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Abstract For a fixed integer base b ≥ 2, we consider the number of compositions
of 1 into a given number of powers of b and, related, the maximum number of repre-
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1 Introduction

Representations of integers as sums of powers of 2 occur in various contexts, most
notably of course in the usual binary representation. Partitions of integers into powers
of 2, i.e., representations of the form

� = 2a1 + 2a2 + · · · + 2an (1.1)

with nonnegative integers a1 ≥ a2 ≥ · · · ≥ an (not necessarily distinct!) are also
known as Mahler partitions (see [2,12,16,19]).

The number of such partitions exhibits interesting periodic fluctuations. The situa-
tion changes, however, when compositions into powers of 2 are considered, i.e., when
the summands are arranged in an order. In other words, we consider representations of
the form (1.1) without further restrictions on the exponents a1, a2, …, an other than
being nonnegative.

Motivated by the study of the exponential sum

s(ξ) =
τ∑

r=1

ξ2
r
,

where ξ is a primitive qth root of unity and τ is the order of 2 modulo q (see [17]),
Molteni [18] recently studied the maximum number of representations a positive inte-
ger can have as an ordered sum of n powers of 2. More generally, fix an integer b ≥ 2,
let

Ub(�, n) = #{(a1, a2, . . . , an) ∈ Nn
0 | ba1 + ba2 + · · · + ban = �} (1.2)

be the number of representations of � as an ordered sum of n powers of b, and let
Wb(s, n) be the maximum of Ub(�, n) over all positive integers � with b-ary sum of
digits equal to s. It was shown in [17] that

W2(s, n)

n! =
∑

k1,k2,...,ks≥1
k1+k2+···+ks=n

s∏

j=1

W2(1, k j )

k j ! , (1.3)

which generalizes in a straightforward fashion to arbitrary bases b. So knowledge of
Wb(1, n) is the key to understanding Wb(s, n) for arbitrary s.

For the moment, let us consider the case b = 2. There is an equivalent characteri-
sation ofW2(1, n) in terms of compositions of 1. To this end, note that the number of
representations of 2h� as a sum of n powers of 2 (n fixed) is the same as the number of
representations of � as a sum of n powers of 2 for all integers h if negative exponents
are allowed as well (simply multiply/divide everything by 2h). Therefore,W2(1, n) is
also the number of solutions to the Diophantine equation

2−k1 + 2−k2 + · · · + 2−kn = 1 (1.4)
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with nonnegative integers k1, k2, . . . , kn , i.e., the number of compositions of 1 into n
powers of 2. This sequence starts with

1, 1, 3, 13, 75, 525, 4347, 41245, 441675, 5259885, 68958747, . . .

and is A007178 in the On-Line Encyclopedia of Integer Sequences [22].
The main goal of this paper is to determine precise asymptotics for the number of

such binary compositions as n → ∞. Lehr et al. [15] encountered these compositions
in their work on automatic sequences and gave a first bound, namely

W2(1, n)/n! ≤ K · 1.8n

for some constant K . It was mainly based on an asymptotic formula for the number of
partitions of 1 into powers of 2, whichwas derived independently in different contexts,
cf. [1,7,13] (or see the recent paper of Elsholtz et al. [5] for a detailed survey). This
bound was further improved by Molteni, who gave the inequalities

0.3316 · (1.1305)n ≤ W2(1, n)/n! ≤ (1.71186)n−1 · n−1.6

in [17]. Giorgilli and Molteni [9] provided an efficient recursive formula forW2(1, n)

and used it to prove an intriguing congruence property. In his recent paper [18],Molteni
succeeded in proving the following result, thus also disproving a conjecture of Knuth
on the asymptotic behaviour of W2(1, n).

Theorem 1 (Molteni [18]). The limit

γ = lim
n→∞(W2(1, n)/n!)1/n = 1.192674341213466032221288982528755 . . .

exists.

Molteni’s argument is quite sophisticated and involves the study of the spectral radii
of certain matrices. The aim of this paper will be to present a different approach to
the asymptotics of W2(1, n) (and more generally, W2(s, n)) by means of generating
functions that allows us to obtain more precise information. Our main theorem reads
as follows.

Theorem 2 There exist constants α = 0.2963720490 . . . , γ = 1.1926743412 . . .

(as in Theorem 1) and κ = 2/(3γ ) < 1 such that

W2(1, n)

n! = αγ n−1 (
1 + O(κn)

)
.

More generally, for every fixed s, there exists a polynomial Ps(n) with leading term

(α/γ )sns−1/(s − 1)!
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such that W2(s, n)

n! = Ps(n)γ n (
1 + O(κn)

)
.

We also prove a more general result for arbitrary bases instead of 2. Consider the
Diophantine equation

b−k1 + b−k2 + · · · + b−kn = 1. (1.5)

Multiplying by the common denominator and taking the equation modulo b − 1, we
see that there can only be solutions if n ≡ 1 mod (b − 1), i.e., n = (b − 1)m + 1
for some nonnegative integer m. We write qb(m) for the number of solutions [n-
tuples of nonnegative integers satisfying (1.5)] in this case. Note that qb(m) is also the
maximum number of representations of an arbitrary power of b as an ordered sum of
n = (b − 1)m + 1 powers of b. We have the following general asymptotic formula.
Note that we will usually suppress the dependence on b for ease of notation.

Theorem 3 For every positive integer b ≥ 2, there exist constants α = αb, γ = γb
and κ = κb < 1 such that the number qb(m) of compositions of 1 into n = (b−1)m+1
powers of b, which is also themaximumnumberWb(1, n) of representations of a power
of b as an ordered sum of n powers of b, satisfies

Wb(1, n)

n! = qb(m)

n! = αγm (
1 + O(κm)

)
.

