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brain scans were acquired and processed in a voxel-based 
analysis using permutation-based statistics. A sub-sample 
of both groups (ADHD, n = 21; controls n = 23) also per-
formed a Sternberg working memory task whilst acquiring 
fMRI data. Areas of structural difference were used as a 
region of interest to evaluate the implications that struc-
tural abnormalities found in the ADHD group might have 
on working memory function. There was lower grey matter 
volume bilaterally in adolescence ADHD participants in the 
caudate (p < 0.05 FWE corrected across the whole brain) 
at age 20–24. Working memory was poorer in adolescence 
ADHD participants, with associated failure to show normal 
load-dependent caudate activation. Young adults diagnosed 
with ADHD in adolescence have structural and functional 
deficits in the caudate associated with abnormal working 
memory function. These findings are not secondary to stim-
ulant treatment, and emphasise the importance of taking a 
wider perspective on ADHD outcomes than simply whether 
or not a particular patient meets diagnostic criteria at any 
given point in time.

Keywords  MRI · Memory · ADHD · Hyperkinetic · 
VBM · Neuroanatomy

Introduction

Attention deficit/hyperactivity disorder (ADHD) [1–4] 
was initially thought to abate in adolescence but increasing 
evidence indicates that ADHD frequently persists through 
to adulthood [3, 4]. Of those diagnosed during childhood, 
about 30–60  % show symptoms during adulthood [3, 5, 
6]. It is because of its associated morbidity and disability 
across the lifespan that ADHD has come to be a major clin-
ical and public health concern [7].

Abstract  When adolescents with ADHD enter adult-
hood, some no longer meet disorder diagnostic criteria but 
it is unknown if biological and cognitive abnormalities per-
sist. We tested the hypothesis that people diagnosed with 
ADHD during adolescence present residual brain abnor-
malities both in brain structure and in working memory 
brain function. 83 young adults (aged 20–24  years) from 
the Northern Finland 1986 Birth Cohort were classified 
as diagnosed with ADHD in adolescence (adolescence 
ADHD, n =  49) or a control group (n =  34). Only one 
patient had received medication for ADHD. T1-weighted 
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Although the precise neural and pathophysiological 
substrates of ADHD remain unknown, there is evidence 
that indicates abnormalities in fronto-striatal and limbic 
pathways [8–16]. However, inconsistency in the existing 
research evidence, combined with the concern that most 
evidence is potentially confounded by the effects of med-
ication, means that the pathology of the disorder remains 
uncertain [8, 14, 17]. To some extent, differences in referral 
and diagnostic practices in different clinical and research 
centres also mean that study recruitment biases may also 
contribute to the heterogeneity of findings in the condition.

A variety of different outcome measures are important when 
considering the long-term prognosis of children diagnosed with 
ADHD. Relevant and important follow-up outcomes include 
whether or not individuals continue to meet diagnostic criteria 
for ADHD, the number and severity of ADHD symptoms they 
retain, the presence of comorbid psychiatric illness, social and 
occupational outcomes, and neurological and neuropsycho-
logical outcomes, including brain structure and function and 
associated cognitive performance or deficit [3, 17–20]. Adults 
with ADHD have a variety of neurocognitive deficits of which 
working memory is one of the more significant, and has been 
proposed to be a core feature of the disorder [21]. Whilst a 
number of studies have examined prognosis in terms of psy-
chiatric symptoms’ outcomes, far fewer studies have examined 
outcomes in terms of brain structure and function, in spite of 
the possibility that such measures may relate closely to social 
and occupational success [17, 22, 23].

This study aims to investigate young adult brain struc-
tural and functional (in terms of working memory) out-
comes of people diagnosed with ADHD during adoles-
cence using a general population-based methodology. The 
general population-based nature of our study helps us 
examine ADHD with less, or possibly different, selection 
biases, compared to the average study of ADHD. Clinical 
practice in Northern Finland at the time our participants 
were diagnosed with ADHD did not rely on stimulant med-
ication in the treatment; this enabled us to avoid the poten-
tially confounding effects of medication from the results, as 
only one subject was taking ADHD medication at the time 
of the scans and no other participants had been treated with 
stimulants previously. We hypothesised that there would 
be residual brain structural, brain functional and working 
memory deficits in young adults who had been diagnosed 
with ADHD in adolescence.

