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Abstract. Maximizing geometric functionals such as the classical lp-norms over poly-
topes plays an important role in many applications, hence it is desirable to know how
efficiently the solutions can be computed or at least approximated.

While the maximum of the l∞-norm over polytopes can be computed in polynomial
time, for 2 ≤ p < ∞ the lp-norm-maxima cannot be computed in polynomial time within
a factor of 1.090, unless P = NP. This result holds even if the polytopes are centrally
symmetric parallelotopes.

QUADRATIC PROGRAMMING is a problem closely related to norm-maximization, in that
in addition to a polytope P ⊂ R

n , numbers ci j , 1 ≤ i ≤ j ≤ n, are given and the goal is to
maximize

∑
1≤i≤ j≤n ci j xi xj over P . It is known that QUADRATIC PROGRAMMING does not

admit polynomial-time approximation within a constant factor, unless P = NP.
Using the observation that the latter result remains true even if the existence of an integral

optimal point is guaranteed, in this paper it is proved that analogous inapproximability
results hold for computing the lp-norm-maximum and various lp-radii of centrally symmetric
polytopes for 2 ≤ p < ∞.

Introduction

Geometric functionals of polytopes play an important role in numerous applications
in mathematical programming, operations research, statistics, physics, chemistry, and
medicine, see [GK3]. Of particular interest are the different lp-radii and the lp-norm-
maxima, where for any vector x = (ξ1, . . . , ξn)

T ∈ Rn the lp-norms are defined by

‖x‖p =
(

n∑
i=1

|ξi |p

)1/p

for 1 ≤ p < ∞ and ‖x‖∞ = max
1≤i≤n

|ξi |.
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Using linear programming, maxx∈P‖x‖∞, where P denotes the n-dimensional poly-
tope given as input, can be computed in polynomial time [GK2]. Furthermore, it is
trivial that once the vertices of P are explicitly known the pth power (in order to avoid
non-rational numbers if p ∈ N) of the lp-norm-maximum over P can be computed in
polynomial time since the maximum of the convex objective function is attained at a
vertex. However, any (rational) polytope admits as well as a presentation as the convex
hull of its vertices (V-presentation, see precise definition in Section 1) a description by a
system of linear inequalities (H-presentation), but in general the number of vertices can
be exponential in the number of inequalities and vice versa. Hence, from an algorithmic
point of view it makes a crucial difference whether the polytope given as input is pre-
sented by its vertices or by a linear inequality system. Indeed, computing the pth power
of the maximum of the lp-norm over H-presented polytopes, p ∈ N, turns out to be
NP-complete even for simple sorts of polytopes like centrally symmetric parallelotopes
[BGKL]. Hence it is unlikely (meaning unless P = NP) that the optimum can be exactly
computed in polynomial time.

Consequently, one might ask for the hardness of approximation. If it is unlikely
that norm-maxima can be exactly computed in polynomial time, can we at least derive
“good” polynomial-time approximation algorithms? Actually, using an algorithm for
special quadratic programs derived in [Y], the problem of maximizing the (square of
the) Euclidean norm over centrally symmetric parallelotopes has a 7

3 -approximation
algorithm. On the negative side, unless P = NP, there is no polynomial-time 1.090-
approximation algorithm, see [BGK].

The latter results are proved only, in the case of the upper bound, and even, in the
case of the lower bound, for very simple sorts of polytopes and the question arises for
the situation in which general H-polytopes are considered.

The current best upper bounds that can be achieved in the realm of the Algorith-
mic Theory of Convex Bodies in which general bodies are presented by oracles are
O(n p/2/(log n)p−1) for 1 ≤ p ≤ 2 and O(n/ log n) for 2 < p < ∞. In this model
the latter results are asymptotically optimal and in the Euclidean case even hold for
randomized algorithms [BGK+1], [BGK+2].

In this paper the gap between the upper and lower bounds for general polytopes is
significantly reduced by proving the non-existence of an algorithm that approximates lp-
norm-maxima within any constant factor, unless a relation holds that is widely believed
to be false, i.e., P = NP.