More generally, themaximum numberWb(s, n) of representations of a positive integer
with b-ary sum of digits s as an ordered sum of n = (b − 1)m + s powers of b is
asymptotically given by

Wb(s, n)

n! = Pb,s(m)γm (
1 + O(κm)

)
,

where Pb,s(m) is a polynomial with leading term αsms−1/(s − 1)!.
The key idea to prove Theorem 3 is to equip every partition of 1 into powers of

2 (or generally b) with a weight that essentially gives the number of ways it can be
permuted to a composition, and to apply the recursive approach that was used to count
partitions of 1: if p2(n) denotes the number of such partitions into n summands, then
the remarkable generating function identity

∞∑

n=1

p2(n)xn =
∑∞

j=0(−1) j x2
j−1 ∏ j

i=1
x2

i−1

1−x2i−1

∑∞
j=0(−1) j

∏ j
i=1

x2i−1

1−x2i−1

(1.6)

holds, and this can be generalised to arbitrary bases b, see the recent paper of Elsholtz
et al. [5]. In our case, we do not succeed to obtain a similarly explicit formula for the
generating function, but we can write it as the quotient of two determinants of infinite
matrices and infer analytic information from it. The paper is organised as follows: we
first describe the combinatorial argument that yields the generating function, a priori
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only within the ring of formal power series. We then study the expression obtained
for the generating function in more detail to show that it can actually be written as the
quotient of two entire functions. The rest of the proof is a straightforward application
of residue calculus (using the classical Flajolet–Odlyzko singularity analysis [6]).

Furthermore, we consider the maximum of Ub(�, n) over all �, for which we write

Mb(n) = max
�≥1

Ub(�, n) = max
s≥1

Wb(s, n).

This means that Mb(n) is the maximum possible number of representations of a posi-
tive integer as a sum of exactly n powers of b. Equivalently, it is the largest coefficient
in the power series expansion of

(
x + xb + xb

2 + · · · )n .

When b = 2, Molteni [18] obtained the following bounds for this quantity:

(1.75218)n � M2(n)/n! ≤ (1.75772)n,

where � is the Vinogradov symbol, i.e., C(1.75218)n ≤ M2(n)/n! holds for all
(sufficiently large) n for a suitably chosen constant C . The gap between the two
estimates is already very small; we improve this a little further by providing the
constant of exponential growth as well as a precise asymptotic formula.

Theorem 4 For a certain constant ν = 1.7521819 . . . (defined precisely in Sect. 7),
we have

M2(n)/n! ≤ νn

for all n ≥ 1, and the constant is optimal: we have themore precise asymptotic formula

M2(n)/n! ∼ λn−1/2νn

with λ = 0.2769343. . ..

Again, Theorem 4 holds for arbitrary integer bases b ≥ 2 for some constants ν = νb
and λ = λb (it will be explained precisely how they are obtained). This is formulated
as Theorem 5 in Sect. 7.

The final section contains the analysis of some parameters. We study the exponent
of the largest denominator and the number of distinct parts in a composition of 1.
In both cases a central limit theorem is shown; mean and variance are linear in the
number of summands, cf. Theorems 6 and 7.

2 The Recursive Approach

For our purposes, it will bemost convenient to work in the setting of compositions of 1,
i.e., we are interested in the number qb(m) of (ordered) solutions to the Diophantine
equation (1.5), where n = (b − 1)m + 1, as explained in the introduction. Our first
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goal is to derive a recursion for qb(m) and some related quantities, which leads to a
system of functional equations for the associated generating functions.

Let k = (k1, k2, . . . , kn) be a solution to the Diophantine equation (1.5) with
k1 ≥ k2 ≥ · · · ≥ kn . We will refer to such an n-tuple as a “partition” (although
technically the ki are only the exponents in a partition). We denote by c(k) the number
of ways to turn it into a composition. If w0 is the number of zeros, w1 the number of
ones, etc. in k, then we clearly have

c(k) = n!∏
j≥0 w j ! .

The weight of a partition k, denoted by w(k), is now simply defined as

w(k) = 1∏
j≥0 w j ! = c(k)

n! .

Now let

Pm =
{
k = (k1, k2, . . . , kn)

∣∣∣ n = (b − 1)m + 1,

b−k1 + b−k2 + · · · + b−kn = 1, k1 ≥ k2 ≥ · · · ≥ kn
}

be the set of all partitions of 1 with n = (b − 1)m + 1 terms and, likewise,

Cm =
{
k = (k1, k2, . . . , kn)

∣∣∣ n = (b − 1)m + 1, b−k1 + b−k2 + · · · + b−kn = 1
}

the set of compositions. We obtain the formula

qb(m) = #Cm =
∑

k∈Pm

c(k) = n!
∑

k∈Pm

w(k)

for their number.
Our next step involves an important observation that is also used to obtain the

generating function (1.6). Consider an element k of Pm , and let r be the number of
times the greatest element k1 occurs (i.e., k1 = k2 = · · · = kr > kr+1). This number
must be divisible by b (as can be seen bymultiplying (1.5) by bk1 ) unless k is the trivial
partition, so we can replace the r fractions with denominator bk1 by r/b fractions with
denominator bk1−1.

This process can be reversed. Given a partition k in which the largest element
occurs r times, we can replace s of these fractions (1 ≤ s ≤ r ) by bs fractions
with denominator bk1+1. This recursive construction can be illustrated nicely by a tree
structure as in Fig. 1 for the case b = 2. Each partition corresponds to a so-called
canonical tree (see [5]), and vice versa. Note that if k ∈ Pm , then the resulting partition
k′ lies in Pm+s , and we clearly have
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Fig. 1 The canonical tree
associated with the partition
1 = 1

4 + 1
4 + 1

4 + 1
8 + 1

8 of 1
into powers of 2. This partition
has weight 1

12 and corresponds
to ten distinct compositions 1

4
1
4

1
4

1
8

1
8

w(k′) = w(k) · r !
(r − s)! (bs)! . (2.1)

Now we can turn to generating functions. Let Pm,r be the subset of Pm that only
contains partitions for which k1 = k2 = · · · = kr > kr+1 (i.e., in (1.5), the largest
exponent occurs exactly r times), and let Cm,r be the set of compositions obtained by
permuting the terms of an element of Pm,r . We define a generating function by

Qr (x) =
∑

m≥0

#Cm,r

((b − 1)m + 1)! x
m =

∑

m≥0

∑

k∈Pm,r

c(k)

((b − 1)m + 1)! x
m

=
∑

m≥0

∑

k∈Pm,r

w(k)xm .

We have Q1(x) = 1 and Qr (x) = 0 for all other r not divisible by b. Moreover, for
all s ≥ 1 the recursive relation described above and in particular (2.1) yield

Qbs(x) =
∑

m≥0

∑

k′∈Pm,bs

w(k′)xm =
∑

r≥s

∑

m≥s

∑

k∈Pm−s,r

w(k)
r !

(r − s)! (bs)! x
m

= xs
∑

r≥s

r !
(r − s)! (bs)!

∑

m≥s

∑

k∈Pm−s,r

w(k)xm−s = xs
∑

r≥s

r !
(r − s)! (bs)!Qr (x).