Methods

Participant selection process

Fifty two young adults who had been diagnosed with DSM-
IV ADHD at age 16–17 (henceforth “adolescence ADHD”) 

and 34 young adult controls without ADHD gave written 
consent and took part in the study, which was approved by 
the ethical committee of the Northern Ostrobothnia Hos-
pital District, Finland. All participants were members of 
The Northern Finland 1986 Birth Cohort (NFBC1986) and 
were all aged 20–24 at the time of the study. We have pre-
viously published details of how adolescents with ADHD 
were identified within the birth cohort in a general popu-
lation-based approach [24–28], and we summarise the 
details here. The birth cohort population from whom the 
participants were selected was composed of children with 
an expected date of birth between July 1st, 1985 and June 
30th, 1986, in the two northernmost provinces of Finland 
(Oulu and Lapland). This population-based birth cohort 
included 99  % of all births in the area at that time and 
consisted of 9479 children, of whom 9432 were live-born 
[29] (http://kelo.oulu.fi/NFBC). Parents of cohort members 
were asked to complete the Strengths and Weaknesses of 
ADHD Symptoms and Normal Behaviours (SWAN) ques-
tionnaire [30] at age 15–16 that measured problems of 
attention and hyperactivity. Among the 6622 respondents to 
the survey, a subset of 457 possible cases and general popu-
lation controls were identified based on their questionnaire 
scores, and these adolescents were evaluated for ADHD 
during 2002–2003 in a clinical evaluation, including a 
structured interview (Schedule for Affective Disorders 
and Schizophrenia for School-Age Children-Present and 
Lifetime version, K-SADS-PL) [24, 26–28, 31]. 105 cases 
were diagnosed having current, definite ADHD according 
to DSM-IV at the age of 16–18. A sample of healthy con-
trol participants also from NFBC1986 (therefore matched 
to ADHD participants in age, place of birth and many envi-
ronmental influences) without current or previous ADHD 
at age 16–18 were also identified prospectively in adoles-
cence and invited to take part in the young adult study.

Cohort members with ADHD at age 16–18 (adolescence 
ADHD), and a sample of the controls without ADHD iden-
tified at age 16–18, were, several years later, invited to 
participate in the current study performed in 2007–2010 at 
Oulu University Hospital, Finland. Of the 105 adolescence 
ADHD individuals, and therefore eligible to participate in 
this study, 52 (50 %) were scanned, along with 34 controls. 
Out of the 52 scanned adolescence ADHD participants, 3 
participants were excluded due to one having developed 
comorbid bipolar disorder, another schizophrenia and 
another a clinically significant head injury (a skull frac-
ture) by the time of the study. The final study size for the 
structural MRI was 49 young adult participants with ado-
lescence ADHD.

The exclusion criteria used for both groups were men-
tal retardation according to the Finnish Hospital Discharge 
Register or previous studies on this cohort; autism-spec-
trum disorders; speech development disorder with evident 

http://kelo.oulu.fi/NFBC
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cognitive sequelae; psychotic disorder, or serious neuro-
logical conditions such as epilepsy, serious head injury or 
multiple sclerosis.

Psychiatric assessment

On the day of the MRI scan, participants were evaluated 
with a clinical assessment, including urine drug screen, 
SCID (Structured Clinical Interview for DSM-IV) and, in 
addition, an in-house developed interview to rate the sever-
ity of ADHD symptoms in detail. This interview used both 
DSM-IV and ICD-10 ADHD criteria, allowing scoring on a 
list of 9 attention, 5 hyperactivity and 4 impulsivity symp-
toms. Diagnostic assessment was made according to DSM-
IV criteria. Clinical answers to the incidence of the 9 inat-
tentive, 5 hyperactivity and 4 impulsivity symptoms were 
labelled according to frequency of the symptoms and were 
defined as never/rarely, sometimes, often and very often. 
Scores ranging from 0 to 3 were attached to this frequency 
scale. Any score of two or three (often or very often) was 
deemed to be a positive clinical correlate of that symptom.

