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Abstract
Background Deep brain stimulation (DBS) is being investigated as a treatment for therapy-refractory obsessive compul-
sive disorder (OCD). Many different brain targets are being trialled. Several of these targets such as the ventral striatum 
(including the nucleus accumbens (NAc)), the ventral capsule, the inferior thalamic peduncle, and the bed nucleus of stria 
terminalis (BNST)) belong to the same network, are anatomically very close to one another, or even overlap. Data is still 
missing on how various stimulation parameters in a given target will affect surrounding anatomical areas and impact the 
clinical outcome of DBS.
Methods In a pilot study of eleven participants with DBS of the BNST, we investigate through patient-specific simulation 
of electric field, which anatomical areas are affected by the electric field, and if this can be related to the clinical results. Our 
study combined individual patient’s stimulation parameters at 12- and 24-month follow-up with image data from the preop-
erative MRI and postoperative CT. These data were used to calculate the distribution of electric field and create individual 
anatomical models of the field of stimulation.
Results The individual electric stimulation fields by stimulation in the BNST were similar at both the 12- and 24-month 
follow-up, involving mainly anterior limb of the internal capsule (ALIC), genu of the internal capsule (IC), BNST, fornix, 
anteromedial globus pallidus externa (GPe), and the anterior commissure. A statistical significant correlation (p < 0.05) 
between clinical effect measured by the Yale-Brown Obsessive Compulsive Scale and stimulation was found at the 12-month 
follow-up in the ventral ALIC and anteromedial GPe.
Conclusions Many of the targets under investigation for OCD are in anatomical proximity. As seen in our study, off-target 
effects are overlapping. Therefore, DBS in the region of ALIC, NAc, and BNST may perhaps be considered to be stimula-
tion of the same target.

Keywords Electric field · Simulation · Deep brain stimulation (DBS) · Obsessive compulsive disorder (OCD) · Bed nucleus 
of stria terminalis (BNST)
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OCD  Obsessive compulsive-disorder
ROI  Region of interest
SD  Standard deviation
Y-BOCS  Yale-Brown Obsessive Compulsive Scale

Introduction

Obsessive compulsive disorder (OCD) is a chronic condition 
driven by intrusive anxiety-provoking thoughts (obsessions) 
that lead to repetitive behaviour (compulsions) to alleviate 
anxiety. The most common model for the pathology in OCD 
is dysregulation in cortico-striato-thalamo-cortical (CSTC) 
networks [49]. The prevalence of OCD is around 2%, and 
about 10% of affected patients suffer from severe symptoms, 
despite best practice pharmacological and psychotherapeutic 
treatment [14]. Therefore, other treatment options are being 
investigated for therapy-refractory OCD, including deep 
brain stimulation (DBS)  [45].

DBS is an established treatment for movement disorders  
[27]. Since DBS for treatment-refractory OCD was first sug-
gested by Nuttin et al. (1999), around ten different brain 
targets have been investigated  [1, 12, 15, 19, 24, 29, 31, 
33, 41–43, 47, 55, 56]. Most of these targets are located 
subcortically in and surrounding the basal ganglia. The 
basal ganglia is a constellation of deeply located nuclei in 
the for- and midbrain. The primary role of the basal ganglia 
is to synchronise behaviour in an integrated way in a given 
situation. As part of this, the basal ganglia are involved in 
several sensory, motor, cognitive, and emotional functions, 
maintained by being a part of CSTC networks  [59]. Also 
associated with the CSTC network is the anterior limb of 
the internal capsule (ALIC), the first target introduced for 
DBS for OCD  [47]. The ALIC is an important network 
communicator between many regions involved in cognitive 
and emotional processes, including the pre-frontal cortex 
and the striatum  [18].

Both the optimal target and the mechanism of action of 
DBS in these targets are still unknown. Apart from belong-
ing to the same network, several of these targets such as the 
ventral striatum (including the nucleus accumbens, (NAc)), 
the ALIC, the inferior thalamic peduncle (ITP), and the bed 
nucleus of stria terminalis (BNST) are anatomically very 
close to one another or even overlap  [26]. Additionally, 
data is still missing on how various stimulation parameters 
in a given target will affect surrounding anatomical areas 
and impact the clinical outcome of DBS  [4, 6]. There are 
suggestions that anatomical areas targeted by stimulation 
overlap  [51]. Data on which regions are affected by the 
stimulation in these targets could be helpful to pool evidence 
on safety and efficacy.