Going along the same lines and using polarity, analogous results can be proved for the
computation of the four main radii of polytopes, i.e., circumradius, inradius, diameter,
and width.

The remainder of this paper is divided into three sections.
In Section 1 we start with the exact definition of the geometric optimization problems

we are concerned with and state the main results. In Section 2 the inapproximability
result for lp-norm-maximization is proved by a reduction from the problem QUADRATIC

PROGRAMMING in that in addition to a not full-dimensional polytope P ⊂ Rn , numbers
ci j , 1 ≤ i ≤ j ≤ n, are given and the goal is to maximize

∑
1≤i≤ j≤n ci j xi xj over P .

The results for lp-radii then follow from additional geometric transformations and are
presented in Section 3.
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1. Definitions and Statement of Main Results

The underlying model of computation is the binary Turing machine model. A string
(n,m; v1, . . . , vm) with n,m ∈ N and v1, . . . , vm ∈ Qn is called a V-polytope in Rn;
it represents the geometric object P = conv{v1, . . . , vm}. A string (n,m; A, b), where
n,m ∈ N, A is a rational m × n matrix, b ∈ Qm , and the set P = {x ∈ Rn : Ax ≤ b} is
bounded, is called an H-polytope in Rn; it is again identified with the geometric object
P . The binary size 〈P〉 of a V- or an H-polytope P is the number of binary digits needed
to encode the data of the presentation.

For 1 ≤ p ≤ ∞ the lp-norm-maximum maxx∈P‖x‖p over a polytope P ⊂ Rn is
denoted by Np(P). Furthermore, rp(P) denotes its inradius, Rp(P) its circumradius,
dp(P) its diameter, and wp(P) the width of the polytope P , where all these functionals
are defined as usual, see [BGKL].

The precise definition of the algorithmical problems we are interested in is as follows:
Let W ∈ {H,V}, let p ≥ 1 be a rational number or p = ∞, and let ϕp ∈

{r p
p , R p

p , w
p
p , d p

p , N p
p }, with the understanding that ϕ∞

∞ means ϕ∞. Then we are interested
in the following problem:

(ϕp,W)-COMPUTATION. Given a W-presented polytope P as input, compute ϕp(P).

We need some more notation in order to formulate the results precisely.
Suppose that a non-negative measurement ψ of polytopes is of interest, and A is an

algorithm that produces, for each W-presented polytope P , a number α(P). If, for a
function f : N −→ [1,∞[ , the number α(P) is always such that

max

{
α(P)

ψ(P)
,
ψ(P)

α(P)

}
≤ f (〈P〉),

then A is called an f -approximation algorithm for (ψ,W)-COMPUTATION and we say
that A approximates ψ for W-polytopes with a (worst-case) performance ratio f . Here
0/0 has to be set to 1. In general, the case ψ(P) = 0 might cause difficulties and has to
be explicitly dealt with depending on the specific problem. However, the caseψ(P) = 0
does not cause any difficulty for the choices of ψ considered here, because for them it
can easily be decided in polynomial time whether ψ(P) = 0 and hence any algorithm
can be augmented by a polynomial-time procedure that computes ψ(P) correctly in this
case [GK2]. In what follows we always assume that ψ(P) > 0, or, equivalently, we
restrict ourselves to full-dimensional polytopes as input for (ϕp,W)-COMPUTATION.

The above definition naturally extends to other optimization problems and also to vari-
ous classes of approximation algorithms. The polynomial-time approximation algorithms
are of particular interest, and they are the subject of this paper. We say that (ϕp,W)-COM-
PUTATION does not admit polynomial-time f -approximation if every polynomial-time
approximation algorithm has a performance ratio greater than f , and admits polynomial-
time f -approximation if there exists a polynomial-time approximation algorithm whose
performance ratio is at most f .

Problems for which a polynomial-time approximation algorithm with constant f
exists belong by definition to the class APX.
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Finally, by P̃ we denote the class of decision problems that can be solved in quasi-
polynomial time, i.e., the running-time of an associated algorithm can be bounded by
m logν m , where ν is a positive constant and m denotes the size of the input.