(2.2)

This can be seen as an infinite system of linear equations. Define the infinite
(column-)vectorV(x)=(Qb(x), Q2b(x), Q3b(x), . . .)T , and the infinite matrixM(x)
by its entries

mi j =
{

(bj)! xi
(bj−i)! (bi)! if i ≤ bj,

0 otherwise.

Then the identity (2.2) above turns into the matrix identity

V(x) = M(x)V(x) + x

b!e1, (2.3)

where e1 = (1, 0, 0, . . .)T denotes the first unit vector. The last term comes from the
special case s = 1 in (2.2), which is the only case where Q1(x) = 1 occurs. Within
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the ring of formal power series, this readily yields

V(x) = x

b! (I − M(x))−1e1, (2.4)

and the generating function

Q(x) =
∑

r≥1

Qr (x) =
∑

m≥0

qb(m)

((b − 1)m + 1)! x
m

(recall that qb(m) is the number of compositions of 1 into n = (b − 1)m + 1 powers
of b) is given by

Q(x) = 1 + 1TV(x) = 1 + x

b!1
T (I − M(x))−1e1,

where 1 stands for the vector (1, 1, 1, . . .)T . For our asymptotic result, we will need
the dominant singularity of Q(x), i.e., the zero of det(I − M(x)) that is closest to 0.
A priori, it is not even completely obvious that this determinant is well-defined, but
the reasoning is similar to a number of comparable problems.

As mentioned earlier, the determinant T (x) = det(I−M(x)) exists a priori within
the ring of formal power series, as the limit of the principal minor determinants. We
can write it as

det(I − M(x))

=
∑

h≥0

(−1)h
∑

1≤i1<i2<···<ih
i1,...,ih∈N

xi1+i2+···+ih
∑

σ

(sgn σ)

h∏

k=1

(bσ(ik))!
(bσ(ik) − ik)! (bik)! ,

(2.5)

where the inner sum is over all permutations σ of {i1, i2, . . . , ih}. Using Eaves’ suffi-
cient condition, cf. [4], we get at least convergence for |x | < 1.

We can even show that the formal power series T given by (2.5) defines an entire
function. This is proven in Sect. 3. The same is true (by the same argument) for

S(x) = 1T adj(I − M(x))e1 = det(M∗(x)),

where M∗ is obtained from I − M(x) by replacing the first row by 1. Hence we can
write the generating function Q(x) as

Q(x) = 1 + x

b!
S(x)

T (x)
, (2.6)

where S(x) and T (x) are both entire functions. The singularities of Q(x) are thus all
poles, and it remains to determine the dominant singularity, i.e., the zero of T (x) =
det(I − M(x)) with smallest modulus.
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3 Bounds and Entireness

In this section the two formal power series

T (x) =
∑

n≥0

tnx
n = det(I − M(x))

and
S(x) =

∑

n≥0

snx
n = 1T adj(I − M(x))e1

of Sect. 2 [in particular cf. Eqs. (2.5) and (2.6)] are analyzed. Other (similar) functions
arising on the way can be dealt with in a similar fashion.

Note that S(x) is the determinant of a matrix, which is obtained by replacing the
first row of I − M(x) by 1.

We find bounds for the coefficients tn and sn , which will be needed for numerical
calculations with guaranteed error estimates as well. Further, those bounds will tell us
that the two functions T (x) and S(x) are entire.

Lemma 3.1 The coefficients tn satisfy the bound

|tn| ≤ exp

(
−b − 1

2
n log n − cn + ng(n)

)

with c = (b − 1)
(
log b−1√

2
− 1

)
and with a decreasing function g(n), which tends to

zero as n → ∞. In particular, the formal power series T defines an entire function.
The same is true for the formal power series S. More precisely, we have

|sn| ≤ ((b − 1)! + 1) exp

(
−b − 1

2
n log n − cn + (n + 1)g(n)

)
.

Proof Recall expression (2.5) for the determinant, namely

det(I − M(x))

=
∑

h≥0

(−1)h
∑

1≤i1<i2<···<ih
i1,...,ih∈N

xi1+i2+···+ih
∑

σ

(sgn σ)

h∏

k=1

(bσ(ik))!
(bσ(ik) − ik)! (bik)! .

Write n = i1 + i2 + · · · + ih for the exponent of x , and note that

h∏

k=1

(bσ(ik))!
(bik)! = 1,

123



Algorithmica (2016) 75:606–631 615

which is independent of the permutation σ . We also have

h∑

k=1

(bσ(ik) − ik) = (b − 1)
h∑

k=1

ik = (b − 1)n.

Since a! ≥ exp(a(log a − 1)) for all positive integers a and f (x) = x(log x − 1) is a
convex function, we have

h∏

k=1

(bσ(ik) − ik)! ≥ exp

(
h∑

k=1

(bσ(ik) − ik) (log(bσ(ik) − ik) − 1)

)

≥ exp

(
h

(b − 1)n

h

(
log

(b − 1)n

h
− 1

))

= exp

(
(b − 1)n

(
log

(b − 1)n

h
− 1

))
.

Since i1, i2, . . . , ih have to be distinct, we also have

n = i1 + i2 + · · · + ih ≥ 1 + 2 + · · · + h = h(h + 1)

2
≥ h2

2
.

Thus h ≤ √
2n, which means that

h∏

k=1

(bσ(ik) − ik)! ≥ exp

(
b − 1

2
n log n + (b − 1)n

(
log

b − 1√
2

− 1

))
.

Now that we have an estimate for each term in (2.5), let us also determine a bound for
the number of terms corresponding to each exponent n.

It is well known that the number of partitions q(n) of n into distinct parts is asymp-
totically equal to exp

(
π

√
n/3 + O(log n)

)
. In Robbins’s paper [20] we can find the

explicit upper bound1

q(n) ≤ π√
12n

exp

(
π√
3

√
n + π2

12

)
.

For each choice of {i1, i2, . . . , ih}, there are at most h! permutations σ that con-
tribute, which can be bounded by means of Stirling’s formula (using also h ≤ √

2n
again). This gives

h! ≤ exp
(
h log h − h + 1

2 log h + 1
) ≤ exp

((√
2n + 1

2

)
log

(√
2n

)
− √

2n + 1
)

.

