(1) = � and, by commutativity, δ(β(1)) = ξDW . We have then ξDW = 0 if

and only if � ∈ Im (H0(L ⊕ L)
ν→ H0(F(−DW ) ⊗ IZW ⊗ L)). Since ν is given by the

sections η̃2 and η̃1, this condition is equivalent to� ∈ Im (H0(X,L)⊗W → H0(X, det E)),
since det E = F ⊗ L. ��
2.3 The Adjoint Theorem

We go back now to the general case with F locally free of rank n. By obvious identifications
the natural map

Ext1(detF,

n−1∧
F ⊗ L) → Ext1(detF(−DW ),

n−1∧
F ⊗ L)

gives an extension E(n) and a commutative diagram:

0 0

0
∧n−1 F ⊗ L E(n)

α

ψ

detF(−DW ) 0

0
∧n−1 F ⊗ L

∧n E detF 0

detF ⊗OX ODW detF ⊗OX ODW

0 0.

(2.14)
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Generalized adjoint forms on algebraic varieties 825

2.3.1 The proof of the Adjoint Theorem

By the hypothesis� ∈ Im (H0(X,L)⊗λnW → H0(X, det E)) and by lemma (2.6), we can
choose liftings si ∈ H0(X, E) of ηi with � = 0.

Since DW is the fixed divisor of the linear system |λnW | and the sections ωi generate this
linear system, then the ωi are in the image of

detF(−DW ) → detF,

so we can find sections ω̃i ∈ H0(X, detF(−DW )) such that

ω̃i · d = ωi , (2.15)

where d is a global section of OX (DW ) with (d) = DW . Hence, using the commutativity of
(2.14), we can find liftings �̃i ∈ H0(X, E(n)) of the sections �i . The evaluation map

n+1⊕

i=1

OX
μ̃→ E(n)

given by the global sections �̃i , composed with the map α of (2.14), induces a map μ which
fits into the following diagram

⊕n+1
i=1 OX

μ̃

⊕n+1
i=1 OX

μ

0
∧n−1 F ⊗ L E(n)

α
detF(−DW ) 0.

We point out that the morphism μ is given by multiplication by ω̃i on the i-th component.
The sheaf Im μ̃ is torsion free since it is a subsheaf of the locally free sheaf E(n). Moreover,
since � = 0, a local computation shows that Im μ̃ has rank one outside ZW . On the other
hand the sheaf Imμ is by definition

Imμ = detF(−DW ) ⊗ IZW .

The morphism
α : E(n) → detF(−DW )

induces a surjective morphism, that we continue to call α,

Im μ̃
α→ Imμ

between two sheaves that are locally free of rank one outside ZW . This morphism is also
injective, because its kernel is a torsion subsheaf of the torsion free sheaf Im μ̃, hence it is
trivial.

We have proved that
Im μ̃ ∼= detF(−DW ) ⊗ IZW ,

so
E(n) ⊃ (Im μ̃)∨∨ ∼= detF(−DW ).

This isomorphism gives the splitting

0
∧n−1 F ⊗ L E(n) detF(−DW ) 0.
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826 L. Rizzi, F. Zucconi

Since ξDW is the element of H1(X,F∨ ⊗L(DW )) associated to this extension, we conclude
that ξDW = 0.

We have proved the Adjoint Theorem.

2.3.2 An inverse of the Adjoint Theorem

We prove now an inverse of the Adjoint Theorem.

Theorem 2.9 Let X be an m-dimensional complex compact smooth variety. Let F be a
rank n locally free sheaf on X and L an invertible sheaf. Consider an extension 0 →
L → E → F → 0 corresponding to ξ ∈ Ext1(F,L). Let W = 〈η1, . . . , ηn+1〉 be a
n + 1-dimensional sublinear system of ker(∂ξ ) ⊂ H0(X,F). Let � ∈ H0(X, det E) be
an adjoint form associated to W as above. Assume that H0(X,L) ∼= H0(X,L(DW )). If
ξ ∈ ker(H1(X,F∨ ⊗ L) → H1(X,F∨ ⊗ L(DW ))), then � ∈ Im (H0(X,L) ⊗ λnW →
H0(X, det E)).

