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Abstract
Background  A gene or variant has pleiotropic effects, and genetic variant identification across multiple phenotypes can 
provide a comprehensive understanding of biological pathways shared among different diseases or phenotypes. Discovery of 
genetic loci associated with multiple diseases can simultaneously support general interventions. Several meta-analyses have 
shown genetic associations with gastric cancer (GC); however, no study has identified associations with other phenotypes 
using this approach.
Methods  Here, we applied disease network analysis and gene-based analysis (GBA) to examine genetic variants linked to GC 
and simultaneously associated with other phenotypes. We conducted a single-nucleotide polymorphism (SNP) level meta-
analysis and GBA through a systematic genome-wide association study (GWAS) linked to GC, to integrate published results 
for the SNP variants and group them into major GC-associated genes. We then performed disease network and expression 
quantitative trait loci (eQTL) analyses to evaluate cross-phenotype associations and expression levels of GC-related genes.
Results  Seven genes (MTX1, GBAP1, MUC1, TRIM46, THBS3, PSCA, and ABO) were associated with GC as well as blood 
urea nitrogen (BUN), glomerular filtration rate (GFR), and uric acid (UA). In addition, 17 SNPs regulated the expression 
of genes located on 1q22, 24 SNPs regulated the expression of PSCA on 8q24.3, and rs7849820 regulated the expression 
of ABO on 9q34.2. Furthermore, rs1057941 and rs2294008 had the highest posterior causal probabilities of being a causal 
candidate SNP in 1q22, and 8q24.3, respectively.
Conclusions  These findings identified seven GC-associated genes exhibiting a cross-association with GFR, BUN, and UA.

Keywords  Gastric cancer · Genome-wide association studies · Single-nucleotide polymorphism · Gene-based analysis · 
Meta-analysis

Introduction

Genome-wide association studies (GWASs) are an innova-
tive tool for identifying new single-nucleotide polymor-
phisms (SNPs) or genes for traits or diseases using power-
ful genotyping technology [1]. GWASs scan a set of SNPs 
in multiple individuals to determine possible associations 
between the variants and traits or diseases [2], with GWAS 
of a specific disease potentially enabling identification of 
SNP variants associated with a particular disease.

However, SNP variants for a specific disease may not 
only be associated with that disease but also with other 
phenotypes or traits [3, 4]. Previous studies have suggested 
that many detected genetic loci are associated with multi-
ple phenotypes. Multiple GWASs involving the 8q24 gene 
desert loci indicate that this region is associated with pros-
tate, breast, colon, ovarian, and bladder cancers, as well as 
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chronic lymphocytic leukemia [5–9]. Additionally, a large 
GWAS of 42 traits or diseases was performed to identify 
genetic variants associated with multiple phenotypes [10]. 
Moreover, some genetic variants can only be partially asso-
ciated with a subgroup of phenotypes. The Global Lipids 
Genetics Consortium has identified genetic variants asso-
ciated with different subgroups of blood lipid properties, 
including the variants of RSPO3, FTO, VEGFA, and PEPD, 
which are associated with high-density lipoprotein and tri-
glycerides but not low-density lipoprotein and total choles-
terol [11]. Thus, one variant or gene can show pleiotropic 
characteristics. In general, pleiotropy is defined as a genetic 
variant associated with multiple phenotypes, and this phe-
nomenon represents a possible underlying cause of a cross 
phenotype (CP) association [12].

Although GWASs have been performed to identify SNPs 
associated with one phenotype, the integration of multiple 
GWAS results is needed when CP effects need to be esti-
mated [13]. Moreover, identification of genetic variants 
across multiple phenotypes can improve statistical power 
and provide a comprehensive understanding of the underly-
ing biological pathways and mechanisms common to several 
different diseases or phenotypes. Furthermore, the discovery 
of genetic loci associated with multiple diseases can simul-
taneously support general interventions.

When phenotype data from multiple GWASs are dif-
ficult to access at the individual level, summary statistics 
of reported GWAS results can be utilized. Several meta-
analyses based on SNP levels using GWASs have shown 
associations with gastric cancer (GC) [14–16]; however, no 
studies have identified associations with other phenotypes 
based on the integration of a gene-based meta-analysis per-
formed through a literature review. Disease network analysis 
has been proposed to identify genes that are cross-associated 
between GC and other phenotypes based on interactions 
related to biological mechanisms [17], whereby the signals 
of individual SNPs identified in GWASs for GC are inte-
grated into a gene-based analysis (GBA) to identify genetic 
effects [18, 19]. However, the usefulness of such methods 
has not yet been verified.