1 Note that in the published version of [20] a constant in the main theorem is printed incorrectly.
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It follows that the coefficient tn of T is bounded (in absolute values) by

exp
(

π√
3

√
n + π2

12 + logπ − 1
2 log(12n) +

(√
2n + 1

2

)
log

(√
2n

)
− √

2n + 1
)

exp
(
b−1
2 n log n + (b − 1)n

(
log b−1√

2
− 1

))

= exp

(
−b − 1

2
n log n − cn + O(

√
n log n)

)
,

which proves the theorem for a suitable choice of g(n). A possible explicit bound
(relevant for our numerical calculations, see Sect. 6) is

|tn| ≤ exp

(
−b − 1

2
n log n − cn +

√
n

2
log n + √

n + 3

)
.

Since this bound decays superexponentially, the determinant T = det(I − M(x)) is
an entire function.

The same argument works for S. There, we split up into the summands where we
have i1 = 1 and all other summands. For the second part (the summands with i1 > 1),
the terms are the same as in the determinant that defines T , so it is bounded by the same
expression. Each of the summands with i1 = 1 equals a summand of det(I − M(x))
multiplied by the factor

− (bσ(i1) − i1)! (bi1)!
(bσ(i1))! xi1 = −b!

x

(bσ(1) − 1)!
(bσ(1))! = − (b − 1)!

xσ(1)

or is zero (when σ(i1) = 1). Therefore, the sum of these terms can be bounded by
(b − 1)! times the bound we obtained for the coefficient of xn+1 in det(I − M(x)).
This gives us

|sn| ≤ exp

(
−b − 1

2
n log n − cn + ng(n)

)

+ (b − 1)! exp
(

−b − 1

2
(n + 1) log(n + 1) − c(n + 1) + (n + 1)g(n + 1)

)

≤ (1 + (b − 1)!) exp
(

−b − 1

2
n log n − cn + (n + 1)g(n)

)
,

which completes the proof. 
�
Lemma 3.1 immediately yields a simple estimate for the tails of the power series S

and T .

Lemma 3.2 Let N ∈ N and x ∈ C, and let c and g(n) be as in Lemma 3.1. Set

q = eg(N ) |x |
ec

√
Nb−1
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and suppose that q < 1. Then we have the inequality

∣∣∣∣∣∣

∑

n≥N

tnx
n

∣∣∣∣∣∣
≤ qN

1 − q

for the tails of the infinite sum in the determinant T . For the tails of the determinant
S, we have the analogous inequality

∣∣∣∣∣∣

∑

n≥N

snx
n

∣∣∣∣∣∣
≤ ((b − 1)! + 1)eg(N ) qN

1 − q
.

Proof By Lemma 3.1 we have

|tn| ≤ exp
(

− b − 1

2
n log n − cn + ng(n)

)
.

Now we use monotonicity to obtain

∣∣∣∣∣∣

∑

n≥N

tnx
n

∣∣∣∣∣∣
≤

∑

n≥N

(
eg(n) |x |
ec

√
nb−1

)n

≤
∑

n≥N

(
eg(N ) |x |
ec

√
Nb−1

)n

= qN 1

1 − q
.

The second inequality follows in the same way. 
�

4 Analyzing the Generating Function

Infinite systems of functional equations appear quite frequently in the analysis of
combinatorial problems, see for example the recent work of Drmota, Gittenberger
and Morgenbesser [3]. Alas, their very general theorems are not applicable to our
situation as the infinite matrixM does not represent an �p-operator (one of their main
requirements), due to the fact that its entries increase (and tend to ∞) along rows.
However, we can adapt some of their ideas to our setting.

The main result of this section is the following lemma.

Lemma 4.1 For every b ≥ 2, the generating function Q(x) has a simple pole at a
positive real point ρb and no other poles with modulus < ρb + εb for some εb > 0.

Proof of Lemma 4.1 First of all, we rule out the possibility that Q(x) is entire by
providing a lower bound for the coefficients qb(m). To this end, consider compositions
of 1 consisting of b − 1 copies of b−1, b−2, . . . , b1−m and b copies of b−m . Since
there are ((b−1)m+1)!

((b−1)!)m−1b! possible ways to arrange them in an order, we know that

qb(m) ≥ ((b − 1)m + 1)!
((b − 1)!)m−1b! ,
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from which it follows that the radius of convergence of Q(x) is at most (b − 1)!.
Since all coefficients are positive, Pringsheim’s theorem guarantees that the radius of
convergence, which we denote by ρb, is also a singularity.

We already know that Q(x) is meromorphic (being the quotient of two entire
functions, see Sect. 2), hence ρb is a pole singularity. Since we can express Qb(x) as

Qb(x) = x

b!e
T
1 (I − M(x))−1e1,

it is also meromorphic by the same argument. Moreover, we trivially have Qb(x)
≤ Q(x) for 0 ≤ x < ρb as well as

Qb(x) = x

b! + x
∑

r≥1

r

(b − 1)!Qbr (x) ≥ x

b!
(
1 +

∑

r≥1

Qbr (x)
)

= x

b!Q(x), (4.1)

which follows from (2.2). This means that the quotient Qb(x)/Q(x), which is again
meromorphic (being the quotient of two meromorphic functions) is bounded above
and below by positive constants as x → ρ−

b . Thus it has a positive limit, which in turn
means that Qb(x) also has a pole at ρb of the same pole order (which we will later
show to be 1).

Now we split the identity (2.3). Let m11 = x/(b− 1)! be the first entry ofM(x), c
the rest of the first column, r the rest of the first row andM the matrix obtained from
M by removing the first row and the first column. Moreover, V is obtained from V by
removing the first entry Qb(x). Now we have

Qb(x) = m11Qb(x) + r V + x

b! (4.2)

and
V = cQb(x) + MV,

from which we obtain
V = (I − M)−1cQb(x). (4.3)

Once again, the inverse (I − M)−1 exists a priori in the ring of formal power series,
but one can show that det(I − M) is in fact an entire function, so the entries of the
inverse are all meromorphic (see again the calculations in Sect. 3).

We can write Q(x) as

Q(x) = 1 + Qb(x) + 1TV = 1 +
(
1 + 1T (I − M)−1c

)
Qb(x).

The function given by R1(x) = 1+1T (I−M)−1cmust be meromorphic (since Q(x)
and Qb(x) are), and its coefficients in the power series expansion are all positive (since
those of 1, c andM are and (I−M)−1 can be expanded in a geometric series). In view
of the inequality (4.1), it remains bounded as x → ρ−

b , so its radius of convergence
must be greater than ρb (meaning that it is analytic in a disk of larger radius).
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Now we substitute (4.3) in (4.2) to obtain

Qb(x) = m11Qb(x) + r(I − M)−1cQb(x) + x

b!

and thus

Qb(x) = x

b!
(
1 − m11 − r(I − M)−1c

)−1
.