It is possible to estimate the affected field around the 
active DBS contacts by patient-specific finite element 

method simulations or simpler electric field models. Such 
estimates have, for example, been used to study the opti-
mal placement of DBS leads in patients with Gilles de la 
Tourette syndrome and essential tremor  [2, 13]. Here, 
in a pilot study of DBS in the bed nucleus of stria ter-
minalis for OCD, we investigate through patient-specific 
simulation of the electric field which anatomical areas are 
affected by the electric field and if this can be related to 
the clinical results.

Methods

Patients

Eleven consecutive patients were included in this study (7 
females, age 21–59). Their Yale-Brown Obsessive Com-
pulsive Scale (Y-BOCS) score ranged between 29 and 
38. The disease duration ranged between 5 and 46 years, 
and all patients had failed previous pharmacotherapy and 
cognitive behavioural therapy (CBT) trials. The study 
was approved by the regional ethical board of the Umeå 
University Hospital (No. 08-090 M). Clinical results at 
12-month follow-up from this pilot study have previously 
been reported  [46].

Surgical procedure

The surgery was performed with the Leksell stereotactic 
frame in general anaesthesia. Stereotactic imaging was 
done on a Philips Achieva dStream 1.5-T MR machine using 
T2- and volumetric T1-weighted sequences with an image 
resolution of 1 × 1 × 2 mm. On the stereotactic T2-weighted 
MRI, the BNST was visually identified on thin slice axial 
scans, posterior to the anterior commissure, and lateral to 
the fornix at the level of the anterior commissure-posterior 
commissure (AC-PC) line (Fig. 1). Calculating target coor-
dinates and trajectories were done using FrameLink/Stealth 
Cranial (Medtronic, Minneapolis, USA). An entry point for 
the lead trajectory was chosen 35–50 mm lateral to the mid-
line and about 0–15 mm anterior to the coronal suture to 
provide a trajectory intubating the ventral part of the ALIC. 
The target point for the deepest contact was chosen 3 mm 
below the AC-PC plane (Fig. 2)  [54]. The quadripolar elec-
trodes (Medtronic, model 3387 or 3389) were connected to 
an implantable pulse generator (Medtronic, PC) in the sub-
clavicular area during the same surgical session. To verify 
the lead location, a postoperative CT was done on a GE 
LightSpeed VCT machine with an image resolution between 
0.43–0.59 × 0.43–0.59 × 1.25 mm. The CT image was then 
fused with the preoperative stereotactic MRI.
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Programming and post‑operative follow‑up

Stimulation was typically started 12 (range 3–30) days 
after surgery. The initial programming session consisted 
of a screening of each individual electrode contact, mainly 

for side effects. During the following months, stimula-
tion voltage was further increased to reduce obsessions, 
compulsions, and anxiety. In case of side effects, the pro-
gramming was reverted to lower voltage settings, and 
the titration was more gradual. Table 1 shows individual 

Fig. 1  The encircled areas show individual electric fields at 12 months’ follow-up in each of the 11 patients
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chronic stimulation parameters at 12 and 24 months after 
the surgery.