In this study, we identified genes associated with multiple 
phenotypes through gene-based meta-analysis by perform-
ing a systematic review of published GWASs for GC and 
confirmed the usefulness of these methods for CP selection.

Materials and methods

Ethics statement

This study was approved by the Institutional Review Broad 
of the Seoul National University Hospital (IRB number 
2201–008-1286).

Data source and study population

In our previous study [20], we performed a systematic 
review of GWAS on GC. SNP-level meta-analysis and gene-
based analysis (GBA) were performed to identify SNPs and 
genes significantly associated with GC. Furthermore, SNPs 
having an effect on the expression level of a given gene were 
identified through expression quantitative trait loci (eQTL) 
analysis. Across all 12 eligible studies, 555 SNPs were 
searched, and finally 12 genes were selected as candidate 
genes for the cross-phenotype association analysis.

As a sensitivity analysis, the Korean Biobank Array, 
referred to as the Korean Chip (K-CHIP) consortium, was 
used to identify SNP-level heritability and the association 
between SNPs and cross phenotypes. The research by the 
K-CHIP consortium, which contains approximately 800,000 
SNPs identified among the Korean population, has been car-
ried out in accordance with relevant guidelines and regu-
lations [21]. Details of the quality control and collection 
methods of the K-CHIP consortium have been previously 
described elsewhere [22, 23]. Moreover, 611 GC cases were 
excluded from the total 72,298 individuals in the K-chip 
consortium to identify the association between GC-related 
SNPs and other phenotypes (BUN, UA, and eGFR) by a 
genome-wide association study (GWAS) (Fig. 1).

Disease network for identifying genes associated 
with cross phenotypes

A disease network was constructed using candidate genes for 
GC from a meta-analysis and burden test using DisGeNET 
[17] to identify CPs. DisGeNET is a discovery platform that 
contains one of the largest publicly available collections of 
genes and variants associated with humans. An FDR-cor-
rected p < 0.05 was used to identify to identify significant 
connections in the disease network.

Expression quantitative trait loci (eQTL) analysis

We performed eQTL (Overlapping Expression Quantitative 
Trait Locus) analysis to identify SNPs that influence regula-
tory elements controlling the expression of each gene [24]. 
The eQTL analysis was based on the eQTLGen Consor-
tium [25], which studies the effect of genetic variation on 
gene expression in whole blood, and the Genotype-Tissue 
Expression (GTEx) project [26], which studies the effect of 
genetic variation on gene expression in whole blood, and 
the Genotype-Tissue Expression (GTEx) project, which 
investigates tissue-specific gene expression and regulation. 
The eQTLGen Consortium measured the strength and direc-
tion of the relationship between SNPs and the expression of 
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nearby genes through the z-score of the SNP. The z-score 
is a standardization of the SNP-gene expression association 
measure, which represents the number of standard deviations 
that the SNP-expression association deviates from the mean 
of a normal distribution. Furthermore, the normalized effect 
size (NES) based on GTEx project measures the size of the 
effect of the SNP on gene expression, which is normalized 
for the variation of gene expression across multiple tissues. 
Both the z-score and NES indicate a positive association 
between the SNP and increased gene expression with a posi-
tive value, while a negative value indicates the opposite. The 
magnitude of the value reflects the strength of the associa-
tion, with a larger value indicating a stronger association.

Fine‑mapping analysis

To identify potential causal variants among SNPs [27], we 
performed fine-mapping using the SuSiE (Sum of Single 
Effects) method [28]. We selected the lead SNP with the 
lowest P value among the SNPs located in a single cytoband 
(17 SNPs on 1q22 and 24 SNPs on 8q24.3). Fine-mapping 
was not performed for the SNP located on 9q34.2 as only 
one SNP (rs7849280) was identified in this region. We esti-
mated the posterior inclusion probability (PIP) for each SNP, 
which represents the probability of including the SNP in 
the causal relationship, by performing iterative Bayesian 
stepwise selection based on the linage disequilibrium (LD) 
structure in the East Asian population of the 1000 Genomes 
Project [27]. We ranked the SNPs from the highest to the 
lowest PIP and thus generated a credible set through iterative 
model fitting. Fine-mapping analysis was performed using 
the "susieR" R package [28].