Note that
R2(x) = m11 + r(I − M)−1c

is also meromorphic, has only positive coefficients and remains bounded as x → ρ−
b .

Thus its radius of convergence is greater than ρb as well, and the unique positive
real solution of the equation R2(x) = 1 within the disk of convergence must be ρb.
Because of the positivity of the coefficients, there is no other solution to this equation
with absolute value ρb or less. Moreover, R′

2(ρb) > 0, so ρb has multiplicity 1 as a
solution of the equation R2(x) = 1 and thus as a pole of Qb(x).

Finally, we can write

Q(x) = 1 + R1(x)Qb(x) = 1 + x

b! · R1(x)

1 − R2(x)
.

We know now that R1(x) and R2(x) are both analytic in a disk of radius greater than
ρb around 0, that ρb is the only solution of the equation R2(x) = 1 whose modulus is
ρb or less, and that it has multiplicity 1. This means that ρb is a simple pole of Q(x),
and there are no further singularities of Q(x) in a disk of radius ρb + εb around 0 for
suitable εb > 0. 
�

5 Getting the Asymptotics

In this section, we prove Theorems 2 and 3, which give us constants α, γ and κ < 1
such that for n = (b − 1)m + 1

Wb(s, n)

n! = Pb,s(m)γm (
1 + O(κm)

)

holds, where Pb,s(m) is a polynomial with leading term αsms−1/(s − 1)!. Numerical
values of the α and γ can be found in Table 1. It is explained in the next section how
these numerical values are determined in a reliable way. The proof is the same for
all b, except for the fact that different constants occur.

Proof of Theorem 3 By now, we know that the function Q(x) can be written as the
quotient of two entire functions, cf. Sect. 2 and Lemma 3.1. More specifically, we use
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Table 1 Truncated decimal
values for the constants of
Theorem 3

See Sect. 6 for the method of
computation

b α γ

2 0.296372 1.19268

3 0.279852 0.534502

4 0.236824 0.170268

5 0.196844 0.0419317

6 0.165917 0.00834837

7 0.142679 0.00138959

8 0.1249575 0.000198440

Q(x) = 1 + x

b!
S(x)

T (x)
.

As Lemma 4.1 shows, Q(x) has exactly one pole ρ (which is a simple pole) inside
some disk with radius ρ + ε, ε > 0, around 0. Thus we can directly apply singularity
analysis [6] in the meromorphic setting (cf. Theorem IV.10 of [8]) to obtain

qb(m)

((b − 1)m + 1)! = − S(ρ)

b!T ′(ρ)
ρ−m + O((ρ + ε)−m).

This finishes the proof for s = 1. Note that γ = 1/ρ.
In the general case (arbitrary s), we use the relation

∞∑

n=1

Wb(s, n)

n! xn =
( ∞∑

n=1

Wb(1, n)

n! xn
)s

,

which follows from Eq. (1.3) and gives us

∞∑

m=0

Wb(s, (b − 1)m + s)

((b − 1)m + s)! xm = Q(x)s .

Once again, we make use of the fact here that the (exponential) generating function is
meromorphic, cf. Sect.2. The singular expansion of Q(x)s at x = ρ = 1/γ is given
by

Q(x)s =
( α

1 − γ x
+ O(1)

)s
,

which has αs/(1 − γ x)s as its main term. Once again, singularity analysis [6] yields
the desired asymptotic formula with main term as indicated in the statement of the
theorem. 
�
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6 Reliable Numerical Calculations

We want to calculate the constants obtained in the previous sections in a reliable way.
The current section is devoted to this task. Our main tool will be interval arithmetic,
which is performed by the computer algebra system Sage [21].

For the calculations, we need bounds for the tails of our infinite sums. We start with
the following two remarks, which improve the bounds found in Sect. 3.

Remark 6.1 The bounds of Lemma 3.1 for the determinant (2.5) can be tightened: for
an explicit n, we can calculate g(n) more precisely by using the number of partitions
of n into distinct parts (and not a bound for that number) and similarly by using the
factorial directly instead of Stirling’s formula.

An even better, but less explicit bound for the nth coefficient of det(I − M(x)) is
given by

|tn| ≤
∑

h≥0

h!
∑

1≤i1<i2<···<ih
i1,...,ih∈N

i1+i2+···+ih=n

exp
(

− (b − 1)n
(
log

(b − 1)n

h
− 1

))
. (6.1)

Note that we do not know whether this bound is decreasing in n or not. However,
for a specific n, one can calculate this bound, and it is much smaller than the general
bounds obtained earlier. For example, for b = 2, we have |t60| ≤ 5.96 · 10−14 with
this method, whereas Lemma 3.1 would give the bound 0.00014.

Remark 6.2 We can also get tighter bounds in Lemma 3.2 using the ideas presented in
Remark 6.1. We can even use combinations of those bounds: For M > N , we separate

∣∣∣∣∣∣

∑

n≥N

tnx
n

∣∣∣∣∣∣
≤

∑

M>n≥N

|tn| |x |n +
∣∣∣∣∣∣

∑

n≥M

tnx
n

∣∣∣∣∣∣

and use the bound (6.1) for M > n ≥ N and Lemma 3.2 (tightened by some ideas
from Remark 6.1) for the sum over n ≥ M . For example, again for b = 2, we obtain
the tail-bound ∣∣∣∣∣∣

∑

n≥60

tnx
n

∣∣∣∣∣∣
≤ 8.051 · 10−14 + 4.068 · 10−15

for |x | ≤ 1, where M = 86 was chosen. (We will denote the constant on the right hand
side of the inequality above by BT60 , see the proof of Lemma 6.3.) Using Lemma 3.2
directly would just give 0.00103.

To get numerical values for the constants in Theorem 2 (i.e., b = 2), we have to
work with the representation

Q(x) = 1 + xS(x)

2T (x)
,
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where the first few terms of these power series are given by

S(x) = 1T adj(I −M(x))e1 = det(M∗(x)) = 1− 5
12 x

2 − 1
6 x

3 − 1
24 x

4 + 1
45 x

5 + · · ·

and
T (x) = det(I − M(x)) = 1 − x − 1

2 x
2 + 1

6 x
3 + 1

8 x
4 + 3

40 x
5 + · · · ,

cf. Sects. 2 and 5. We obtain the following result for the denominator T (x).