Now let p be any rational number with 2 ≤ p < ∞ and define p′ by the equation
1/p + 1/p′ = 1. In this paper the following results are proved.

Theorem 1.1. Unless P = NP, the problems (i) (N p
p ,H)-COMPUTATION, (ii) (d p

p ,H)-

COMPUTATION, (iii) (R p
p ,H)-COMPUTATION, (iv) (w p′

p′ ,V)-COMPUTATION, and (v) (r p′
p′ ,

V)-COMPUTATION are not contained in the class APX.

These results even hold for polytopes that are centrally symmetric with respect to the
origin.

By weakening the assumption P �= NP the bound for the performance ratio can be
improved as follows:

Theorem 1.2. Unless NP ⊆ P̃, there exists a positive constant δ < 1 such that
the problems (i) (N p

p ,H)-COMPUTATION, (ii) (d p
p ,H)-COMPUTATION, and (iii) (R p

p ,H)-
COMPUTATION do not admit polynomial-time 2logδ n-approximation, where n denotes the
dimension of the polytope given as input.

2. Reducing Restricted Quadratic Programming to Norm-Maximization

Consider the following problems.

QUADRATIC PROGRAMMING. Given an H-presented polytope P ⊂ Rn and numbers
ci j , 1 ≤ i ≤ j ≤ n, as input, compute

max
x∈P

∑
1≤i≤ j≤n

ci j xi xj , where x = (x1, . . . , xn)
T .

RESTRICTED QUADRATIC PROGRAMMING. Given non-negative integral numbers κ, λ,
σ, τ and non-negative rational numbers ck,l,s,t , k ∈ K := {1, . . . , κ}, l ∈ L :=
{1, . . . , λ}, s ∈ S := {1, . . . , σ }, and t ∈ T := {1, . . . , τ } as input, compute the
maximum of

f1(x, y) =
∑

k∈K ,l∈L
s∈S,t∈T

ck,l,s,t xk,l ys,t ,

x = (x1,1, . . . , x1,λ, x2,1, . . . , xκ,λ) and y = (y1,1, . . . , y1,τ , y2,1, . . . , yσ,τ ), over the (not
full-dimensional) polytope P1 ⊂ Rκλ+στ described by the system∑

k∈K

xk,l = 1 for l ∈ L ,

∑
s∈S

ys,t = 1 for t ∈ T,



Geometric Optimization Problems Likely Not Contained in APX 205

0 ≤ xk,l ≤ 1 for k ∈ K , l ∈ L , and

0 ≤ ys,t ≤ 1 for s ∈ S, t ∈ T .

Of course, the second problem is a more restricted version of the first one, hence in-
approximability results for the latter yield the same results for the more general problem.

It will be convenient to denote by ζ -RESTRICTED QUADRATIC PROGRAMMING the
problem in that in addition a positive number ζ is fixed and only instances of RESTRICTED

QUADRATIC PROGRAMMING are considered that satisfy κ, σ ≤ ζ .
Feige and Lovász [FL] and independently Bellare and Rogaway [BR] related RES-

TRICTED QUADRATIC PROGRAMMING to two-prover one-round interactive proof systems
and proved first inapproximability results. Together with subsequent work by Feige and
Kilian on interactive proof systems [FK] we obtain the following propositions.

Proposition 2.1. Unless P = NP, RESTRICTED QUADRATIC PROGRAMMING is not
contained in the class APX.

In fact, we need a more quantitative version:

Proposition 2.2. For any α ≥ 1 there exists a positive integer ζ = ζ(α) such
that ζ -RESTRICTED QUADRATIC PROGRAMMING does not admit polynomial-time α-
approximation.

Proposition 2.3. Unless NP ⊆ P̃, there exists a positive constant δ < 1 such that
RESTRICTED QUADRATIC PROGRAMMING does not admit polynomial-time 2logδ n-approxi-
mation, where n denotes the dimension of the polytope given as input.