Proof If F is a rank one sheaf, then (2.8) gives the thesis without the extra assumption
H0(X,L) ∼= H0(X,L(DW )). We assume then rank F ≥ 2.

By (2.3), we can write (�) = DW + F with F effective. In the first step of the proof we
want to find a global section

�′ ∈ H0

(

X,

n∧
E ⊗ L(−F)

)

which restricts, through the natural map

n∧
E ⊗ L(−F) → det E(−F),

to the section d ∈ H0(det E(−F)), where (d) = DW .
Consider the commutative diagram:

0 0 0

0
∧n−1 F ⊗ L⊗2(−F)

∧n E ⊗ L(−F)
G2

G1

det E(−F) 0

0
∧n−1 F ⊗ L⊗2 τ

H1

∧n E ⊗ L det E 0

0
∧n−1 F ⊗ L⊗2|F

H2 ∧n E ⊗ L|F H3 det E|F 0

0 0 0.

By the hypothesis ξDW = 0 it follows easily that there exists a lifting �̃ ∈ H0(X,
∧n E ⊗L)

of �. Indeed, tensor (2.14) by L and take a global lifting f ∈ H0(X, det E(−DW )) of �.
Since ξDW = 0, f can be lifted to a section e ∈ H0(X, E(n) ⊗ L). Define �̃ := ψ(e). By
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Generalized adjoint forms on algebraic varieties 827

commutativity, H3(�̃|F ) = 0 hence we call μ̄ ∈ H0(X,
∧n−1 F ⊗ L⊗2|F ) the lifting of

�̃|F . A local computation shows that the connecting homomorphism

δ : H0(X,

n−1∧
F ⊗ L⊗2|F ) → H1(X,

n−1∧
F ⊗ L⊗2(−F))

maps μ̄ to ξDW , which is zero by hypothesis. Then there exists a global section

μ ∈ H0(X,

n−1∧
F ⊗ L⊗2)

which is a lifting of μ̄. The section

�̂ := � − τ(μ) ∈ H0(X,

n∧
E ⊗ L)

is a new lifting of � that, by construction, vanishes when restricted to F . We call

�′ ∈ H0(X,

n∧
E ⊗ L(−F))

the global section which lifts �̂. It is easy to see that G2(�
′) = d so �′ is the section we

wanted.
In the second part of the proofwe prove that� ∈ Im (H0(X,L)⊗λnW → H0(X, det E)).

The global sections

ωi := λn(η1 ∧ . . . ∧ η̂i ∧ . . . ∧ ηn+1) ∈ H0(X, detF)

generate λnW and by definition they vanish on DW , that is there exist global sections ω̃i ∈
H0(X, detF(−DW )) such that

ωi = ω̃i · d.

We consider the commutative diagram

0 L(−F)
α

·F

W ⊗ OX
γ

β

F̄
ι

0

0 L E F 0.

(2.16)

The map β is locally defined by

( f1, . . . , fn+1) �→ (−1)n f1 · s1 + · · · + fn+1 · sn+1.

The map α is defined in the following way: if f ∈ L(−F)(U ) is a local section, then,
locally on U , α is given by

f �→ (ω̃1( f ), . . . , ω̃n+1( f )),

where we observe that the sections ω̃i are global sections of the dual sheaf of L(−F). The
sheaf F̄ is by definition the cokernel of the first row. Now, tensoring by L∨, we have

0 OX (−F)
α

·F

W ⊗ L∨ γ

β

F̄ ⊗ L∨

ι

0

0 OX E ⊗ L∨ F ⊗ L∨ 0.

(2.17)

Dualizing and tensoring again by OX (DW ), we obtain the commutative square
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828 L. Rizzi, F. Zucconi

∧n W ⊗ L(DW )
α∨

det E

E∨ ⊗ L(DW )