Structural MRI data acquisition and preprocessing

All participants were scanned using GE Signa EchoSpeed 
HDx 1.5 Tesla MRI scanner in Oulu University Hospital. 
T1-weighted images were acquired with inversion recov-
ery (IR)-prepared (“BRAVO”) 3D Fast Spoiled Gradient 
Echo (FSPGR) sequence using the following parameters: 
TR 12.4 ms, TE 5.2 ms, FA of 20°, FOV 24 cm × 24 cm, 
256 ×  256 acquisition matrix, 1 mm slice thickness, half 
k-space coverage in the phase encoding direction (GE 
“fractional NEX” with 0.5 factor). Structural data were 
analysed with FSL-VBM, a voxel-based morphometry 
style pipeline analysis [32–40]. We used the default FSL 
pipeline, including non-linear registration, and modulation, 
and applying a smoothing kernel of 3 mm.

Group‑level statistical analysis of brain structure

For the between-group comparisons, between-group statis-
tics were performed using a permutation-based inference 
tool for nonparametric statistical thresholding in FSL’s 
randomise Monte Carlo permutation toolkit using 5000 
permutations [41], with age at scan, handedness and sex as 
covariates. The significance threshold for between-group 
and time differences was set at p < 0.05, family-wise error 
corrected for multiple comparisons across voxels using the 
threshold-free cluster-enhancement (TFCE) option in the 
randomise permutation-testing tool in FSL, which results 
in fundamentally voxelwise statistics whilst also taking into 
consideration the size of clusters of significant contigu-
ous groups of voxels. To help interpret the importance of 

any structural deficits, we planned to utilise the group dif-
ference results of the structural analysis to create a region 
of interest in which we could examine whether there were 
also functional brain imaging abnormalities in the adoles-
cence ADHD group (see below).

Functional MRI data acquisition

A random sub-sample of approximately two-thirds of the 
individuals participating in the structural scans also under-
took fMRI scans on the same day using the same scan-
ner as the structural scan using an EPI GRE sequence 
(TR = 1800 ms, TE = 40 ms, FOV = 25.6 cm × 25.6 cm, 
matrix 64 × 64, flip angle 90°, 28 oblique axial slices, slice 
thickness 4 mm, inter-slice gap = 0.4 mm, 344 volumes per 
run). We ran this sequence in the two separate runs. The 
first 4 volumes were removed from each run because of 
T1 equilibrium effects. Finite resources prevented us from 
conducting fMRI on all participants.

Sternberg working memory paradigm

We employed a Sternberg task of working memory [42] 
during the fMRI scan; participants are instructed to focus 
on a point on the screen where a set of letters appear and 
stay on the screen 4 s. Next, a variable delay (of between 2 
and 12 s) occurs, followed by a new letter (the probe) that 
may or may not have appeared in the letter set. The partici-
pant is instructed to press one button to denote if the probe 
letter did appear in the letter set and a different button if 
the probe letter is new, representing yes or no answers. An 
inter-trial interval with a jittered length of 3–5  s follows 
before the next trial begins with a new letter set (Fig. 3).

There were four different levels of difficulty, corre-
sponding to four different loads of three, four, five and six 
letters, interspersed pseudo-randomly across the entire task. 
The task was divided in two runs, each with thirty-six tri-
als, given a total of seventy-two trials for the whole task. 
The total duration per run was 10.3 min.

We excluded participants with low levels of accuracy 
from the fMRI analysis to ensure that the subjects whom 
we did analyse were genuinely and successfully utilising 
working memory. We applied an accuracy rate that required 
an accuracy rate of at least 75 % correct trials [43], so any 
person with an accuracy score below 54 (out of a possible 
72) was excluded from the fMRI analyses.

Functional MRI analysis

Functional analyses were performed using the “Analy-
sis Group at the Oxford Centre for Functional MRI of 
the Brain” (FMRIB) software library (FSL) tools [34, 35, 
44–46]. Skulls were first stripped automatically from each 
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structural scan using FSL’s Brain Extraction Tool (BET) 
[35]. Following this, each individual’s functional scan’s 
brain was extracted using BET and was subsequently 
motion corrected (Motion Correction using FMRIB’s Lin-
ear Image Registration Tool, MCFLIRT) [38] as well as 
registered to its corresponding structural image using rigid 
body transformations and 7 degrees of freedom. After this, 
the corresponding scan was registered to the MNI stand-
ard brain using linear transformation with 12 degrees of 
freedom.

