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Abstract
Over the past two decades, advances in computational power and data availability combined with increased accessibility to 
pre-trained models have led to an exponential rise in machine learning (ML) publications. While ML may have the potential to 
transform healthcare, this sharp increase in ML research output without focus on methodological rigor and standard reporting 
guidelines has fueled a reproducibility crisis. In addition, the rapidly growing complexity of these models compromises their 
interpretability, which currently impedes their successful and widespread clinical adoption. In medicine, where failure of such 
models may have severe implications for patients’ health, the high requirements for accuracy, robustness, and interpretability 
confront ML researchers with a unique set of challenges. In this review, we discuss the semantics of reproducibility and inter-
pretability, as well as related issues and challenges, and outline possible solutions to counteracting the “black box”. To foster 
reproducibility, standard reporting guidelines need to be further developed and data or code sharing encouraged. Editors and 
reviewers may equally play a critical role by establishing high methodological standards and thus preventing the dissemination 
of low-quality ML publications. To foster interpretable learning, the use of simpler models more suitable for medical data can 
inform the clinician how results are generated based on input data. Model-agnostic explanation tools, sensitivity analysis, and 
hidden layer representations constitute further promising approaches to increase interpretability. Balancing model performance 
and interpretability are important to ensure clinical applicability. We have now reached a critical moment for ML in medicine, 
where addressing these issues and implementing appropriate solutions will be vital for the future evolution of the field.
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Introduction

The evolution of machine learning (ML) has opened new 
frontiers in the analysis of highly-dimensional data that 
expands in some cases far beyond the possibilities of tra-
ditional statistical modeling [44, 57, 62]. Over the past two 
decades, ML applications have seen an exponential rise at 
an accelerating pace of innovation, fueled by the advances in 

computational power, data availability, and dimensionality 
[2]. The current surge in popularity of ML as well as the low 
threshold towards getting started with ML-based research 
through the availability of open-access pre-trained models 
and coding libraries have further democratized ML. With 
an exponential number of publications on ML in medicine, 
this raises serious potential concerns about how methodo-
logical rigor and reproducibility can be upheld—especially 
since most clinical journals, editors, reviewers, and readers 
are not necessarily prepared to judge whether a ML manu-
script actually presents a valid application [60]. Especially 
the reproducibility—and science depends on reproducing 
experiments to verify results—is often not addressed, as a 
majority of ML publications do not report the necessary 
information to understand and validate exactly what was 
done. Another issue is the rapidly growing complexity of 
applied techniques, which compromises their interpretability 
(“black box” issue). This frequently impedes their successful 
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widespread clinical adoption and has given rise to the quest 
for reproducible and interpretable ML [30]. While several 
ML models have been successfully developed and utilized 
in various areas outside of medicine, the implementation of 
such models in clinical medicine is still limited [30]. This 
reluctance to translate ML models into healthcare also stems 
from the fact that their results may have direct implications 
for patient well-being [59]. Consequently, the high require-
ments for performance, robustness, and interpretability pose 
specific challenges for ML developers and health profession-
als [26]. The vastly heterogeneous properties of the pub-
lished models of the current ML landscape have fueled a 
reproducibility and interpretability crisis which constitutes 
a considerable risk for the liability and credibility of ML in 
medicine [20, 21].

We have now reached a critical moment for ML in medi-
cine, where dedicating efforts to resolving these issues will 
be vital for the future evolution of the field. We must uphold 
methodological standards, as we do for other fields of med-
ical research such as clinical trials. This review therefore 
aims to critically reflect on current issues and challenges 
related to reproducibility and interpretability of ML models, 
highlight possible solutions and give an outlook on future 
directions of the field.

Reproducibility

Definition

Reproducibility and replicability are scientific principles and 
should be fought for especially in medical ML. In addition, 
they represent a prerequisite for a model to be interpreta-
ble—as only interpretations of rigorous models are clinically 
useful [1]. Reproducibility refers to the ability of an inde-
pendent research group to reproduce the results of an origi-
nal study using the same data and code [23, 47]. Intuitively, 
the term reproducibility is often synonymous with technical 
reproducibility; however, reproducibility in a broader sense 
also encompasses statistical and conceptual reproducibil-
ity [45]. Statistical reproducibility denotes that a research 
group is able to reach similar results in a resampled data-
set, also called internal validity [9]. Conceptual reproduc-
ibility describes that an independent group is able to verify 
the results using the same code but based on different data, 
frequently referred to as replicability and therefore closely 
related to the notion of external validity [1, 9, 45, 53].