β∨

OX (DW ),

·F

where we have used the isomorphism of vector spaces W∨ ∼= ∧n W , given by

ηi �→ η1 ∧ . . . ∧ η̂i ∧ . . . ∧ ηn+1 =: ei

where η1, . . . , ηn+1 is the basis of W∨ dual to the basis η1, . . . , ηn+1 of W . By definition
of α we have that α∨ is the evaluation map given by the global sections ω̃i . Note that
E∨ ⊗ L(DW ) ∼= ∧n E ⊗ L(−F). Taking global sections we have

∧n W ⊗ H0(X,L(DW ))
α∨

H0(X, det E)

H0(X, E∨ ⊗ L(DW ))

β∨

H0(X,OX (DW )).

·F

The section �′ ∈ H0(X, E∨ ⊗ L(DW )) produces in H0(X, det E) the adjoint �, so by
commutativity

� = α∨(β∨(�′)).

We have

β∨(�′) =
n+1∑

i=1

ci · ei ⊗ σi ,

where ci ∈ C and σi ∈ H0(X,L(DW )). By our hypothesis H0(X,L) ∼= H0(X,L(DW )),
there exists sections σ̃i ∈ H0(X,L) with σi = σ̃i · d . So

� = α∨(β∨(�′)) = α∨(

n+1∑

i=1

ci ·ei ⊗σi ) =
n+1∑

i=1

ci ·ω̃i ·σi =
n+1∑

i=1

ci ·ω̃i ·d · σ̃i =
n+1∑

i=1

ci ·ωi · σ̃i .

This is exactly our thesis. ��

By the Adjoint Theorem and (2.9) we deduce the following

Corollary 2.10 If DW = 0, then ξ = 0 iff � ∈ Im (H0(X,L) ⊗ λnW → H0(X, det E)).

3 Infinitesimal Torelli Theorem for projective hypersurfaces

In this section we want to study adjoint images in the case of smooth hypersurfaces of the
projective space Pn .
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Generalized adjoint forms on algebraic varieties 829

3.1 Meromorphic 1-forms on a smooth projective hypersurface

Let V ⊂ P
n be a smooth hypersurface defined by a homogeneous polynomial F ∈

C[ξ0, . . . , ξn] of degree deg F = d . An infinitesimal deformation ξ ∈ Ext1(�1
V ,OV ) of

V gives an exact sequence for the sheaf of differential forms �1
V :

0 → OV → �1
V|V → �1

V → 0. (3.1)

We assume that n ≥ 3, hence H0(V,�1
V ) = 0 and we can not construct the adjoint of

this sequence directly, so we twist (3.1) by a suitable integer a such that �1
V (a) has at least

n = rank (�1
V ) + 1 global sections. A standard computation shows that a = 2 is enough for

this purpose, so from now on we will consider the sequence

0 → OV (2) → �1
V|V (2) → �1

V (2) → 0 (3.2)

which again corresponds to ξ ∈ Ext1(�1
V (2),OV (2)) ∼= Ext1(�1

V ,OV ) ∼= H1(V,	V ),
where 	V denotes the sheaf of vector fields on V . Denote by J the Jacobian ideal of F ,
that is the ideal of C[ξ0, . . . , ξn] generated by the partial derivatives ∂F

∂ξi
for i = 0, . . . , n.

Following [9][Theorem 9.8], the deformation ξ is given by a class [R] of degree d in the
quotient C[ξ0, . . . , ξn]/J . If we choose a representative R of degree d for this class, then
F + t R = 0, for small t , is the equation of the hypersurface that is the associated deformation
of V .

Together with (3.2), we have the conormal exact sequence

0 → OV (−d) → �1
Pn |V → �1

V → 0. (3.3)

If we put these sequences together we obtain the diagram

0

0 OV (2) �1
V|V (2) �1

V (2) 0

�1
Pn |V (2)

OV (2 − d)

0
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which can be completed as follows

0 0

0 OV (2) �1
V|V (2) �1

V (2) 0

0 OV (2) G �1
Pn |V (2) 0

OV (2 − d) OV (2 − d)

0 0.