Heritability

We used GWAS summary statistics associated with GC, uric 
acid (UA), estimated glomerular filtration rate (eGFR), and 
blood urea nitrogen (BUN) to estimate SNP-based heritabil-
ity, applying summary-level database analysis [29]. For the 
statistics of GC (8,299 cases, 231,121 controls), meta-results 
based on BioBank Japan (BBJ) and the K-CHIP consortium 
were used (https://​pheweb.​jp/; https://​koges.​leela​bsg.​org/) 
[30, 31]. However, for the statistics of eGFR, UA, and BUN 
(N = 154,633, 129,405, and 148,767, respectively), for which 
only single cohort statistics was available, only the results 
from BBJ statistics (https://​pheweb.​jp) were used, owing to 
the greater number of samples available compared to that 
in the K-CHIP consortium. Based on summary statistics, 
the association among LD patterns was used to calculate 
LD score regression (LDSC) using East Asian samples in 
the 1000 Genomes Project Phase 3 database [29]. We used 
LDSC to estimate SNP-based heritability across GC-, UA-, 
eGFR-, and BUN-related genes. Furthermore, heritability 
can be partitioned to identify key gene sets that have dispro-
portionately high heritability [32]. Therefore, as a sensitivity 
analysis, we also conducted SNP-based heritability analysis 
focusing on chromosomes 1, 8, and 9, where CP-associated 
genes were located.

Association of SNPs on genes related to GC 
with those related to eGFR, BUN, and UA

After in-silico-based disease network and eQTL analysis, 
the association between SNPs related to GC located in cross 
phenotype-related genes (eGFR: TRIM46, MTX1, THBS3, 
GBAP1, and ABO; BUN: THBS3, MTX1, GBAP1, PSCA, 

12 genes associated with gastric 

cancer were selected from 555 

SNPs included the 12 eligible 

studies in a previous study

Disease-network analysis to 

identify genes associated with 

cross-phenotypes

7 genes; 3 loci identified to be 

associated with eGFR, BUN, 

and uric acid

SNP-based heritability 

estimation

eQTL analysis based on 

eQTLGen and GTEx

Fine-mapping using Sum 

of Single Effects method

K-CHIP consortium

(N= 72,298; 8,056,211 SNPs)

Participants without GC for GWAS

(N=71,687)

GC cases were excluded

(N=661)

GWAS for BUN, UA, and eGFR with 

LD clumping (R2 <0.1 within a 

10,000 kb window) based on the 1000 

Genomes project (East Asian) phase 3

Linear regression to estimate the 

association of SNPs on 7 genes 

with eGFR, BUN, and uric acid

(A) (B)

Fig. 1   Workflow for identifying genes associated with the cross phe-
notype. A Heritability estimation, eQTL analysis, and fine-mapping 
based on the results of a previous study. B Linear regression and 

GWAS analysis based on K-CHIP consortium. SNP single-nucleotide 
polymorphism, eQTL expression quantitative trait loci, eGFR esti-
mated glomerular filtration rate, BUN blood urea nitrogen

https://pheweb.jp/
https://koges.leelabsg.org/
https://pheweb.jp
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and ABO; UA: TRIM46, MTX1, THBS3, and MUC1) and 
eGFR, BUN, and UA was analyzed based on the K-CHIP 
consortium.

Linear regression was used to estimate the odds ratios 
(ORs) and corresponding 95% confidence intervals (CIs) 
of SNPs related to GC in additive and dominant models of 
cross phenotypes.

Genome‑wide association study

We performed a GWAS to evaluate the associations of SNPs 
on TRIM46, MTX1, MUC1, THBS3, GBAP1, PSCA, and 
ABO with GFR, BUN, and UA under the assumption of 
an additive genetic model using PLINK version 2.0 [33]. 
The linkage disequilibrium (LD) clumping (R2 < 0.1 within 
a 10,00 kb window) was performed based on the 1000 
Genomes project (East Asian) phase 3 as the reference panel 
using the “ieugwasr” R package [34]. The annotation of 
SNPs from GWAS was conducted by the ANNOtate VARi-
ation (ANNOVAR) [35].

Results

Cross‑phenotype‑associated genes

Suggestive evidence of association [false discovery rate 
(FDR) ≤ 0.05] based on disease–gene network analysis was 
obtained for 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46, 
HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, PSCA, and 
ABO) from GBA and eQTL analysis of 12 eligible studies 
based on our previous study (Fig. 1). Of 12 GC-associated 
genes, seven were associated with CPs (BUN, eGFR, and 

UA) (Fig. 2). Figure 2 demonstrates the association of seven 
genes with hereditary diffuse GC, atrophic gastritis, Heli-
cobacter infection, and Curling ulcer, as well as with BUN, 
UA, and GFR. In Fig. 2, set size represents the number of 
genes associated with each phenotype. BUN was associated 
with five genes (PSCA, ABO, MTX1, THBS3, GBAP), 
and eGFR was associated with five genes (ABO, MTX1, 
THBS3, GBAP1, and TRIM46). UA was associated with 
four genes (MUC1, MTX1, THBS3, and TRIM46), while 
atrophic gastritis was associated with three genes (PSCA, 
ABO, MUC1). Hereditary diffuse GC and Helicobacter 
infection were associated with MUC1 and PSCA, while curl-
ing ulcer was associated with PSCA and ABO. In Fig. 2, the 
interaction size represents the number of genes associated 
with cross phenotypes of the same kind. As both MTX1 and 
THBS3 genes are associated with GFR, UA, and BUN, their 
interaction size is 2, while the remaining genes have a value 
of 1 because cross phenotypes do not fully match.