Issues and challenges

In comparison to general ML domains where researchers 
adopted fairly radical notions of open science and trans-
parency, ML model developers in healthcare face a unique 

set of challenges which are a result of the inherent nature 
of healthcare data, regulations, and systems [6]. Tech-
nical reproducibility depends on data and code release; 
however, sharing health data is often highly problematic 
due to strict data protection regulations. By their inherent 
nature, health datasets tend to be relatively small in terms 
of number of observations, noisy, of high dimensionality, 
and often suffer from irregular sampling, therefore limiting 
statistical reproducibility [45]. In addition, patient popula-
tions display individual differences in treatment response, 
diversifying outcomes in a way that complicates outcome 
predictions [5]. Furthermore, datasets are frequently 
derived from single centers, limiting the generalizability 
of ML models as the cohort represented by the dataset is 
often narrower than the population it is intended to reflect 
[45]. A literature review of 511 articles presented at ML 
conferences from 2017 to 2019 concluded that of all ML 
papers in healthcare, only 55% used publicly available 
datasets, only 21% shared their analysis code, only 44% of 
papers reported variance of their performance metrics, and 
only 23% of papers used multi-institutional datasets [45].

Much more than the amount of input data, it is its qual-
ity that ultimately determines the performance of a ML 
model. Missing, inconsistent, inaccurate, or biased data 
may significantly limit the predictive accuracy [14, 48]. 
Although ML methods represent valuable and powerful 
tools for data analysis, they may also suffer from statisti-
cal vulnerability [30]. ML models learn patterns of data 
to generate decisions—and will therefore also inherit con-
cealed bias and inaccuracies of the input data [14]. Various 
forms of data leakage—a phenomenon where information 
from a training set contains data from the testing set—may 
introduce additional bias, leading to overfitting of the ML 
models and compromising their reproducibility [33]. A 
systematic review of bias assessments analyzing over 2000 
clinical prediction models found that a substantial propor-
tion of these—ranging from one quarter to two thirds—
displayed a high risk of bias based on either their statisti-
cal analysis, outcome definition, or participant selection 
[3, 66]. With regard to reporting predictive accuracy, the 
choice of an appropriate measure to report predictive accu-
racy represents an additional challenge as one metric may 
not translate into another, and not every metric be inter-
pretable in a clinically meaningful way [12].

Whereas randomized controlled trials (RCTs) and 
observational studies are generally subject to methodo-
logical rigor and undergo intense scrutiny to ensure high 
standards of the stability of analyses and adequate report-
ing of results, such efforts have not been equally mirrored 
in the research of ML models [6]. As an aggravating fac-
tor, the responsibility to identify potentially irreproducible 
or low-quality ML models remains in the hands of peer 
reviewers of medical journals, who may not always be 
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well-equipped to scrutinize these models [21]. Even after 
the fact, readers of medical journals often cannot criti-
cally appraise published ML articles in the same way of 
standardized RCTs.

A framework for optimizing reproducibility

Various solutions have been proposed to address these 
issues. Shared and auditable large-scale multi-institutional, 
multi-national data repositories as well as shared code and 
guidance on best practices have been shown to foster repro-
ducibility and provide more generalizable results [10, 50]. 
Publicly available datasets such as MIMIC-III [32], Phillips 
eICU [55], and the UK Biobank [61] represent promising 
examples, yet comparable efforts to create more of such 
datasets are required. Datasets with meticulous descriptions 
of their contents, details on incompleteness, inconsistency, 
confounders and biases, and missing data are crucial to ena-
ble standardized data collection and clarify their usage for 
subsequent analyses [52].

Concerning the safe release of data, numerous techno-
logical solutions are being developed to mitigate privacy 
issues [36]. Generating synthetic data that resembles origi-
nal health data may allow researchers to share their code 
with full end-to-end realization of their pipeline [65]. In 
homomorphic encryption approaches, computations are 
performed on data that has been previously encrypted using 
cryptographic techniques [8]. Federated learning hides pri-
vacy-related data by sharing only globally averaged updated 
parameters on a server which are provided by learned param-
eters of local models at each client’s site—avoiding data 
sharing altogether [11].