It is important to note that the existence of an integral point that maximizes f1 over
P1 is always guaranteed. This property is crucial for the following transformation to
lp-norm-maximization, 2 ≤ p < ∞, that is divided into three auxiliary steps. In each
step we obtain a new polytope Pi and we denote by f ∗

i the maximum of the objective
function fi that has to be maximized over Pi , 2 ≤ i ≤ 4.

The first step of our reduction consists of replacing the equalities in the presentation
of P1 by proper inequalities, i.e., we define the polytope P2 by the system∑

k∈K

xk,l ≤ 1 for each l ∈ L ,

∑
s∈S

ys,t ≤ 1 for each t ∈ T,

0 ≤ xk,l ≤ 1 for k ∈ K , l ∈ L , and

0 ≤ ys,t ≤ 1 for s ∈ S, t ∈ T,

of λ+ τ + 2(κλ+ στ) inequalities in κλ+ στ variables.
Choosing f2 = f1 we obtain the following lemma.

Lemma 2.4. P2 is full-dimensional and f ∗
1 = f ∗

2 .
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Proof. Just note that the point 1/(1 + max{κ, σ })(1, . . . , 1)T is an interior point of P2

and that all coefficients of the objective function are non-negative.

Next consider the polytope P3 that is defined by the following system:∑
k∈K

zk,l,sk ,tk ≤ 1 for l ∈ L , sk ∈ S, tk ∈ T,

∑
s∈S

zks ,ls ,s,t ≤ 1 for t ∈ T, ks ∈ K , ls ∈ L , and

0 ≤ zk,l,s,t, ≤ 1 for k ∈ K , l ∈ L , s ∈ S, t ∈ T,

of λ(στ)κ + τ(κλ)σ + 2(κλστ) inequalities in κλστ variables, with the associated
objective function

f3(z) =
∑

k∈K ,l∈L
s∈S,t∈T

ck,l,s,t z p
k,l,s,t ,

where z = (z1,1,1,1, . . . , zκ,λ,σ,τ )T .

Lemma 2.5. P3 is a full-dimensional polytope and f ∗
2 = f ∗

3 .

Proof. Since the first part of the lemma is trivial we prove f ∗
2 = f ∗

3 .
In order to show f ∗

2 ≥ f ∗
3 take any z ∈ P3 and define

x = (x1,1, . . . , xκ,λ)
T by xk,l = max

s∈S,t∈T
zk,l,s,t for k ∈ K , l ∈ L ,

and

y = (y1,1, . . . , yσ,τ )
T by ys,t = max

k∈K ,l∈L
zk,l,s,t for s ∈ S, t ∈ T .

We obtain, using z ∈ P3,∑
k∈K

xk,l =
∑
k∈K

zk,l,sk ,tk ≤ 1 for l ∈ L ,

∑
s∈S

ys,t =
∑
k∈K

zks ,ls ,s,t ≤ 1 for t ∈ T,

where sk , tk , ks , and ls can be chosen properly, and 0 ≤ xk,l , ys,t ≤ 1 for k ∈ K , l ∈
L , s ∈ S, and t ∈ T . Hence (xT , yT )T ∈ P2 and, furthermore, since zk,l,s,t ≤ xk,l , ys,t

for k ∈ K , l ∈ L , s ∈ S, and t ∈ T ,∑
k∈K ,l∈L
s∈S,t∈T

ck,l,s,t xk,l ys,t ≥
∑

k∈K ,l∈L
s∈S,t∈T

ck,l,s,t z2
k,l,s,t ≥

∑
k∈K ,l∈L
s∈S,t∈T

ck,l,s,t z p
k,l,s,t .