Expression quantitative trait loci (eQTL) analysis

Figure 3 presents a network for seven genes associated 
with various phenotypes, indicating the relationships 
between SNPs that regulate the expression level of each 
gene. SNPs located on PSCA at 8q24.3 (rs10216533, 
rs1045531, rs1045547, rs1045574, rs2294008, rs2585179, 
rs2717562, rs2920280, rs2920283, rs2920285, rs2920286, 
rs2976384, rs2976386, rs2976387, rs2976388, rs2976389, 
rs2976391, rs2976392, rs2976395, rs2976396, rs2978978, 
rs2978979, rs2978980, rs2978982, rs71509378, and 
rs71778379) and ABO at 9q34.2 (rs7849280) regu-
lated the expression levels of PSCA and ABO, respec-
tively (Fig. 3; Supplementary Fig. 1). However, THBS3, 

Fig. 2   Upset and gene interac-
tion network plot summarize 
between seven cross phenotypes 
and seven genes. Connected 
circles indicate a certain 
intersection of genes between 
phenotypes. The top bar graph 
(interaction size) in each 
panel summarizes the num-
ber of genes for each unique 
or overlapping combination. 
The bottom left horizontal bar 
graph labeled “Set Size” shows 
the total number of genes per 
phenotypes

Set size

Interaction size

Phenotypes P-value FDR

Blood urea nitrogen measurement 8.29E-12 8.55E-09

Uric acid measurement 8.15E-07 4.20E-04

Hereditary Diffuse Gastric Cancer 3.30E-05 8.52E-03

Glomerular Filtration Rate 1.29E-04 2.21E-02

Gastritis, Atrophic 4.95E-05 1.02E-02

Helicobacter Infections 5.82E-06 2.00E-03

Curling Ulcer 2.51E-04 3.69E-02
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TRIM46, GBAP1, MTX1, and MUC1 at 1q22 were regu-
lated by multiple SNPs (Fig. 3; Supplementary Fig. 1). 
rs1057941, rs3814316, rs4971059, rs4971093, rs4971100, 
and rs4971101 were associated with the regulation of 
expression levels of GBAP1, MTX1, MUC1, THBS3, and 
TRIM46 (Supplementary Fig. 1). Additionally, rs4971066 
was associated with the regulation of expression levels 
of GBAP1, MTX1, MUC1, and THBS3 (Supplementary 
Fig. 1).

Fine‑mapping analysis

In total, 17 SNPs on 1q22, except for rs28445596, were 
included in the credible sets (Supplementary Fig.  2). 
Among them, the SNP with the highest causality strength 
was rs1057941 (PIP = 0.99). Of 24 SNPs on 8q24.3, 
5 SNPs were causality candidates, and among them, 
rs2294008 had the highest causality strength (PIP = 1.00) 
(Supplementary Fig.  2). Because only rs7849280 was 
identified in 9q34.2, fine-mapping analysis could not be 
conducted for 9q34.2.

Heritability

Based on the total for each chromosome region, the esti-
mates of heritability were 0.187 (SE = 0.016) for BUN, 
0.088 (SE = 0.009) for eGFR and 0.080 (SE = 0.011) for 
UA, respectively (Supplementary Table 1). Furthermore, 
based on the results for chromosomes 1, 8, and 9, in which 
CP-associated genes were identified in the sensitivity analy-
sis, the estimates of heritability were 0.147 (SE = 0.031) for 
BUN, 0.143 (SE = 0.025) for eGFR, and 0.079 (SE = 0.025) 
for UA, respectively (Supplementary Table 1).