FSL’s FMRI expert analysis tool (FEAT) [34] was used 
to perform individual preprocessing and statistical analysis 
of each participant’s individual FMRI scan. High-pass tem-
poral filtering of 100  s was applied to the FMRI images, 
which were then spatially smoothed using a Gaussian 
smoothing kernel of 6 mm. Intrinsic autocorrelations were 
modelled using pre-whitening. Regressors were convolved 
using a gamma (γ) hemodynamic response function. In the 
subject-level analysis, we used four regressors of interest 
(one for each working memory load: 3, 4, 5 or 6), with event 
onset times set at the start of each trial and duration set to 
the length of each trial (spanning encoding, maintenance 
and retrieval periods). We employed a regressor spanning 
these various periods of working memory function as we 
were more interested in obtaining a robust global measure 
of working memory function rather than breaking this pro-
cess down into constituent parts. We used the “featquery” 
tool in FSL to extract the mean % signal change associ-
ated with each regressor within a region of interest defined 
by the results of the structural group difference analysis. 
Featquery uses a standard space-defined region of interest 
and maps that back into native space of each subject to then 
calculate the mean percent signal change associated with 
a given regressor for that ROI. Having extracted the mean 

ROI signal for each regressor of interest for each subject, 
we exported these to the statistics software package SPSS 
(version 21) to plot load-dependent activation and perform 
within and between-group tests (linear contrasts across load 
and group by linear trend interaction).

Results

Demographics and clinical outcomes: ADHD status 
in young adulthood

Demographics are detailed in Tables 1 and 2. There were 5 
(10.2 %) participants diagnosed with ADHD during adoles-
cence that after the clinical interview were deemed to still 
meet DSM-IV ADHD criteria. Of these participants, there 
were 2 participants whose subtype was defined as inatten-
tive and 3 participants who were deemed to have the com-
bined ADHD subtype. The scores for the ADHD group 
for the inattentive symptoms were 4.5 (SD 5.9), 2.7 (SD 
3.6) for the hyperactivity symptoms and 1.8 (SD 2.2) for 
the impulsivity symptoms. In controls, the scores for the 
inattentive, hyperactivity and impulsivity symptoms were 
1.1 (SD 1.9), 0.8 (SD 1.4) and 0.5 (SD 0.9). One ADHD 
participant was receiving treatment with stimulant ADHD 
medication at the time of the scan. Of the participants who 
no longer met ADHD criteria, the mean number of DSM-
IV symptoms (i.e. domains meeting threshold of at least 
“often”) was 2 (range 0–9).

Brain structural group differences

There were significant differences in two clusters located 
in the left and right caudate, respectively, that had lower 

Table 1   Demographic description of the groups for the structural MRI

a  Adolescence diagnosis of ADHD. GAF global assessment of function score

Adolescence ADHDa (n = 49) Controls (n = 34) Total (n = 83)

Age 22.23 (SD 0.7) 22.95 (SD 0.4) 22.53 (SD 0.67)

Sex 37 M:12 F 17 M:17 F 54 M:29 F

Handedness 41 R:8 L 32 R:2 L 73 R:10 L

IQ Mean (std dev) 96.6 (21.8) 112.2 (22.6) 103 (23.1)

Education High school enrolment 37 (75.5 %) 8 (23.5 %) 45 (54.2 %)

High school graduation 12 (24.5 %) 26 (76.5 %) 38 (45.7 %)

GAF current Mean (std dev) 74.6 (15.5) 87.26 (4.5) 79.8 (13.7)

Drug use detected by urine sample Amphetamine and other stimulants 0 0 0

Benzodiazepine 0 0 0

Buprenorphine 0 0 0

Cannabis 5 (10.2 %) 1 (2.9 %) 6 (7.2 %)

Cocaine 0 0 0

Opioids 0 0 0
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grey matter volume in the adolescence ADHD group when 
compared to controls (p < 0.05 FWE corrected, controlled 
for age at time of scan, sex, and handedness; Figs. 1, 2). 
The cluster located in the left caudate had its peak at MNI 
−18, −40, 22 (25 voxels); the cluster that was located 
in the right caudate had its peak at MNI 16, −32, 42 (38 
voxels).