Computer simulations of electric field

Models of the Medtronic leads were made in Comsol Mul-
tiphysics 5.3a (Comsol AB, Sweden). The electric field 
magnitude (EF) was calculated from the equation for steady 
currents, which depends on the tissue-dependent electric 
conductivity. An in-house developed software (ELMA)  
[35] was used to classify the tissue into grey matter, white 
matter and cerebrospinal fluid based on the preoperative 
T1-weighted MRI of each individual patient  [4, 6]. The 
electric conductivity was assigned according to tissue type 
from tabulated values  [3, 22] weighted with the spectral 
distribution of the DBS pulse shape  [57]. The active cathode 
contacts were assigned the electric potential used for the 
individual patient while the surrounding surfaces were set to 
ground. For details of the modelling and simulation, see  [4]. 
Tissue within a threshold electric field magnitude (EFt) was 
assumed to be activated by the stimulation. This threshold 
is pulse width dependent with lower EFt for longer pulse 
widths  [23], giving a similar effect from increasing pulse 
width as from increasing the voltage. EFt has been estimated 
to be 0.20 V/mm at the pulse width of 60 µs to 0.14 V/mm 
at the pulse width of 150 µs based on experimental stud-
ies by Alexis Kuncel et al.  [38] and Mario Rizzone et al.  
[52]. For details, see reference  [34]. This threshold has been 
used in several previous studies  [4, 7, 28]. The electrodes 
were aligned by their artefacts in the postoperative CT that 
had been linearly co-registered with the preoperative MRI 
(FLIRT, FSL  [32]). Meshes of approximately 800,000 tet-
rahedral elements were used for the simulations, and the 

volumes within the activation threshold EFt were exported 
as logical matrices with voxels corresponding to the voxels 
of the preoperative MRI. Pulse width–adjusted EF were also 
exported in the same voxels with an adjustment factor of 
0.2/0.14 = 1.43 for 150-µs pulses. For each patient, a region 
of interest (ROI) 80 × 60 × 30 mm centred on the anterior 
commissure was selected for the export.

Stimulation analysis and statistics

The sections of the preoperative T1 images in the ROI 
exported region were non-linearly co-registered (ANTs  
[9]), which produces an averaged template image of all 
patients and individual transformation matrices to it. These 
transformation matrices were applied to the activated tissue 
matrices in order to transform them to the averaged template 
geometry. For each voxel in the template geometry, a linear 
regression analysis (Matlab, Mathworks, USA) was per-
formed between pulse width-adjusted electric field strength 
above EFt and the % change at 12 and 24 months in Y-BOCS 
scores. A permutation test for type I errors for multiple com-
parisons was performed according to a method described by 
Eisenstein et al.  [17]. The voxels with a positive correla-
tion at a significance level of p < 0.05 were stored for each 
parameter. The voxels activated in the simulations in at least 
one patient with an improvement of at least 35% were also 
stored for each parameter. The results were visualized in 3D 
Slicer 4.6.2  [20].

Results

Stimulation parameters

All patients had monopolar stimulation (Table 1 shows 
details of programming settings for individual patients). 
Mean ± SD stimulation parameters at 12  months were 
4.2 ± 0.5  V, pulse width 87 ± 28  µs, and frequency 
130 ± 0 Hz. For the seven responders, the mean ± SD stim-
ulation parameters were 4 ± 0.6 V, pulse width 81 ± 23 µs, 
and frequency 130 ± 0 Hz. For the four non-responders, the 
mean ± SD stimulation parameters were 4.3 ± 0.5 V, pulse 
width 98 ± 38 µs, and frequency 130 ± 0 Hz.

Mean ± SD parameters at 24 months were 4.2 ± 0.6 V, 
pulse width 93 ± 28 µs, and frequency 130 ± 0 Hz. For 
the six responders, the mean ± SD stimulation parameters 
were 4.4 ± 0.5 V, pulse width 105 ± 31 µs, and frequency 
130 ± 0 Hz. For the five non-responders, the mean ± SD 
stimulation parameters were 4.1 ± 0.6  V, pulse width 
78 ± 16 µs, and frequency 130 ± 0 Hz. (Table 1).

The individual electric stimulation fields, with some indi-
vidual variances, involved the ALIC, the genu of IC, the 
ventral part of the caudate including parts of the nucleus 

Fig. 2  Finite element method model of two Medtronics 3387 leads 
visualized along the plane of the electrodes. The deepest contact lies 
3 mm below the AC-PC plane
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accumbens, the BNST and touching the fornix, the antero-
medial putamen, and the anterior globus pallidus externa 
(GPe) and interna (GPi) (Fig. 1). The electric field, on aver-
age, extended more lateral and anterior into the GPe on both 
sides for the responders.