Association of SNPs on genes related to gastric 
cancer with cross phenotypes

Figure 4a, b, c show the associations between GC-related 
SNPs and the CPs BUN, eGFR, and UA. Regarding 
BUN-associated SNPs, the following were observed: 
rs2974937 T > C on THBS3 gene (Beta [SE]; CC, 0.391 
[0.106]; TC, 0.290 [0.035] compared to TT; per C allele), 
rs760077 T > A on the MTX1 gene (Beta [SE]; AA, 0.547 
[0.122]; TA, 0.349 [0.037] compared to TT; per A allele), 

Fig. 3   Disease-gene network and eQTL analysis. The green diamond 
represents phenotypes; orange ellipse, genes; blue rectangle, eQTL-
SNPs. Circos plots show eQTLs and their associations between genes 

and SNPs according to loci. Chromosome A 1q22, B 8q24.3, and C 
9q34.2. eQTL expression quantitative trait loci, SNP single-nucleotide 
polymorphism
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rs2990223 G > A on the GBAP1 gene (Beta [SE]; AA, 
0.534 [0.117]; GA, 0.343 [0.036] compared to GG; per 
A allele), rs2294008 T > C on the PSCA gene (Beta [SE]; 
CC, 0.217 [0.043]; TC, 0.062 [0.037] compared to TT; per 
C allele), and rs7849280 A > G on the ABO gene (Beta 
[SE]; GG, 0.070 [0.071]; AG, 0.105 [0.032] compared to 
AA; per G allele), respectively.

Regarding eGFR-associated SNPs, the following were 
observed: rs76872124 C > T on the TRIM46 gene (Beta 
[SE]; TT, -0.645 [0.855]; CT, -0.512 [0.165] compared to 
CC; per T allele), rs760077 T > A on the MTX1 gene (Beta 
[SE]; AA, -1.008 [0.431]; TA, -0.491 [0.129] compared 
to TT; per A allele), rs423144 T > G on the THBS3 gene 
(Beta [SE]; GG, -0.660 [0.335]; TG, 0.290 [0.035] com-
pared to TT; per G allele), rs2990223 G > A on the GBAP1 
gene (Beta [SE]; AA, − 1.080 [0.413]; GA, − 0.433 [0.128] 
compared to GG; per A allele), and rs7849280 A > G on the 

ABO gene (Beta [SE]; GG, 0.482 [0.251]; AG, 0.306 [0.114] 
compared to AA; per G allele), respectively.

Regarding UA-associated SNPs, the following were 
observed: rs4971100 A > G on the TRIM46 gene (Beta [SE]; 
GG, 0.098 [0.031]; AG, 0.044 [0.011] compared to AA; per 
G allele), rs760077 T > A on the MTX1 gene (Beta [SE]; 
AA, 0.139 [0.041]; TA, 0.051 [0.012] compared to TT; per 
A allele), rs2066981 A > G on the THBS3 gene (Beta [SE]; 
GG, 0.103 [0.035]; AG, 0.043 [0.012] compared to AA; per 
G allele), and rs4072037 T > C on the MUC1 gene (Beta 
[SE]; CC, 0.097 [0.035]; TC, 0.044 [0.012] compared to TT; 
per C allele), respectively.

Genome‑wide association study

The most significant SNPs on MTX1, GBAP1, THBS3, 
PSCA, and ABO associated with BUN were rs760077 

Fig. 4   a Association of SNPs on genes related to gastric cancer with 
blood urea nitrogen. One asterisk (*) indicates p value < 0.05. b Asso-
ciation of SNPs on genes related to gastric cancer with eGFR. One 

asterisk (*) indicates p value < 0.05. eGFR, estimated glomerular fil-
tration rate. c Association of SNPs on genes related to gastric cancer 
with uric acid. One asterisk (*) indicates p value < 0.05
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on MTX1 (beta = 0.306, SE = 0.031, P value = 2.69E-
23), rs2990220 on GBAP1 (beta = 0.244, SE = 0.029, P 
value = 4.78E-17), rs2974937 on THBS3 (beta = 0.241, 
SE = 0.029, P value = 8.83E-17), rs2294008 on PSCA 
(beta = 0108, SE = 0.020, P value = 1.04E-07), and rs635634 
on ABO (beta = 0.091, SE = 0.023, P value = 9.39E-05) 
(Supplementary Table 2).

The most significant SNPs on MTX1, THBS3, MUC1, 
and TRIM46 associated with UA were rs760077 on MTX1 
(beta = 0.051, SE = 0.009, P value = 1.39E-08), rs4072037 
on MUC1 (beta = 0.039, SE = 0.008, P value = 3.40E-
06), rs2066981on THBS3 (beta = 0.039, SE = 0.008, P 
value = 4.29E-06), and rs4971101 on TRIM46 (beta = 0.036, 
SE = 0.008, P value = 5.97E-06) (Supplementary Table 3).