Working memory behavioural performance results

There were 11 participants out of 32 who scored below 
75  % of the total score in the adolescence ADHD group 
and one subject out of 24 in the control group; these partic-
ipants were all excluded from the fMRI analysis. The total 
score for the remaining adolescence ADHD group (n = 21) 
was 62.76 (SD 4.43) and for the control group (n =  23) 
it was 66.87 (SD 2.32) (F = 5.59; df = 1.39; p = 0.023; 
age, IQ and sex used as covariates), showing that even 
when only considering participants who were engaging 
in the task largely successfully, the adolescence ADHD 

group performed worse than controls. There were very 
few missing answers, with no differences between groups; 

Table 2   Demographic description of the groups for the fMRI

a  Adolescence diagnosis of ADHD. GAF Global Assessment of Function score

Adolescence ADHDa (n = 21) Controls (n = 23) Total (n = 44)

Age 22.2 (SD 0.7) 23 (SD 0.4) 22.6 (SD 0.7)

Sex 16 M:5 F 13 M:10 F 29 M:15 F

Handedness 18 R:3 L 22 R:1 L 40 R:6 L

IQ Mean (std dev) 96.4 (19.8) 111.09 (25.09) 102.5 (22.6)

Education High school enrolment 17 (80.9 %) 5 (21.7 %) 22 (50 %)

High school graduation 4 (19.1 %) 18 (78.3 %) 22 (50 %)

GAF current Mean (std dev) 77.1 (11.2) 87.1 (4.47) 79.5 (13.8)

Drug use detected by urine sample Amphetamine and other stimulants 0 0 0

Benzodiazepine 0 0 0

Buprenorphine 0 0 0

Cannabis 2 (9.5 %) 1 (4.3 %) 3 (6.8 %)

Cocaine 0 0 0

Opioids 0 0 0

Fig. 1   Adolescence ADHD individuals exhibit less grey matter vol-
ume (GMV) in bilateral caudate nucleus than controls (voxels signifi-
cantly lower in GMV in the adolescence ADHD group, p < 0.05 fam-

ily-wise error corrected across the whole brain, are shown in blue). 
The left side of the image is the right side of the brain in panels a and 
b. MNI co-ordinates: a y = −10; b z = 22; c x = 16
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Fig. 2   Plot of combined volume of the two caudate clusters depicted in 
Fig. 1 that contain voxels of reduced grey matter volume in adolescence 
ADHD compared to controls. Error bars are 95 % confidence intervals
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the ADHD group had on average 0.67 (SD 1.06) missing 
answers and the controls had 0.17 (SD 0.49), p = 0.19.

fMRI results

We used the left and right caudate regions in which we had 
observed structural brain differences as masks in which 
to investigate functional group differences. For each run, 
we extracted the percent signal change for each load from 
each participant with FSL-featquery; for each load we 
then, for each participant, averaged across the two runs 
and plotted the group differences (Fig. 3). This indicated 
that in both ROIs, the control group exhibited clear load-
dependent activation, with higher activity at high working 

memory loads (confirmed by within group repeated meas-
ures ANOVA, linear contrast across loads: left caudate, 
F = 4.44, df = 1.22, p = 0.047; right caudate F = 4.45, 
df = 1,22, p = 0.047); the ADHD group, however, failed 
to showed increased activation at higher working memory 
loads (within group repeated measures ANOVA, linear 
contrast across loads: left caudate, F = 0.22, df = 1, 20, 
p = 0.64; right caudate, F = 0.10, df = 1, 20, p = 0.76). 
In both left and right ROIs, there was a group difference 
of marginal significance in the strength of the linear asso-
ciation across loads (group by linear contrast interac-
tion: left caudate F =  3.02, df =  1, 42, p =  0.09: right 
caudate: F =  2.91, df =  1, 42, p =  0.095). A summary 
measure of right caudate load-dependent activation (load 6 

Fig. 3   Upper left panel task design. Participants are shown a set of 
3, 4, 5, or 6 letters, followed by a variable delay then a probe letter 
that may or may not have appeared in the letter set; the task is to indi-
cate whether or not the probe appeared in the letter set or not. Upper 
right panel adolescence ADHD participants scored significantly 
lower on the task than control participants (F  =  5.59; df  =  1.39; 
p =  0.023); error bars are 95 % confidence intervals. Lower panels 

mean fMRI percent signal change within the left (lower left panel) 
and right (lower right panel) caudate ROIs defined in Fig.  1. Error 
bars are 95  % confidence intervals. The controls show significant 
trends of increasing activation with increasing memory load bilater-
ally (p < 0.05); this trend is not present in adolescence ADHD partici-
pants (p > 0.5)
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percent signal change minus load 3 percent signal change) 
predicted memory performance in controls (rho =  0.44, 
p = 0.03) but not in patients (rho = -0.03, p = 0.88).