(3.4)

By [9] the deformation ξ of (3.2) comes from R ∈ H0(Pn,On
P
(d)), then it gives the

zero element in H0(V,	Pn |V ), hence we have that the sheaf G in (3.4) is a direct sum
G = OV (2) ⊕ �1

Pn |V (2) and we have a natural morphism φ : �1
Pn |V (2) → �1

V|V (2) which
fits in the diagram

0 0

0 OV (2) �1
V|V (2) �1

V (2) 0

0 OV (2) G �1
Pn |V (2)

φ

0

OV (2 − d) OV (2 − d)

0 0.

(3.5)

The morphism φ gives in a natural way a morphism

φn : H0(V, det(�1
Pn |V (2))) ∼= H0(V,OV (n − 1)) → H0(V, det(�1

V|V (2)))

∼= H0(V,OV (n + d − 1)).

We can write explicitly the isomorphism between H0(V, det(�1
Pn |V (2))) = H0(V,�n

Pn |V
(2n)) and H0(V,OV (n − 1)). Note that H0(Pn,�n

Pn (2n)) → H0(V,�n
Pn |V (2n)) is surjec-

tive, so we will focus on the rational n-forms on Pn . By [9][Corollary 2.11] this forms may be
written as ω = P�

Q where � = ∑n
i=0(−1)iξi (dξ0 ∧ . . . ∧ d ξ̂i ∧ . . . ∧ dξn) gives a generator

of H0(Pn,�n
Pn (n+1)) and deg Q = deg P+(n+1). In our case Q is a polynomial of degree

2n, hence P has degree n−1. This identification depends on the (noncanonical) choice of the
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polynomial Q and gives an isomorphism H0(V,�n
Pn |V (2n)) → H0(V,OV (n − 1)) defined

by ω|V �→ P .

Proposition 3.1 φn is given via the multiplication by the polynomial R (modulo F).

Proof Locally we can see V in the product � × P
n of the projective space with a disk;

here V is defined by the equation F + t R = 0. Hence d(F + t R) = 0 in �1
V , that is

dF + dt · R + dR · t = 0.
Call Fi := ∂F

∂ξi
. Since V is smooth, there exist i such that Ui = (Fi �= 0) is a nontrivial

open subset; let for example U1 be nontrivial. Take local coordinates zi = ξi
ξ0

in the open set
(ξ0 �= 0) ∩U1. Then we have

dz1 = − Rdt

F1
− td R

F1
−

∑

i>1

Fi
F1

dzi (3.6)

which gives in V (that is for t = 0)

dz1 = − Rdt

F1
−

∑

i>1

Fi
F1

dzi (3.7)

The image φn(ω|V ) is then obtained by the substitution of (3.7) in P(z)
Q(z)dz1∧ . . .∧dzn , which

is the local form of P(ξ)�
Q(ξ)

. Hence

P(z)

Q(z)
dz1 ∧ . . . ∧ dzn = − P(z)R(z)

Q(z)F1(z)
dt ∧ dz2 ∧ . . . ∧ dzn . (3.8)

If we homogenize we obtain on U1

P�

Q
= − PR

QF1

∑

i �=1

(−1)i−1sgn(i − 1)ξi dt ∧ dξ0 ∧ d̂ξ1 . . . ∧ d̂ξi ∧ . . . ∧ dξn

Hence

φn(ω|V ) = − PR

QF1

∑

i �=1

(−1)i−1sgn(i − 1)ξi dt ∧ dξ0 ∧ d̂ξ1 . . . ∧ d̂ξi ∧ . . . ∧ dξn (3.9)

and it is clear that φn is given by multiplication with R. ��
3.2 A canonical choice of adjoints on a hypersurface of degree d > 2

We want now to construct adjoint forms associated to the sequence (3.2).
Assume that n ≥ 3, so that H1(V,OV (2)) = H1(V,OV (2− d)) = 0, and we can lift all

the global sections of H0(V,�1
V (2)) both in the horizontal and in the vertical sequence of

(3.5).
We take η1, . . . , ηn ∈ H0(V,�1

V (2)) global forms and we want to find liftings
s1, . . . , sn ∈ H0(V,�1

V|V ). This can be done since H1(V,OV (2)) is zero. A generalized

adjoint is then the global section of the sheaf det(�1
V|V (2)) = OV (n + d − 1) given by

� := �n(s1 ∧ . . . ∧ sn) ∈ H0(V, det(�1
V|V (2))).