The most significant SNPs on MTX1, GBAP1, THBS3, 
TRIM46, and ABO associated with eGFR were rs9411372 
on ABO (beta = 0.282, SE = 0.076, P value = 1.94E-04), 
rs2974929 on GBAP1 (beta =—0.360, SE = 0.101, P 
value = 3.72E-04), rs760077 on MTX1 (beta = − 0.330, 
SE = 0.099, P value = 9.01E-04), rs76872124 on TRIM46 
(beta = −  0.438, SE = 0.135, P value = 1.20E-03), and 
rs7366775 on THBS3 (beta = -0.237, SE = 0.089, P 
value = 8.04E-03) (Supplementary Table 4).

Discussion

In this study, we identified seven genes (MTX1, GBAP1, 
MUC1, TRIM46, THBS3, PSCA, and ABO) linked to CPs 
based on disease–gene network analysis from SNPs on genes 
associated with GC identified in our previous meta-analysis.

In addition, based on eQTL analysis, we identified that 
17 SNPs regulate the expression levels of 5 genes (MTX1, 
GBAP1, MUC1, TRIM46, and THBS3) on 1q22, 24 SNPs 
regulate PSCA on 8q24.3, and rs7849280 regulates the 
expression level of ABO on 9q34.2.

The identified SNPs led to a decrease in GBAP1, 
TRIM46, and PSCA expression, while ABO, MTX1, MUC1, 
and THBS3 showed an increase in expression. All SNPs had 
a similar direction of effect on gene expression, which is 
attributed to their high correlation in LD [36].

Therefore, we performed fine-mapping analysis to 
identify potential causal SNPs (rs1057941 on 1q22 and 
rs2294008 on 8q24.3) within the LD block. However, there 
are no previous studies investigating the biological/molecu-
lar functions of the 5 genes (GBAP1, MTX1, MUC1, THBS3, 
and TRIM46) associated with rs1057941 have not been 
found, and the reported association between rs1057941 and 
the expression of these 5 genes was estimated in the same 
manner as in our study using eQTL databases.

Nevertheless, we were able to identify the role of other 
SNPs that have a high LD with rs1057941 in previous 
studies. rs4072037, which is in high LD with rs1057941 

(R2 = 0.909 based on 1000 Genome project East Asian-JPT), 
regulates selective splicing of the second exon of MUC1 
and modifies gene transcription activity, which may be func-
tional [37–39]. Moreover, MUC1 is located downstream of 
TRIM46 and is part of the THBS3 and MTX1 gene clusters. 
This is well illustrated in the heatmap produced by the eQTL 
analysis (Supplementary Fig. 1) [16, 39, 40].

According to previous studies, the expression of GBAP1 
is associated with rs2990245 located in the promoter of 
pseudogene GBAP1; rs2990245 is also in high LD with 
rs1057941 (R2 = 0.909 based on 1000 Genome project East 
Asian-JPT) [38, 41]. The function of rs1057941 in sup-
pressing PSCA promoter activity on 8q24.3 was identified 
based on eQTL analysis, consistent with previous studies 
that regulate gene expression [42]. Furthermore, one.previ-
ous study showed that rs7849280 on 9q34.2 increases ABO 
expression, which was consistent with the direction of the 
eQTL analysis [43].

Therefore, we found that expression levels of these 7 
genes are regulated by SNPs and are simultaneously linked 
to GC; furthermore, polymorphisms of these genes are risk 
factors associated with abnormal levels of eGFR, BUN, and 
UA.

These results are consistent with the established associa-
tion between chronic inflammation and GC development, 
the biological mechanism of which often involves H. pylori 
infection, which promotes proinflammatory cytokine release 
and achlorhydria (thereby inducing chronic gastritis). This 
in turn favors a step-by-step cascade of events involving 
the transition from metaplasia to dysplasia prior to malig-
nancy [44]. The associations between genetic variants in 
inflammation-associated genes and GC risk were previously 
investigated using candidate genetic approaches, and the 
involvement of MUC1 and PSCA, which was observed in 
those investigations, was also confirmed in the present study 
[44, 45]. PSCA was initially identified as a prostate-specific 
antigen that is overexpressed in prostate cancer. However, 
subsequent research has revealed that PSCA is expressed in 
other types of tumors such as those in the bladder, placenta, 
colon, kidney, and stomach (Supplementary Table 5). The 
anti-inflammatory properties of MUC1 have been observed 
in gastric mucosal cell responses to H. pylori infection [46], 
suggesting that MUC1 might play an inflammatory role in 
cancer cells but an anti-inflammatory role in infectious dis-
eases (Supplementary Table 5). Additionally, a previous pro-
teomic analysis of urine showed that the urinary excretion of 
MUC1 is associated with the risk of renal impairment in the 
general population [47]. Furthermore, medullary cystic kid-
ney disease is caused by MUC1 mutations; however, because 
MUC1 is produced in many tissues, the authors were only 
able to detect clinical abnormalities in the kidney [48].