Now take any (xT , yT )T ∈ P2 and define z by zk,l,s,t, = min{xk,l , ys,t } for k ∈ K , l ∈
L , s ∈ S, and t ∈ T . We obtain, using (xT , yT )T ∈ P2,∑

k∈K

zk,l,sk ,tk ≤
∑
k∈K

xk,l ≤ 1 for l ∈ L , sk ∈ S, tk ∈ T,

∑
k∈K

zks ,ls ,s,t ≤
∑
s∈S

ys,t ≤ 1 for t ∈ T, ks ∈ K , ls ∈ L ,
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and 0 ≤ zk,l,s,t ≤ 1 for k ∈ K , l ∈ L , s ∈ S, and t ∈ T . It follows that z ∈ P3.
Furthermore, for any integral point (xT , yT )T ∈ P2 the associated point z ∈ P3 is also
integral and zk,l,s,t = 1 iff xk,l = 1 and ys,t = 1. This implies z p

k,l,s,t = xk,l ys,t for
k ∈ K , l ∈ L , s ∈ S, and t ∈ T and by the existence of an integral point that maximizes
f2 over P2 we conclude f ∗

2 ≤ f ∗
3 .

Next, note that for our purpose we may assume without loss of generality that ck,l,s,t >

0 for k ∈ K , l ∈ L , s ∈ S, and t ∈ T . (Otherwise proper scaling is necessary.) Hence
we may replace the variables zk,l,s,t by c−1/p

k,l,s,t ẑk,l,s,t , k ∈ K , l ∈ L , s ∈ S, t ∈ T , and

obtain the polytope P̂4 described by the system∑
k∈K

c−1/p
k,l,sk ,tk

ẑk,l,sk ,tk ≤ 1 for l ∈ L , sk ∈ S, tk ∈ T,

∑
s∈S

c−1/p
ks ,ls ,s,t

ẑks ,ls ,s,t ≤ 1 for t ∈ T, ks ∈ K , ls ∈ L , and

0 ≤ c−1/p
k,l,s,t ẑk,l,s,t, ≤ 1 for k ∈ K , l ∈ L , s ∈ S, t ∈ T,

and we consider the objective function f4(ẑ) = ‖ẑ‖p
p , where ẑ is canonically defined.

Trivially, f ∗
3 = f ∗

4 , but of course, in general, an H-presentation of P̂4 does not exist.
However, using standard rounding techniques we obtain the following lemma.

Lemma 2.6. Let ω > 1 be a rational number. Then there exists a polynomial-time
algorithm that given P3 as input produces an H-polytope P4 such that for f4 = ‖ · ‖p

p ,

1

ω
f ∗
3 ≤ f ∗

4 ≤ ω f ∗
3 .

Theorem 2.7. Let A be a polynomial-time approximation-algorithm for (N p
p ,H)-

COMPUTATION with constant performance ratio ρ. Then there exists for any ω > 1 a
polynomial-time approximation algorithm A′ for ζ -RESTRICTED QUADRATIC PROGRAM-
MING with performance ratio ωρ, where ζ = ζ(ωρ) as in Proposition 2.2.

Proof. Consider an instance I of ζ -RESTRICTED QUADRATIC PROGRAMMING. First,
reduce I to an instance of (N p

p ,H)-COMPUTATION, using ω as a parameter in the last step
(see Lemma 2.6). Since the upper bound ζ for κ and σ is independent of the input this
can be done in polynomial time. Now, use A to compute f̃ ∗

4 with 1/ρ f̃ ∗
4 ≤ f ∗

4 ≤ ρ f̃ ∗
4

and choose f̃ ∗
1 := f̃ ∗

4 to approximate f ∗
1 . Using the lemmas proved in this section we

conclude
1

ωρ
≤ 1

ω

f ∗
4

f̃ ∗
4

≤ ω f ∗
3

ω f̃ ∗
4

= f ∗
1

f̃ ∗
1

= f ∗
3

f̃ ∗
4

≤ ω f ∗
4

f̃ ∗
4

≤ ωρ.

Hence, combining Theorem 2.7 with Proposition 2.2 yields the first part of
Theorem 1.1.

Using a slightly different transformation an analogous result for RESTRICTED

QUADRATIC PROGRAMMING can be proved.
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Theorem 2.8. Let A be a polynomial-time approximation-algorithm for (N p
p ,H)-

COMPUTATION with performance ratio ρ.