We point out another interesting way to compute this generalized adjoint form using
Proposition (3.1).

Consider the sequence (3.3), that is the vertical sequence in (3.5). Since H1(V,OV

(2− d)) = 0, we can find liftings s̃1, . . . , s̃n ∈ H0(V,�1
Pn |V (2)) of the sections η1, . . . , ηn .
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Furthermore they are unique if d > 2. We can thus consider the adjoint form associated to
(3.3) given by �̃ := �n(s̃1 ∧ . . . ∧ s̃n). This adjoint is independent from the deformation ξ ;
it depends only on V and its embedding in P

n . If d > 2, then �̃ is unique.
To describe �̃ explicitly we first consider the exact sequence

0 → �1
Pn (2 − d) → �1

Pn (2) → �1
Pn |V (2) → 0. (3.10)

If d > 2, the vanishing of H0(Pn,�1
Pn (2−d)) and H1(Pn,�1

Pn (2−d)) (c.f. Bott Formulas)
gives the isomorphism H0(Pn,�1

Pn (2)) = H0(V,�1
Pn |V (2)). Hence, the forms s̃i are the

restriction on V of global rational 1-forms. By [9][Theorem 2.9] we can write

s̃i = 1

Q

n∑

j=0

Li
j dξ j (3.11)

where deg Q = 2 and Li
j is a homogeneous polynomial of degree 1 which does not contain

ξ j in its expression. Hence

�̃ = �n(s̃1 ∧ . . . ∧ s̃n) = 1

Qn

n∑

i=0

Midξ0 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn (3.12)

where Mi is the determinant of the matrix obtained by
⎛

⎜
⎝

L1
0 . . . Ln

0
...

...

L1
n . . . Ln

n

⎞

⎟
⎠ (3.13)

removing the i-th row. Since �̃ is a rational n-form on P
n , following [9][Corollary 2.11] it

can be written as P�
Qn , and we deduce that

Mi

(−1)iξi
= P (3.14)

for all i = 0, . . . , n. P is a polynomial of degree n − 1 and it corresponds to �̃ via the
isomorphism H0(V,�n

Pn |V (2n)) ∼= H0(V,OV (n − 1)). Hence by (3.1) we have that the

form � ∈ H0(V,OV (n + d − 1)) given by PR is a canonical choice of adjoint form for
W = 〈η1, . . . , ηn〉 and ξ .

Remark 3.2 Alternatively this can be seen using the Euler sequence on V :

0 → OV →
n+1⊕

OV (1) → 	Pn |V → 0. (3.15)

This sequence, dualized and conveniently tensorized gives

0 → �1
Pn |V (2) →

n+1⊕

i=1

OV (1) → OV (2) → 0. (3.16)

The sections s̃i are associated via the first morphism to an n + 1-uple of linear polynomials
(L0

i , . . . , L
n
i ). Then, taking the wedge product of (3.16) we obtain an exact sequence

0 → �n
Pn |V (2n) ∼= OV (n − 1) →

n∧
OV (1) =

n+1⊕
OV (n) → �n−1

Pn |V (2n) → 0 (3.17)
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where the morphism OV (n − 1) → ⊕n+1 OV (n) is given by

G �→ (Gξ0, . . . , (−1)nGξn). (3.18)

Since �̃ = �n(s̃1 ∧ . . . ∧ s̃n) ∈ H0(V,�n
Pn |V (2n)) is sent exactly to (L0

0, . . . , L
n
0) ∧ . . . ∧

(L0
n, . . . , L

n
n) = (M0, . . . , Mn) (using the same notation as above), then we conclude that �̃

corresponds in H0(V,OV (n − 1)) to a polynomial P which satisfies

Mi

(−1)iξi
= P. (3.19)