At 24-month follow-up, the individual stimulation fields, 
with some individual variances, involved the ALIC, the genu 
of IC, the ventral caudate nucleus including parts of the 
nucleus accumbens, the fornix, the BNST, and touching the 
GPe and GPi. There were no significant visual differences 
of affected anatomical targets between 12 and 24 months in 
the individual stimulation fields.

Correlation between electric stimulation field 
and clinical effects on Y‑BOCS

Stimulation areas in responders involved the ALIC, genu 
of IC, AC, BNST, fornix, GPe, GPi and touching onto the 
ventral part of the head of caudate nucleus. Statistically sig-
nificant results between voxel-based stimulation area and 
clinical effect of Y-BOCS reduction (p < 0.05) was found 
in the ALIC and anteromedial GPe (dark green voxels in 
Fig. 3), but the permutation test showed that these were not 
strong enough to discount type I errors.

At 24-month follow-up, the area of stimulation for 
responders was almost the same as at 12 months, involving 
mainly ALIC, genu of IC, AC, BNST, fornix, GPe, GPi and 
touching onto the most ventral part of the head of caudate 
nucleus. There were no longer any significant results with 
linear regression analysis between stimulation area and clini-
cal effect on Y-BOCS reduction.

Discussion

In our study, a statistically significant correlation was found 
between clinical effect at 12 months and stimulation field 
in the ventral ALIC and anteromedial GPe. To the best of 
our knowledge, this is the first report on the distribution of 
electric fields in this location for DBS in OCD.

In the literature, there are so far ten different brain targets 
suggested for OCD: anterior dorsal internal capsule, ALIC, 
nucleus accumbens, anteromedial subthalamic nucleus, 
medial forebrain bundle, BNST, caudate nucleus, ITP, dor-
somedial, and ventral anterior nucleus of the thalamus  [37, 
56].

The ALIC is historically a well-studied and used target 
for capsulotomies in OCD and was therefore selected as the 
target for the first reported DBS study in OCD  [47]. The 
ALIC is also the most studied target for DBS in OCD, with 
the largest cohort reported by Denys et al. with 70 partici-
pants  [16].

The BNST has been suggested as a possible target for 
DBS in severe OCD  [48]. This centrally located nucleus 
has vast connections with many limbic-related networks, and 
dysfunction in these pathways is believed to have an impor-
tant role in anxiety disorders, such as OCD  [11, 39]. A few 
clinical studies, including two randomized trials, have been 
published demonstrating an effect on obsessions, compul-
sions, and associated anxiety and depressive symptoms in 
this target  [19, 31, 41, 44, 46, 50].

Several of the targets under investigation for OCD are 
anatomically near the BNST and can be found within this 
field of stimulation, as illustrated in Fig. 4. That is, the 
ALIC where DBS for OCD was first suggested by Nuttin 
et al. (1999) and the posterior location of the IC towards the 
BNST as suggested by Greenberg et al. (2010)  [25, 47]. In 
the worldwide multicentre study from Greenberg et al. in 
2010, the authors described limited effect and high stimula-
tion parameters needed in the more anterior targets (marked 
as X1 and X2 in Fig. 4)  [25]. One of the anterior targets had 
a better effect (marked as X3 in Fig. 4). However, this tar-
get required much higher stimulation parameters to achieve 
similar results as in the more posterior position (marked as 
X4 in Fig. 4). A better result in more posterior locations was 
also confirmed later in studies by Munckhof et al. (2013) and 
Tyagi et al. (2019)  [25, 56, 58]. Jimenez-Ponce described a 
good response in 5 participants with DBS in the ITP target 
marked as X5 in the same illustration, however, with very 
high stimulation settings of 5.0 V and pulse width 450 µs  
[33].