As is already common practice for RCTs and numerous 
observational studies, pre-registering studies, specifying a 
priori hypotheses and designing a precise statistical plan 
would help uphold the methodological accuracy of ML 
studies [38]. Standard reporting guidelines including TRI-
POD, CONSORT, and SPRINT are increasingly adapted for 
ML and AI applications [12, 13]. In addition to adherence 
to these guidelines, efforts should be directed towards the 
development and dissemination of best practices for ML 
analyses [27]. Given the limited number of experienced 
ML researchers in the medical community, it also lies in the 
responsibility of journal to ensure reviewers with the appro-
priate academic background are recruited—for example, 
dedicated ML editors and reviewers should be assigned by 
each journal. Quality assessment checklists and guidelines 
such as ROBUST-ML [2] or MI-CLAIM [49] may serve as 
valuable tools for reviewers to enable a systematic evalua-
tion of the quality of ML studies. MI-CLAIM (minimum 
information about clinical artificial intelligence modeling) 
[49] is a six-part-checklist to ensure transparency and inter-
pretability of ML studies by establishing standard minimum 

requirements for study design, regarding the clinical setting, 
performance measures, population composition, and stand-
ard reference for comparison of a ML model. Furthermore, 
MI-CLAIM recommends partitioning of the dataset into a 
training and testing cohort, gives recommendations on opti-
mization and model selection, performance evaluation, and 
sets standards for reproducibility [49]. Poldrack et al. [54] 
proposed a framework of best practices to ensure accurate 
reporting of estimates of predictive validity, help quantify 
predictive accuracy, and prevent misinterpreting evidence 
for correlation with actual prediction: analyses should 
be based on a training cohort of at least several hundred 
observations. Moreover, all operations applied to the data 
should be included in cross-validation procedures, and k-fold 
cross-validation with a low k should be used preferably (as 
opposed to the other extreme being leave-one-out-cross-
validation). In-sample model fit indices should not serve as 
measure for predictive accuracy, and rather multiple meas-
ures should be reported. In comparison with a correlation 
coefficient, a coefficient of determination should be pref-
erably used. Applying these best practices may effectively 
combat various issues that are encountered in prediction 
modeling, increase predictive performance, and guarantee 
a higher generalizability of results [54].

Interpretability

Definition

High reproducibility and a robust performance are prerequi-
sites for clinical implementation. However, to truly support 
clinical decision-making and gain credibility, a ML model 
needs to also become interpretable—in other words, clini-
cians need to understand how their ML models come to their 
decisions [16]. Interpretability refers to the ability to trace 
back how a ML model generates its results and is frequently 
interchangeably used with the term explainability [22, 59].

Issues and challenges

ML algorithms can be classified as interpretable or non-inter-
pretable (“black box”) models, by their respective architec-
ture. While interpretable ML models generally appear to be 
more transparent in their underlying explanatory structures, 
non-interpretable ML models may frequently reach higher 
performance metrics. Balancing performance with interpret-
ability is therefore of paramount importance to ensure the 
translation and clinical adoption of ML models [43].

Especially in the medical field, this balance is primarily eth-
ical in nature [56]: providing solid explanations for the behav-
ior of an algorithm for diagnosis, treatment recommendations, 
disease prognosis, or mortality prediction while ensuring a 
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high degree of accuracy is a fundamental prerequisite for the 
social acceptance and trustworthiness of a model—not only 
because incorrect results may potentially have real-world con-
sequences for the well-being of patients [28] but also because 
it is not clearly regulated who takes legal responsibility in the 
case of adverse events [4]. Understanding the relationship 
between input and output of the model is therefore essential 
both for the clinician to be able to make informed treatment 
decisions and for the patient to be able to give informed con-
sent [64]. As the structural architecture of ML evolves to 
highly complex non-linear architectures such as convolutional 
neural networks, the behavior of the algorithm and the under-
lying causal relationships leading to a specific result become 
increasingly difficult to explain [40]. While most medical ML 
should be tackled using natively interpretable, simple models, 
in medical imaging applications, deep learning models can be 
highly useful, although they lack in interpretability [34]. While 
feature selection and engineering are key properties of other 
ML techniques, deep learning can automatically learn useful 
representation of data and sometimes reach superior perfor-
mance [29, 68]. Automatically, extracted features may easily 
mount up to thousands of variables which are extraordinarily 
difficult for clinicians to interpret [29].

De‑black‑boxing ML

Black box models that do not offer native methods for inter-
pretation require special attention. For ML to become inter-
pretable, two major structural aspects of the model need to 
be explained in a transparent, humanly understandable way: 
first, the logic of the model (model-based explanations), and 
second, the causal relationships between input and output of 
a model (results explanations) [24].

Model-agnostic explanation methods such as SHapley 
Additive exPlanation (SHAP) or Local Interpretable Model-
agnostic Explanation (LIME) represent two prominent 
interactive techniques for model behavior [35]. SHAP is a 
commonly used approach which quantifies the individual 
contribution of a feature value (Shapley value) to the dif-
ference between the actual and the average prediction of 
model, detailed as relative distribution among features [41]. 
LIME can be used to explain how individual features lead to 
prediction probabilities by approximating it locally with an 
interpretable model [58]. For this, LIME perturbs sampled 
training data for classifiers and assesses how changes in the 
features affect the results of a model [58]. However, this 
technique is an extremely time-consuming approach which 
in addition is also exceptionally prone to bias [18].