Gastric ulceration is a form of inflammation [37], and 
chronic H. pylori infection is involved in GC development 
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by inducing chronic inflammation and amplifying GC car-
cinogenesis [49, 50]. Atrophic gastritis is also a result of 
chronic inflammation and chronic gastritis, which increase 
the risk of GC [51]. Given that GC, H. pylori infection, 
gastric ulcer, and atrophic gastritis share common genes in 
genetically susceptible individuals who are more suscepti-
ble to GC, individuals harboring variants in common genes 
(i.e., PSCA, ABO, and MUC1) might be at high risk for GC. 
ABO, whose variation is the basis of the ABO blood group, 
is associated with infectious and inflammatory status for the 
onset and progression of immune-mediated diseases (Sup-
plementary Table 5) [52]. A previous study reported that 
IGA nephropathy patients with blood type O or A showed 
an increased risk of kidney function deterioration owing to 
increased inflammatory status [52].

Gastric bleeding and ulceration are common in patients 
with GC [53]. BUN levels are elevated during upper gastro-
intestinal bleeding, and during gastric bleeding, ammonia 
is released from blood hemoglobin in the digestive system 
[54], which can increase BUN levels [55, 56]]. Based on 
the results of previous studies, gastric bleeding may act as 
a mediator in the association between GC and BUN. Addi-
tionally, bleeding (especially gastric bleeding) has also been 
observed in patients with Gaucher disease at diagnosis [57, 
58]. MTX1, which encodes a component of a preprotein 
import complex, and THBS3, which encodes extracellular 
glycoproteins that mediate cell-to-matrix and cell-to-cell 
interactions, are associated with Gaucher’s Disease (Sup-
plementary Table 5). GBAP1 mutation also causes accu-
mulation of glucocerebroside in macrophages, which is an 
important molecular symptom of Gaucher disease (Supple-
mentary Table 5)[41, 59–61]. Therefore, in patients harbor-
ing mutations in MTX1, THBS3, and/or GBAP1 [41, 59–61], 
those also afflicted with GC or Gaucher disease may be at 
high risk for the onset of gastric bleeding. Moreover, those 
patients not afflicted with GC but with elevated BUN levels 
may also be in a high-risk group with a high probability 
of developing stomach cancer. However, further studies are 
required to confirm these possibilities.

Several studies have reported an association between GC 
and BUN and UA levels. Specifically, UA or urate level is 
elevated in GC patients [62–64] as a result of the rapid pro-
liferation and differentiation of tumor cells, during which 
nucleotide synthesis and metabolism are also upregulated 
and undergo rapid catabolism. Because UA is the end prod-
uct of endogenous nucleotide catabolism, elevated UA levels 
are observed in GC patients. A previous study reported that 
gout patients with high levels of UA have a higher risk of 
various cancers, including GC, than the general population 
[65]. Notably, previous studies identified TRIM46, which 
encodes the tripartite motif-containing protein that is a zinc-
finger containing protein as associated with serum urate con-
centrations and gout [66, 67], and this was confirmed in the 

present study, suggesting a CP association between UA and 
GC (Supplementary Table 5).

A previous study suggested the role of uric acid as a 
trigger for GC carcinogenesis, given that elevated uric acid 
levels increase the rate of gastric cell division and cause 
their excessive proliferation, thereby promoting GC onset 
[68, 69]. Another study reported that hyperuricemia con-
tributes to the high-density proliferation of GC cells by act-
ing as a promoter in the proliferation of cancer cell nuclei, 
thereby contributing to GC [58]. These findings suggest a 
possible link between UA levels and GC as a result of shar-
ing the same genes associated with nucleotide synthesis and 
metabolism.

Although previous studies focused on associations 
between decreased renal function and cancer development 
[70], the precise biological rationale for the higher risk of 
digestive cancer in chronic kidney disease (CKD) patients 
relative to the general population has yet to be clearly 
explained. However, previous studies have suggested that 
uremic factors [70] or CKD itself might be implicated as 
proinflammatory mediators [71]. Renal dysfunction is 
reportedly associated with the development of certain 
types of cancers. Previous studies show that both glomeru-
lar hyperfiltration and decreased GFR are associated with 
cancers [72, 73], and recently, an association between glo-
merular hyperfiltration and digestive cancer was reported 
based on a nationwide population-based study in Korea 
[74]. Previous GWASs including Taiwanese populations 
also discovered that variants in the TRIM46-MUC1-THBS3-
MTX1 gene region variants are associated with higher eGFR 
(including UA levels and the risk of gout) (Supplementary 
Table 5) [75]. Additionally, a meta-analysis of associations 
between 67 dietary factors and GC revealed that processed 
meat and salty food consumption were associated with an 
increased risk of GC [76]. Protein loading and increasing 
GFR are well-known factors that lead to glomerular hyper-
filtration [77], with this supported by reports suggesting that 
an increased risk of GC is associated with the consumption 
of a high-protein diet or unhealthy protein, followed by glo-
merular hyperfiltration [63].