Fig. 3  Group simulation fields 
at 12 months’ follow-up
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In our study, the field of stimulation the BNST were simi-
lar at both the 12- and 24-month follow-up involving mainly 
ALIC, genu of IC, BNST, fornix, AC, and anteromedial 
GPe. In the group simulation fields at 12-month follow-up, 
we found a positive correlation between clinical improve-
ment and electric field strength in the GPe on the left side. 
It can also be seen that the electric field extends more lateral 
and anterior into the GPe on both sides for the responders 
on the individual simulation models. The GPe is part of the 
CSTC network, in which dysregulation is the most common 
model for pathology in OCD  [53]. Especially the anterome-
dial part of the GPe has been suggested as crucial for obses-
sional compulsive symptoms  [21]. Fibres passing through 
or near the GPe may be involved in the clinical effects of 
DBS for OCD. However, the statistical significance for the 
region could not be shown when adjusting for multiple com-
parisons. The results should thus be taken with great cau-
tion. The main fibres involved in OCD affected by the DBS 
probably go from the thalamus through the genu and anterior 
limb of the internal capsule along X3-X5 in Fig. 4. DBS in 
the targets along this line, including the BNST, seem to give 
satisfactory clinical results in OCD  [25, 33, 46]. Further, 
stimulation delivered to one area has potential off-target 
effects. Hence, there is a probability that DBS in targets 
such as the NAc, ALIC, the ventral part of IC, the ITP and 
BNST will affect neighbouring structures/targets due to the 
large field of stimulation in this small anatomical region.

Further, since the clinical effects of DBS with all prob-
ability do not stem from a single point but from networks, 

similar effects can probably be achieved by stimulation at 
different points within these networks  [10, 30]. In conclu-
sion, many of these targets for OCD are in anatomical prox-
imity, and as we demonstrated in our study, off-target effects 
overlap. Therefore, DBS in the region of ALIC, NAc, and 
BNST may perhaps be considered to be a stimulation of the 
same target. This off-target effect could explain why Alonso 
et al. found no demonstrable differences between DBS in 
ALIC, NAc, and DBS in the BNST  [5]. Raviv et al. have 
also pointed out the inconsistency of target descriptions and 
nomenclature in the literature and the often marginal differ-
ence between different targets, especially with considera-
tion to off-target effects of stimulation  [51]. Therefore, they 
suggested standardizing the nomenclature and defining the 
targets ALIC, BNST, NAc, VC/VS as “striatal region”.

Since it is well known from DBS in movement disorders 
that different targets can be used for the same condition, 
and since this seems to be the case also in OCD, perhaps 
a more pressing issue is why DBS for OCD seems to have 
such varying results in different patients. In our material, the 
electrode placement and anatomical stimulation field were 
very similar between responders and non-responders. Hence, 
there should be other factors that contribute to this differ-
ence in response that cannot be identified by just studying 
the electric fields. Which factors do or do not contribute 
to response-prediction in DBS for OCD is much-needed 
knowledge.

It can be noted that the electric field threshold level of 
0.2 V/mm has been estimated to correspond to the activa-
tion of axons with an outer diameter of 3.4 µm  [8]. Such 
large axons are relatively uncommon in the brain, and 
smaller axons require a stronger electric field for activation  
[8, 36, 40]. The effect of the DBS is thus expected to be 
stronger closer to the active contact where the electric field 
is stronger. This is the reason the voxel-wise statistics were 
done with linear regression between EF and clinical effect 
rather than just between activated voxels and clinical effect 
as was done in, e.g. Akbarian-Tefaghi et al.  [2].

Limitations

The main limitation of our study is the small number of 
patients. Electrodes were similarly placed, obtaining sta-
tistically significant comparisons for lead and electric field 
locations difficult.

Conclusion

This study analysed the distribution of electric fields in par-
ticipants treated with DBS in the BNST. We found that the 
fields of stimulation in the BNST were similar at the 12- and 

X5

X4

X3

X2

X1

ALIC
GPe

AC

Fig. 4  Anatomical target overview
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24-month follow-up, involving mainly ALIC, genu of IC, 
BNST, fornix, anteromedial GPe, and the AC. Many of the 
targets under investigation in DBS for OCD are in anatomi-
cal proximity, and as we demonstrated in our study, off-tar-
get effects are overlapping. Therefore, DBS in the region of 
ALIC, NAc and BNST may perhaps be considered to be a 
stimulation of the same target.
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Comments 

The study builds on previously reported work by the authors and 
expands the findings by incorporating the electric field modelling. 
Even though this does not constitute a major development, it shows an 
improvement on their current pipeline with possibilities for expansion 
of knowledge.
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