3.3 The adjoint sublinear systems obtained by meromorphic 1-forms

To study the conditions given in (2.6) and (2.7), we need to describe the sections

�̃i := �n−1(s̃1 ∧ . . . ∧ ˆ̃si ∧ . . . ∧ s̃n) ∈ H0(V,�n−1
Pn |V (2n − 2))

(c.f. (2.4)) and their images in H0(V,�n−1
V (2(n − 1))) = H0(V,OV (n + d − 3)) that we

have denoted by ωi .
A computation similar to the above shows that

�̃i = �n−1(s̃1 ∧ . . .∧ ˆ̃si ∧ . . .∧ s̃n) = 1

Qn−1

∑

j<k

Mi
jkdξ0 ∧ . . .∧ ˆdξ j ∧ . . .∧ ˆdξk ∧ . . .∧dξn

(3.20)
where Mi

jk is the determinant of the matrix obtained by (3.13) removing the i-th column and
the j-th and k-th rows. On the other hand, rearranging the expression of [9][Theorem 2.9]
we can write

�̃i = 1

Qn−1

∑

j

Ai
j (

∑

k �= j

(−1)k+ j sgn(k− j)ξkdξ0∧ . . .∧ ˆdξ j ∧ . . .∧ ˆdξk ∧ . . .∧dξn) (3.21)

with deg Ai
j = n − 2.

Comparing (3.20) and (3.21) gives

Mi
jk = (−1) j+k(Ai

jξk − ξ j A
i
k). (3.22)

As before this can be computed also via the Euler sequence.
We call � j := ∑

k �= j (−1)k+ j sgn(k − j)ξkdξ0 ∧ . . . ∧ ˆdξ j ∧ . . . ∧ ˆdξk ∧ . . . ∧ dξn . Note

that the sections � j , for j = 0, . . . , n give a basis of H0(V,�n−1
Pn |V (n)).

Proposition 3.3 ωi = ∑
j A

i
j · Fj in H0(V,OV (n + d − 3))

Proof It is enough to show that the image of � j through the morphism �n−1
Pn |V (n) → OV

(d − 1) is Fj . Consider the exact sequence of the tangent sheaf of V :

0 → 	V → 	Pn |V → OV (d) → 0. (3.23)

The beginning of the Koszul complex is

n∧
	Pn |V ⊗ OV (−d) →

n−1∧
	Pn |V (3.24)

which, tensored by OV (−n), gives

n∧
	Pn |V ⊗ OV (−n − d) →

n−1∧
	Pn |V ⊗ OV (−n). (3.25)
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This is exactly the dual of �n−1
Pn |V (n) → OV (d − 1). Hence we only need to show that the

morphism (3.25) composed with the contraction by �i

n−1∧
	Pn |V ⊗ OV (−n)

�i→ OV (3.26)

is the multiplication by Fi . This is easy to see by a standard local computation. ��
Remark 3.4 We immediately have that the polynomials associated to the sections ωi are in
the Jacobian ideal of V .

Condition (2.7), that is

� ∈ Im (H0(V,OV (2)) ⊗ λnW → H0(V,OV (n + d − 1))), (3.27)

can be written, modulo F , as

RP =
∑

ωi · Si =
∑

i, j

Ai
j · Fj · Si , (3.28)

where deg Si = 2. In particular this implies that RP is in the Jacobian ideal of V .

Proposition 3.5 The base locus DW of the linear system |λnW | is zero for the generic W.