This study has some limitations. Although we identified 
the association of each SNP with gene expression levels 
based on the eQTL analysis and the potential causal candi-
date SNPs found by fine-mapping, the biological/molecular 
functions of each SNP that regulated gene expression lev-
els remain unknown. Other SNPs in LD have been identi-
fied to perform similar functions in previous studies, but 
further studies on the functional mechanisms of each SNP 
are needed. In addition, SNPs associated with GC were 
selected only from the results of published GWASs; because 
the association between the CPs and genes other than those 
related to GC were confirmed only in DisGeNET [17], it is 
possible that other relevant genes or phenotypes were not 
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considered. In the future, phenome-wide association stud-
ies (PheWASs) with more phenotypes should be performed 
to identify additional CPs in GC-related genes. Although 
we identified the cross-phenotype associations of the 7 
genes in the DisGeNET database, according to the results 
of GWAS for eGFR, BUN, and UA in a Korean general 
population excluding GC, the most significant SNPs located 
in PSCA were marginally significant and those in ABO 
were not highly significant based on the GWAS for BUN. 
In the GWAS for UA, the most significant SNPs located in 
MUC1, THBS3, and TRIM46 were not highly significant, 
neither. According to the GWAS for eGFR, the most sig-
nificant SNPs located in MTX1, GBAP1, THBS3, TRIM46, 
and ABO were not highly statistically significant. Never-
theless, as we described before, a previous GWAS based 
on a Taiwanese population also discovered that variants in 
the TRIM46-MUC1-THBS3-MTX1 gene region variants 
are associated with higher eGFR [75]. ABO is associated 
with an increased risk of renal dysfunction in patients with 
IgA nephropathy [52]. DisGeNET is a collection of Gene-
Disease Associations (GDA) and Variant-Disease Associa-
tions (VDA) extracted from scientific literature using text 
mining [17]. DisGeNET contains a collection of 400,000 
publications that include information on GDA and VDA, and 
60% of GDA are extracted from scientific literature through 
text mining. DisGeNET's data source is composed of public 
databases (e.g., CTD, GWAS catalog, ClinVar, etc.) as well 
as animal models and literature. Although the associations 
between genes and diseases derived from DisGeNET are 
based on previously reported records, there is a possibil-
ity that they may not always be replicated in other studies. 
Therefore, the association between ABO gene and BUN, 
between five genes (MTX1, GBAP1, THBS3, TRIM46, and 
ABO) and eGFR, and between three genes (MUC1, THBS3, 
and TRIM46) and UA can suggest the possibility of associa-
tion rather than causality. Moreover, additional GWA-studies 
based on a large cohort consortium are needed between these 
genes and phenotypes (BUN, UA, eGFR).

Furthermore, CP association has limited ability to reveal 
a causal inference between GC and biomarkers, such as GFR 
and/or BUN and UA levels. Therefore, additional analysis, 
such as bi-directional Mendelian randomization, should be 
performed based on GWAS results from a large cohort [78].

The strength of this study is that–based on a compre-
hensive search of publicly available datasets for GC-related 
genes, as well as of all possible GWAS published in the lit-
erature–we proposed a method of cross-phenotype analysis 
via the identification of in-silico function annotation, which 
is suitable even when the available raw data contain limited 
information.

In summary, we identified seven genes (MTX1, GBAP1, 
MUC1, TRIM46, THBS3, PSCA, and ABO) shared 
between GC and three biomarkers–GFR and BUN and UA 

levels–providing evidence for an association between GC 
and these biomarkers. Further studies using comprehensive 
GBA and disease–gene network analysis based on published 
GWAS data for other phenotypes are recommended. We 
believe that the study design applied here enables acquisi-
tion of new knowledge about pleiotropy, which can reveal 
cross-associations and networks between genes and various 
phenotypes based on public GWAS statistics. Moreover, it 
is likely that PheWAS can be similarly analyzed based on 
the method applied here, to simultaneously support general 
interventions.
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