Results comparing those who continued to meet ADHD 
diagnostic criteria versus those who did not

To assess whether the group difference was driven by large 
abnormalities in the small group who continued to meet 
diagnostic criteria, we compare memory performance and 
brain structural and functional measures in the current 
ADHD versus former ADHD participants. There were no 
differences in memory score (current ADHD mean score 
63.0, SD 5.3; former ADHD mean score 57.1, SD 9.0, 
t = 1.1, df = 29, p = 0.3); or in left caudate volume (cur-
rent 0.08, SD =  0.01; former 0.08, SD =  0.1) t =  0.44, 
df = 47, p = 0.66) or in right caudate volume (current 0.15, 
SD =  0.02; former 0.16 SD =  0.02; t =  0.77, df =  47, 
p  =  0.44); and there were no differences in fMRI cau-
date measures: left caudate load-dependent activation cur-
rent ADHD mean score 0.08, SD 0.07; former mean score 
−0.03 SD 0.18, t = 1.0, df = 19, p = 0.34; right caudate 
activation current ADHD mean score 0.05, SD 0.07; former 
mean score −0.01, SD = 0.18; t = 0.58, df = 19, p = 0.57).

Relationship between caudate MRI measures 
and clinical measures

Within the adolescence ADHD sample, there were no 
associations between current number of symptoms and 
brain structural measures (left caudate volume r =  0.06, 
p  =  0.71; right caudate volume r  =  −0.11, p  =  0.47) 
or functional measures (left caudate activation r  =  0.2, 
p  =  0.43; right caudate activation r  =  0.35, p  =  0.16). 
There were no associations between current GAF and brain 
structural (left caudate volume r = −1.88, p = 0.20; right 
caudate volume r = −0.14, p = 0.37) or functional meas-
ures (left caudate activation r = 0.81, p = 0.73; right cau-
date activation r = 0.87, p = 0.71). There were no associa-
tions between the number of symptoms in adolescence and 
the adult structural or functional measures (left caudate vol-
ume r = −0.12, p = 0.40; right caudate volume r = −0.13, 
p =  0.39; left caudate function r =  0.06, p =  0.80; right 
caudate function r = 0.13, p = 0.59).

Discussion

Adult ADHD assessment outcomes

The majority of young adults who had been diagnosed with 
current definite ADHD in adolescence no longer met DSM-
IV diagnostic criteria for ADHD by the age of 20–24. The 

percentage of adolescents who have a persistent diagnosis 
into adulthood varies across centres and, necessarily, accord-
ing to current diagnostic criteria. The exact diagnostic criteria 
for ADHD continue to evolve, and the 2013 revision of the 
DSM (DSM-5) recognised that adults require less symptoms 
to meet diagnostic criteria than children. The percentage of 
patients who continued to meet DSM-IV diagnostic criteria in 
our study is similar to the meta-analysis of Faraone and col-
leagues [47], but smaller than some clinical follow-up sam-
ples (e.g. 48). This may reflect the way that our participants 
were originally identified and diagnosed. The NFBC86 ado-
lescence ADHD sample, from which our sample is drawn, 
was diagnosed in a general population screening procedure, 
with less than one-third having the “combined” subtype at 
age 16 [26], and is likely to be a slightly healthier group than 
those enrolled in many other studies who tend to be com-
prised mainly of patients with the combined subtype who 
attend specialist psychiatric services for ADHD treatment. 
The emphasis in the current report is not whether participants 
diagnosed with ADHD in adolescence continue to meet diag-
nostic criteria or not, but rather whether or not brain structure 
and function are normal or not in adulthood [18, 19].