Proof By [11][Proposition 3.1.6] it is enough to prove that H0(V,�1
V (2)) generically gener-

ates the sheaf�1
V (2) and that DH0(V,�1

V (2)) = 0.We have an explicit basis for H0(V,�1
V (2))

given by
ξi dξ j − ξ j dξi

Q
(3.29)

where i < j and deg Q = 2. The vector space λnH0(V,�1
V (2)) ⊂ H0(V,OV (n + d − 3))

is obviously nonzero, hence H0(V,�1
V (2)) generically generates the sheaf �1

V (2).
It remains to prove that DH0(V,�1

V (2)) = 0. An easy computation (for example by induc-

tion) shows that λnH0(V,�1
V (2)) contains all the polynomials of the form

ξi1ξi2 . . . ξin−2

∂F

∂ξ j
(3.30)

where {i1, . . . , in−2} ⊂ {1, . . . , n + 1} and j /∈ {i1, . . . , in−2}. Since V is smooth, these
polynomials do not vanish simultaneously on a divisor, hence DH0(V,�1

V (2)) = 0, and we are
done. ��
3.4 On Griffiths’s proof of infinitesimal Torelli Theorem

In this section we will prove Theorem [C] of the Introduction.
It is well known by [9] that the deformation ξ is trivial if and only if R lies in the Jacobian

ideal J of the variety V . The following lemma gives a translation of this condition in the
setting of adjoint forms.

Lemma 3.6 R is in the Jacobian ideal J if and only if � ∈ Im (H0(V,OV (2)) ⊗ λnW →
H0(V,OV (n + d − 1))) for the generic �.

Proof If � ∈ Im (H0(V,OV (2)) ⊗ λnW → H0(V,OV (n + d − 1))), then by the Adjoint
Theorem, ξDW = 0. Since DW = 0, the deformation is trivial, hence R lies in the Jacobian
ideal.

Viceversa if R ∈ J , the deformation is trivial and by theorem (2.9), we have that � ∈
Im (H0(V,OV (2)) ⊗ λnW → H0(V,OV (n + d − 1))). ��
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Our theory gives another characterization for [R] ∈ (C[ξ0, . . . , ξn]/J )d � H1(V,	V )

to be trivial.

Proposition 3.7 Assume that deg R = d > 3. Then R is in the Jacobian ideal J if and only
if RP ∈ J for every polynomial P ∈ H0(V,OV (n − 1)) corresponding to a generalized
adjoint �̃ ∈ H0(V,�n

Pn |V (2n)).

Proof One implication is trivial.
To prove the other one the idea is to show that every monomial of H0(V,OV (n − 1))

corresponds to a suitable generalized adjoint. Hence, if RP ∈ J for every polynomial P ∈
H0(V,OV (n − 1)) corresponding to a generalized adjoint, we have that R · H0(V,OV (n −
1)) ⊂ J and we are done byMacaulay Theorem (c.f. [16] Theorem 6.19 and Corollary 6.20).

We work by induction at the level of Pn , since H0(Pn,OPn (n−1)) → H0(V,OV (n−1))
is surjective. The base of the induction is for n = 2. A simple computation shows that the
map

2∧
H0(P2,�1

P2
(2)) → H0(P2,OP2(1)) (3.31)

is surjective because its image contains the canonical basis of degree one monomials.
For the general casewe show that everymonomial of degree n−1 is given by a generalized

adjoint. Consider the natural homomorphism:

n∧
H0(Pn,�1

Pn (2)) → H0(Pn,OPn (n − 1)) (3.32)

and take a monomial M with degM = n − 1. There is a variable ξi which does not appear
in M . We restrict to the hyperplane ξi = 0 and we use induction on M

ξ j
, where ξ j appears in

M . There exist s1, . . . , sn−1 ∈ H0(Pn−1,�1
Pn−1(2)) with s1 ∧ . . . ∧ sn−1 which corresponds

to M
ξ j
, that is

s1 ∧ . . . ∧ sn−1 = M� ′

ξ j · Qn−1 (3.33)

where � ′ = ∑n
k=0,k �=i (−1)kξk(dξ0 ∧ . . . ∧ ˆdξi . . . ∧ ˆdξk . . . ∧ dξn) gives a basis of

H0(Pn−1,�n−1
Pn−1(n)). It is easy to see that

s1 ∧ . . . ∧ sn−1 ∧ (ξ j dξi − ξi dξ j )

Q
= M�

Qn
, (3.34)

i.e. M corresponds to a generalized adjoint, which is exactly our thesis. ��
From the previous results we deduce immediately Theorem [C] of the Introduction.
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