As for results explanation, the choice of an appropriate expla-
nation method largely depends on the internal architecture of 
the ML mode. Uniform manifold approximation and projection 
for dimension reduction (UMAP) has become the established 
method for feature space visualization while gradient-weighted 

class activation mapping (Grad-CAM) is frequently used to 
explain deep neural networks [7, 63]. Unraveling DL models 
by providing explanatory graphs for the knowledge hierarchy 
concealed in the convolution-layers of a convolutional neural 
network, so-called hidden layer representation, constitute a 
promising approach to improving interpretability [67, 69].

However, many applications of ML in medicine do not 
provide enough input data for sensible use of such more 
complex architectures, and in most cases architectures such 
as generalized linear models, decision trees, or random for-
ests are more appropriate—these techniques natively support 
interpretation (as they provide coefficients, visualized trees, 
or Gini importance, for example) [42].

In general, simple models such as nomograms or decision 
trees favor clinical applicability as they are widely under-
stood and more easily applicable. In other words, the first 
step in ensuring interpretability should always be asking “do 
I really need a complex model here?”. Another option are 
graphical calculation devices named “nomograms”, used 
to explain logistic regression-based analyses, as is already 
common in oncology applications [31]. Decision trees 
model nonlinear effects and frequently detail feature impor-
tance scores, making them highly interpretable—provided 
a shallow tree depth [15].

Sensitivity analysis may help to assess how changes in 
input feature impact the predictive performance of a DL 
model [39]. In this context, heat maps are a valuable tool to 
visualize the importance of each pixel for a prediction task 
and may optimize a convolutional neural network training 
approach [43]. For example, heat maps detailing the Z-score 
difference of each radiomic feature between the training and 
the validation data set may be used to evaluate consistency 
of radiomics features [37].

Especially in medicine, where failure of a model may 
adversely affect patient health, constant automatic and 
human-in-the-loop evaluation of its interpretability is 
required to test and optimize the performance of a model 
in a clinical setting. Using applications in their daily prac-
tice, clinicians can determine the performance model by 
comparing the explanation of a model with their own 
explanation for a decision [17]. The most trivial form of 
human-based evaluations constitute studies which com-
pare the accuracy of decisions made by clinicians with or 
without interpretable ML; however, they are highly sus-
ceptible to interobserver variability caused by subjectivity 
and personal preferences [19]. To combat these potential 
forms of bias, multiple readers should be employed on a 
high number of diverse cases [19]. Forward and counter-
factual simulation studies may aid in the objective assess-
ment of interpretability to capture whether the clinician 
comprehends the underlying rationale behind the prediction 
[18]. In forward simulation, a reader is supposed to predict 
model output based on given input data. In counterfactual 
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simulation, a clinician should predict the model result 
given a change to the input data [25]. Furthermore, human-
subject involvement in the evaluation of explanation meth-
ods has been proposed in a feedback or feed-forward setting 
[46]. In a feedback setting, clinicians provide feedback on 
explanations which then used to quantify the quality of 
explanations [46]. In a feed-forward setting, clinicians sug-
gest examples for explanations which serve as a reference 
for the explanations of the ML model [46].

Conclusion

Accessibility to ML techniques and the explosion in medi-
cal publishing overall have fueled the current “hype” of 
medical ML, which has certainly led to some interest-
ing advancements, but also begs the question for how we 
should gatekeep proper techniques, rigorous methodol-
ogy [45]. Many of the currently published ML models in 
the medical literature do not correspond to the “state-of-
the-art—not only in terms of general methodology, but 
increasingly also in terms of lack of reproducibility and 
interpretability. As we outline in this review, these two 
points are crucial for the success of introducing ML into 
clinical practice. Raising awareness to these issues, pro-
viding solutions and establishing rigorous standards for 
ML research will be of utmost importance to de-stigma-
tize black-box-like models and restore the credibility and 
legitimacy of ML in medicine [51]. Data and code sharing 
(if necessary using approaches like federated learning), 
proper reporting according to guidelines, installing dedi-
cated ML expert reviewers, applying simple and natively 
interpretable models where possible, or using post hoc 
techniques to enable interpretation of complex models 
where this is not: these gatekeeping steps will be critical 
to ensure that ML—like any scientific method – is applied 
correctly and does not produce misleading or even danger-
ous results [18].
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