Brain structure

The structural abnormalities we found provide strong evi-
dence that the caudate is abnormal in ADHD. Previously 
there has been inconsistent evidence of the structural defi-
cits observed in the caudate for non-medicated people with 
ADHD. While some groups have established a decrease in 
caudate volume in children with ADHD [8, 11] other groups 
have, contrary to this, found higher caudate volumes which 
have been linked to exposure to medication [49]. Our study 
confirms evidence of grey matter volume deficits found in 
the caudate of adults who were diagnosed with ADHD dur-
ing in childhood or adolescence [18]. However, in the only 
previous study to examine adult brain structural follow-up, 
97 % of participants had taken methylphenidate medication, 
and our study shows that caudate differences were not ADHD 
medication induced. Although less volume is generally con-
sidered to be disadvantageous when interpreting VBM stud-
ies, strictly speaking, it is not necessarily detrimental, and we 
therefore elected to utilise our structural areas of deficits as a 
mask in which to assay, using a working memory fMRI task, 
whether caudate function was normal or abnormal in the ado-
lescence ADHD group. The analysis showed that the caudate 
areas in which we identified structural deficits in the adoles-
cence ADHD group also manifested functional deficits.

Working memory function and brain activation

Working memory impairments were present in adulthood 
in people diagnosed with ADHD in adolescence, even if 
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formal diagnostic criteria are no longer met. The group dif-
ferences we observed in working memory were not simply 
secondary to the ADHD group failing to engage in the task, 
as even when we excluded poor performers and limited 
to the analysis to participants who were scoring correct 
answers on the vast majority of trials, correct answers were 
still significantly less than in controls.

Consistent with the working memory performance 
abnormalities observed in adults diagnosed with ADHD in 
adolescence, we also showed that caudate activation dur-
ing task performance was abnormal. Whilst we found load-
dependent working memory activation in both left and right 
caudate in controls, there was no load-dependent activation 
in the adolescence ADHD group. Load-dependent activa-
tion in the right caudate predicted working memory perfor-
mance in controls but not in patients.

The caudate has long been implicated in a working 
memory network that supplies support functions related to 
the prefrontal cortex [50, 51]. Specific caudate abnormali-
ties have previously been found in visual working memory 
in children with ADHD [52] and our results extend these 
to show abnormalities in verbal working memory in adults 
diagnosed with ADHD in adolescence. Studies using a 
visual selective attention task have shown that children 
with ADHD tend to show a pattern of neural activity with 
less activation in fronto-striatal regions and most notably 
the body of the caudate [53]. Our findings indicate that in 
adulthood, people diagnosed with ADHD in adolescence 
show impairments in working memory function, with a 
bilateral failure to activate the caudate increasingly with 
higher working memory loads: this may contribute to the 
memory deficits in ADHD.

Strengths and limitations

There are aspects of our work that are both strengths and 
limitations: as the participants were recruited from the 
general population they will differ in certain respects 
from patients with severe ADHD recruited from specialist 
clinics. As both the adolescence ADHD group and con-
trols were drawn from the same population-based birth 
cohort, they are matched in place of birth, and age, and 
will have been exposed to many similar environmental 
influences. Our control group was representative of the 
general population in being balanced in representation 
from males and females, whereas adolescence ADHD 
participants were mainly male. However, group differ-
ences in brain structure and cognitive performance per-
sisted after controlling for gender. Our study shows that 
there are important residual deficits in young adults diag-
nosed with ADHD during adolescence in caudate volume, 
in working memory performance and associated caudate 
functional activity. The current work also benefits from a 

population sample that is, save for one participant, ADHD 
stimulant medication naïve, proving that the results are 
not driven by stimulant medication treatment: we are not 
aware of any similar studies previously published. The 
sample size of 83 participants (49 with an adolescence 
diagnosis of ADHD) is modest by the standards of epi-
demiology and some other research methods; however, 
a previous study with a smaller sample size (12 patients 
and 12 controls) was able to demonstrate that medicated 
patients with ADHD in childhood that persisted to adult-
hood had widespread fronto-parietal deficits as meas-
ured with fMRI during response inhibition [54]. We did 
not demonstrate any straightforward linear associations 
within the ADHD group between MRI measures and 
clinical measures. However, this is perhaps not unsurpris-
ing given that we noted that the “normal” relationship 
between caudate function and memory performance that 
we observed in controls was not present in adolescence 
ADHD participants.

Conclusions

Although people diagnosed with ADHD in adolescence 
may recover clinically sufficiently to no longer meet diag-
nostic criteria, they may continue to manifest abnormali-
ties in caudate structure and function and working memory 
performance in early adulthood. The results emphasize the 
importance of taking a wider perspective on ADHD out-
comes than simply whether or not a particular patient meets 
diagnostic criteria at any given point in time.
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