Lemma 6.3 For b = 2, the function T (x) has exactly one zero with |x | < 3
2 . This

simple zero lies at x0 = 0.83845184342 . . . .

Remark 6.4 Note that 1/x0 = γ = 1.192674341213 . . . , which is indeed the constant
found by Molteni in [18].

Proof of Lemma 6.3 Denote the polynomials consisting of the first N terms of T (x)
by TN (x). We have |T (x) − T60(x)| ≤ BT60 with BT60 = 1.17 ·10−13, see Lemma 3.2
and Remark 6.2. On the other hand, we have |T60(x)| > 0.062 for |x | = 3

2 (the
minimum is attained on the positive real axis) by using a bisection method together
with interval arithmetic (in Sage [21]). Therefore, the functions T (x) and T60(x) have
the same number of zeros inside a disk |x | < 3

2 by Rouché’s theorem (0.062 > BT60 ).
This number equals one, since there is only one zero, a simple zero, of T60(x) with
absolute value smaller than 3

2 .
To find the exact position of that zero consider T60(x) + BT60 I with the interval I

= [−1, 1]. Again, using a bisection method (starting with 3
2 I ) plus interval arithmetic,

we find an interval that contains x0. From this, we can extract correct digits of x0. 
�
From this result, which gives the numerical value of the dominant singularity, we

can compute all the constants in Theorem 2. Numerical values of the constants in the
general case of Theorem 3 are obtained analogously. The values of those constants
for the first few b can be found in Table 1. The following remark gives some further
details of the computation.

Remark 6.5 As mentioned, to obtain reliable numerical values of all the constants
involved in the statement of our theorems, we use the bounds obtained in Sect. 3
together with interval arithmetic.

Let b = 2 and denote, as above, the polynomials consisting of the first N terms
of S(x) and T (x), by SN (x) and TN (x) respectively. By the methods of Lemmas 3.1
and 3.2 and Remarks 6.1 and 6.2 we get, for instance, that

∣∣T ′(x) − T ′
60(x)

∣∣ ≤ BT ′
60

with BT ′
60

= 8.397 · 10−12. We also have |S(x) − S60(x)| ≤ BS60 with BS60 = 1.848 ·
10−13 for the function in the numerator of Q(x). We plug x0 into the approximations
S60 and T ′

60 and use these bounds to obtain precise values (with guaranteed error
estimates) for all the constants that occur in our formula.

Remark 6.6 If one does not insist on such explicit error bounds for the numerical
approximations as above, one can get “more precise” numerical results (without formal

123



Algorithmica (2016) 75:606–631 623

proofs that all the digits are actually correct). Here, specifically, the first three terms
in the asymptotic expansion are as follows:

W2(1, n)/n! = 0.296372049053529075588648642133

· 1.192674341213466032221288982529n−1

+ 0.119736335383631653495068554245

· 0.643427418149500070120570318509n−1

+ 0.0174783635210388007051384381833

· (−0.5183977738993377728627273570710)n−1

+ · · ·

However, the numerical approximations lack the “certifiability” of e.g. those inTable 1.

7 Maximum Number of Representations

Let Ub(�, n) andWb(s, n) be as defined in (1.2) in the introduction. In this section we
analyze the function M(n) = Mb(n), which equals the maximum of Ub(�, n) over all
�, i.e., we have

M(n) = max
�≥1

Ub(�, n) = max
s≥1

Wb(s, n).

This gives the maximum number of representations any positive integer can have as
the sum of exactly n powers of b.

Throughout this section, we use the generating function

W (x) =
∞∑

n=1

Wb(1, n)

n! xn .

Further, denote by θ = θb the unique positive real solution (the power series W has
real, nonnegative coefficients) of the equation W (θ) = 1, and set ν = νb = 1/θb
(as usual, constants depend on b, but we will leave out the subscript b). We prove the
following theorem, which is a generalized version of Theorem 4.

Theorem 5 With the notions of W (x), θ and ν as above, we have

M(n)/n! ≤ νn (7.1)

for all n ≥ 1, and the constant is optimal: We have the more precise asymptotic
formula

M(n)/n! = λn−1/2νn
(
1 + O

(
n−1/2))

with λ = (b − 1)
(
θW ′(θ)σ

√
2π

)−1
, where σ > 0 is defined by

σ 2 = W ′′(θ)

θW ′(θ)3
+ 1

θ2W ′(θ)2
− 1

θW ′(θ)
.
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Table 2 Values (numerical approximations) for the constants of Theorem 5

b λ θ ν = 1/θ μ σ 2

2 0.27693430 0.57071698 1.75218196 0.44867215 0.41775807

3 0.70656285 0.84340237 1.18567368 0.66924459 0.57114748

4 1.70314663 0.95872521 1.04305174 0.87318716 0.37650717

5 4.20099030 0.99167231 1.00839763 0.96645454 0.13477198

6 10.61691472 0.99861115 1.00139078 0.99304650 0.03480989

7 28.28286119 0.99980159 1.00019845 0.99880929 0.00714564

8 80.09108610 0.99997520 1.00002480 0.99982638 0.00121534

In the calculations the approximation W60(x) was used

Moreover, the maximum M(n) = maxs≥1 Wb(s, n) is attained at s = μn + O(1)

with the constant μ = (
θW ′(θ)

)−1
.

In Table 2, we are listing numerical values for the constants of Theorem 5.
These values are simply calculated by using a finite approximation to W (x), namely
WN (x) = ∑N

n=1
Wb(1,n)

n! xn for some precision N .
We start with the upper bound (7.1) of Theorem 5, which is done in the following

lemma.

Lemma 7.1 We have
M(n)/n! ≤ νn

for all n ≥ 1.

Proof Recall that Eq. (1.3) gives us

∞∑

n=1

Wb(s, n)

n! xn =
( ∞∑

n=1

Wb(1, n)

n! xn
)s

= W (x)s .