(i) Then there exists for any ω > 1 a polynomial-time approximation algorithm A′

for RESTRICTED QUADRATIC PROGRAMMING with performance ratio ωρ.
(ii) In addition, let n (respectively n̂) denote the dimension of the polytope given

as input for (N p
p ,H)-COMPUTATION (respectively RESTRICTED QUADRATIC PRO-

GRAMMING), and let the performance ratio ρ depend on n, i.e., ρ = ρ(n). Then
A′ has performance ratio ρ(n̂2).

Together with Proposition 2.3 this yields the first part of Theorem 1.2. For the second
and third parts we use that for polytopes containing the origin norm-maximum, diameter
and circumradius differ only by a constant independent of the dimension of the polytope.

However, polytopes obtained by the transformation described above can be easily
transformed into centrally symmetric ones, a property crucial for the proof of the fourth
and fifth parts of Theorem 1.1.

3. Computation of lp-Radii of Polytopes

For a convex body K that is centrally symmetric with respect to the origin, i.e., K is
a full-dimensional, compact, and convex set with K = −K , the norm-maximum is
closely related to the diameter, circumradius, width, and inradius [GK1]. For any p with
1 ≤ p ≤ ∞ we have the following:

Proposition 3.1. wp(K ) ≥ 2rp(K ) and dp(K ) ≤ 2Rp(K ), with equality when K is
symmetric.

Proposition 3.2. If K = −K , then rp(K )Bp ⊆ K ⊆ Rp(K )Bp, where Bp is the lp-unit
ball.

Proposition 3.3. If K = −K , then Rp(K )rp′(K ◦) = 1, where K ◦ denotes the polar
of K , i.e., the set of all (linear) functionals f in the conjugate space (here lp′ ) such that
f (x) ≤ 1 for all x ∈ K .

Hence, regarding the results for norm-maximization derived in the previous section
the question arises whether similar inapproximability results hold for the computation
of the other functionals.

This question will be answered in the positive by transforming P̃4 into a centrally
symmetric polytope P̃c

4 that is defined by the following system:∑
k∈K

εkc−1/p
k,l,sk ,tk

ẑk,l,sk ,tk ≤ 1 for l ∈ L , sk ∈ S, tk ∈ T, εk ∈ {−1, 1},
∑
s∈S

εsc−1/p
ks ,ls ,s,t

ẑks ,ls ,s,t ≤ 1 for t ∈ T, ks ∈ K , ls ∈ L , εs ∈ {−1, 1},

−1 ≤ c−1/p
k,l,s,t ẑk,l,s,t, ≤ 1 for k ∈ K , l ∈ L , s ∈ S, t ∈ T,

of λ(2στ)κ + τ(2κλ)σ + 2(κλστ) inequalities in κλστ variables.
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It is easy to see that the optimum of f4 over P̃4 equals the optimum of f4 over Pc
4 .

Hence, using Propositions 3.1 and 3.2, we obtain the following for each p ≥ 2.

Theorem 3.4. Let A be a polynomial-time approximation-algorithm for (d p
p ,H)-

COMPUTATION ((R p
p ,H)-COMPUTATION) with constant performance ratio ρ. Then there

exists for any ω > 1 a polynomial-time approximation algorithm A′ for ζ -RESTRICTED

QUADRATIC PROGRAMMING with performance ratio ωρ, where ζ = ζ(ωρ) as in
Proposition 2.2.

Finally, Proposition 3.3 yields

Corollary 3.5. Let A be a polynomial-time approximation-algorithm for (w p′
p′ ,V)-

COMPUTATION ((r p′
p′ ,V)-COMPUTATION), with performance ratio ρ. Then there exists for

any ω > 1 a polynomial-time approximation algorithm A′ for ζ -RESTRICTED QUADRA-
TIC PROGRAMMING with performance ratio ωρ, where ζ = ζ(ωρ) as in Proposition 2.2.

Together with Proposition 2.2 these results prove the remaining parts of Theorem 1.1.
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