Since θ > 0 was chosen such that W (θ) = 1, it clearly follows that

∞∑

n=1

Wb(s, n)

n! θn = 1,

hence Wb(s, n)/n! ≤ θ−n for all s and n, and taking the maximum over all s ≥ 1
yields

M(n)/n! = max
s≥1

Wb(s, n)/n! ≤ θ−n = νn,

which is what we wanted to show. 
�
It remains to prove the asymptotic formula forM(n).Wefirst gather someproperties

of the solution x = θ(u) of the functional equation W (x) = 1/u.
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Lemma 7.2 For u ∈ C with |u| ≤ 1 and |Arg u| ≤ π
b−1 , each root x of W (x) = 1/u

satisfies the inequality |x | ≥ θ , where equality holds only if x = θ and u = 1.

Proof Let u be as stated in the lemma. By the nonnegativity of the coefficients of W
and the triangle inequality, we have

W (θ) = 1 ≤ |1/u| = |W (x)| ≤ W (|x |). (7.2)

The first part of the lemma follows, since W is increasing on the positive real line. It
remains to determine when equality holds, so we assume in the following that |x | = θ .

Since the coefficients Wb(1, n) are nonzero only for n ≡ 1 mod (b − 1), we can
write W (x) = xV (xb−1). From (7.2), we obtain

W (θ) = θV
(
θb−1) = |x |

∣∣∣V
(
xb−1)

∣∣∣ = |W (x)| .

Since the coefficients of V are indeed positive, the power series V is aperiodic.2

Therefore, the inequality
∣∣V

(
xb−1

)∣∣ ≤ V
(∣∣∣xb−1

∣∣∣
)
is strict, i.e., we have

∣∣V
(
xb−1

)∣∣ <

V
(∣∣∣xb−1

∣∣∣
)
(which would yield a contradiction to the assumption that |x | = θ ) unless

xb−1 is real and positive, which means that xb−1 = θb−1. When this is the case, we
have

θ

u
= θW (x) = θxV

(
xb−1) = xθV

(
θb−1) = xW (θ) = x,

so |Arg x | = |−Arg u| ≤ π
b−1 . This means that xb−1 can only be real and positive if

x is itself real and positive, which implies that x = θ and u = 1. 
�
The following lemma tells us that the single dominant root of W (x) = 1 is the

simple zero θ .

Lemma 7.3 There exists exactly one root of W (x) = 1 with |x | ≤ θ , namely θ .
Further, θ is a simple root, and there exists an ε > 0 such that θ is the only root of
W (x) = 1 with absolute value less than θ + ε.

Proof By Lemma 7.2 with u = 1, the positive real θ is the unique root of W (x) = 1
with minimal absolute value. This proves the first part of the lemma.

Using Theorem 3, we get

|W (x)| = O

( ∞∑

m=0

γm |x |(b−1)m

)
,

which is bounded for |x | < 1/γ 1/(b−1). Therefore, the radius of convergence r of W
is at least 1/γ 1/(b−1) > θ , and so W is holomorphic inside a disk that contains θ .

2 A power series is aperiodic if the exponents whose associated coefficients are not zero are not contained
in a + bZ for any a, b with b ≥ 2.
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Since zeros of holomorphic functions do not accumulate, the existence of a suitable
ε > 0 as desired follows.

The root θ is simple, since W (x) is strictly increasing on (0, r). 
�
We are now ready to prove the asymptotic formula for M(n). To this end, we

consider the bivariate generating function

G(x, u) = 1 +
∞∑

n=1

∞∑

s=1

Wb(s, n)

n! xnus =
∞∑

s=0

W (x)sus = 1

1 − uW (x)
.

In order to get maxs≥1 Wb(s, n), we show that the coefficients varying with s fulfil a
local limit law (as n tends to ∞). The maximum is then attained close to the mean.

Proof of Theorem 5 Set

gn(u) = [xn]G(x, u) =
∞∑

s=1

Wb(s, n)

n! us .

We extract gn from the bivariate generating function G(x, u). In order to do so, we
proceed as in Theorem IX.9 (singularity perturbation for meromorphic functions)
of Flajolet and Sedgewick [8]. An important detail here is the fact that Wb(s,n)

n! =
[usxn]G(x, u) can only be nonzero if s ≡ n mod (b − 1), hence gn can also be
expressed as

gn(u) = urhn(u
b−1),

where r ∈ {0, 1, . . . , b − 2} is chosen in such a way that r ≡ n mod (b − 1). This is
also the reason why it was enough in Lemma 7.2 to consider the case |Arg u| ≤ π

b−1 .
Now we check that all requirements for applying the quasi-power theorem are

fulfilled. By Lemma 7.3, the function G(x, 1) has a dominant simple pole at x = θ

and no other singularities with absolute values smaller than θ + ε. The denominator
1 − uW (x) is analytic and not degenerated at (x, u) = (θ, 1); the latter since its
derivative with respect to x is W ′(θ) �= 0 (θ is a simple root of F) and its derivative
with respect to u is −W (θ) = −1 �= 0.

Thus the function θ(u) which gives the solution to the equation W (θ(u)) = 1/u
with smallest modulus has the following properties: it is analytic at u = 1, it fulfils
θ(1) = θ , and for some ε > 0 and u in a suitable neighbourhood of 1, there is no
x �= θ(u) with W (x) = 1/u and |x | ≤ θ + ε.

Therefore, by Cauchy’s integral formula and the residue theorem, we obtain

gn(u) = −Res

(
1

1 − uW (x)
x−n−1, x = θ(u)

)
+ 1

2π i

∮

|x |=θ+ε

G(z, u)
dz

zn+1

= 1

uθ(u)W ′(θ(u))

(
1

θ(u)

)n

+ O((θ + ε)−n)

for u in a suitable neighbourhood of 1.
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To get the results claimed in Theorem 5, we use a local version of the quasi-power
theorem, see Theorem IX.14 of [8] or Hwang’s original paper [10]. Set

A(u) = (
uθ(u)W ′(θ(u))

)−1

and
B(u) = (θ(u))−1 ,

so that
gn(u) = A(u)B(u)n + O((θ + ε)−n).

In terms of hn , this becomes

hn(v) = v−r/(b−1)A(v1/(b−1))B(v1/(b−1))n + O((θ + ε)−n).

Here, v1/(b−1) is taken to be the principal (b − 1)th root of v, which satisfies∣∣Arg v1/(b−1)
∣∣ ≤ π

b−1 .
Since θ(u) �= 0 for u in a suitable neighbourhood of 0, the function B is analytic at

zero, and so is the function A (since W is analytic in a neighbourhood of θ(1) = θ as
well and has a nonzero derivative there). Moreover, we can use the fact that

∣∣θ(eiϕ)
∣∣

has a unique minimum at ϕ = 0 if we assume that |ϕ| ≤ π
b−1 (which follows from

Lemma 7.2).
As a result, Theorem IX.14 of [8] (slightly adapted to account for the periodicity

of gn) gives us

Wb(s, n)

n! = (b − 1)A(1)B(1)n

σ
√
2πn

exp

(
− t2

2σ 2

) (
1 + O(

1√
n
)

)

= (b − 1)νn

θW ′(θ)σ
√
2πn

exp

(
− t2

2σ 2

) (
1 + O(

1√
n
)

)
, (7.3)

where t = (s − μn)/
√
n. Values of t outside of the central region can be treated by

standard tail estimates. Mean and variance can be calculated as follows. We have

μ = B ′(1)
B(1)

= −θ ′(1)
θ(1)

= 1

θW ′(θ)
,

and σ > 0 is determined by

σ 2 = B ′′(1)
B(1)

+ B ′(1)
B(1)

−
(
B ′(1)
B(1)

)2

= −θ ′′(1)
θ(1)

− θ ′(1)
θ(1)

+
(

θ ′(1)
θ(1)

)2

= W ′′(θ)

θW ′(θ)3
− 1

θW ′(θ)
+ 1

θ2W ′(θ)2
,

where we used implicit differentiation ofW (θ(u)) = 1/u to get expressions for θ ′(u)

and θ ′′(u).
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The value Wb(s, n)/n! is maximal with respect to s when s = μn + O(1). Its
asymptotic value can then be calculated by (7.3). 
�

8 The Largest Denominator and the Number of Distinct Parts

In this last section we analyze some parameters of our compositions of 1. In partic-
ular, we will see that the exponent of the largest denominator occurring in a random
composition into a given number of powers of b and the number of distinct summands
are both asymptotically normally distributed and that their means and variances are
of linear order.

Let us startwith the largest denominator, forwhichweobtain the following theorem.
Note again that we suppress the dependence on b in all constants.

Theorem 6 The exponent of the largest denominator in a random composition of 1
into m = (b − 1)n + 1 powers of b is asymptotically normally distributed with mean
μ�n + O(1) and variance σ 2

� n + O(1).

Numerical approximations to the values of μ� and σ 2
� can be found in Table 3. The

proof runs along the same lines as the proofs of Theorems 3 and 5, so we only give a
sketch here.

Sketch of proof of Theorem 6 We start by considering a bivariate generating function
for the investigated parameter. In the recursive step described in Sect. 2 that led us
to the identity (2.2), the exponent of the largest denominator increases by 1. Thus
it is very easy to incorporate this parameter into the generating function. Indeed, if
�(k) denotes the exponent of the largest denominator that occurs in a composition (or
partition) k, then the bivariate generating function

Lr (x, y) =
∑

n≥0

∑

k∈Cn,r

1

((b − 1)n + 1)! x
n y�(k) =

∑

n≥0

∑

k∈Pn,r

w(k) xn y�(k)

Table 3 Values (numerical
approximations) for the
constants of Theorems 6 and 7

In the numerical calculations the
power series were approximated
by a polynomial consisting of 40
terms

b μ� σ 2
�

μd σ 2
d

2 0.81885148 2.38703164 0.71440975 2.13397882

3 0.93352696 0.53468588 0.93318787 0.53600822

4 0.97869416 0.15390515 0.97869416 0.15390519

5 0.99366804 0.04335760 0.99366804 0.04335760

6 0.99819803 0.01180985 0.99819803 0.01180985

7 0.99950066 0.00315597 0.99950066 0.00315597

8 0.99986404 0.00083471 0.99986404 0.00083471
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satisfies L1(x, y) = 1 and

Lbs(x, y) = xs y
∑

r≥s

r !
(r − s)! (bs)! Lr (x, y).

So if we set V(x, y) = (Lb(x, y), L2b(x, y), L3b(x, y), . . .)T , then we now have

V(x, y) = xy

b! (I − yM(x))−1e1

in analogy to (2.4) with the same infinite matrix as in Sect. 2. Moreover, we obtain

L(x, y) =
∑

r≥1

Lr (x) = y + 1TV(x, y) = 1 + xy

b! 1
T (I − yM(x))−1e1.

It follows by the same estimates as in Sect. 3 that this is a meromorphic function in x
for y in a suitable neighbourhood of 1. Thus our bivariate generating function belongs
to the meromorphic scheme as described in Section IX.6 of [8], and the asymptotics of
mean and variance are obtained by standard tools of singularity analysis. Asymptotic
normality follows by Hwang’s quasi-power theorem [11]. 
�

For the number of distinct parts we prove the following result.

Theorem 7 The number of distinct parts in a random composition of 1 into m =
(b− 1)n + 1 parts is asymptotically normally distributed with mean μdn + O(1) and
variance σ 2

d n + O(1).

Approximations of the constants can be found in Table 3. Again we only sketch the
proof, since it uses the same ideas.

Sketch of proof of Theorem 7 Again, we consider a bivariate generating function. In
the recursive step, the number of distinct parts increases by 1, unless all fractions
with highest denominator are split. In this case, the number of distinct parts stays the
same. One can easily translate this to the world of generating functions: let d(k) be
the number of distinct parts in k, and let Dr (x, y) be the bivariate generating function,
where y now marks the number of distinct parts, i.e., we use

Dr (x, y) =
∑

n≥0

∑

k∈Cn,r

1

((b − 1)n + 1)! x
n yd(k) =

∑

n≥0

∑

k∈Pn,r

w(k) xn yd(k).

Then we have D1(x, y) = y and

Dbs(x, y) = s! xs
(bs)!Ds(x, y) + xs y

∑

r>s

r !
(r − s)! (bs)!Dr (x, y).

Once again, we take the infinite vector V(x, y) = (Db(x, y), D2b(x, y),
D3b(x, y), . . .)T , and we define a modified version M̃ of the infinite matrix by its
entries
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m̃i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(bj)! xi y
(bj−i)! (bi)! if i < bj,

i ! xi
(bi)! if i = bj,

0 otherwise.

Now
V(x, y) = xy

b! (I − M̃(x))−1e1

in analogy to (2.4), and moreover

D(x) =
∑

r≥1

Dr (x) = y + 1TV(x, y) = y + xy

b! 1
T (I − M̃(x))−1e1.

Once again, we find that the bivariate function belongs to the meromorphic scheme,
so that we can apply singularity analysis and the quasi-power theorem to obtain the
desired result. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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