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Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital 
function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident 
immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect 
from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive 
immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory 
diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under 
pathological conditions can shed light on the pathogenesis of respiratory diseases.
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Introduction

Located at the environmental interface, the lung con-
stantly encounters external insults threatening host 
homeostasis. The multifaceted protective function of the 
lung relies on a delicate balance among repelling invad-
ing pathogens while in parallel tolerating harmless par-
ticulate matter and sustaining its vital function. A pivotal 

safeguard of this balance is the local lung tissue micro-
environment consisting of the respiratory epithelium and 
a sophisticated network of non-circulating lung-resident 
immune cells [1].

In the past decade, several studies shed light on 
tissue-resident immunity and went beyond the “strict 
limits” between innate and adaptive immunity. It is 
now well known that, apart from circulating immune 
cells, which are activated upon antigen encounter by 
the first line of defense and then migrate to the site 
of inf lammation, there are also innate and adaptive 
immune cells with protective properties, which reside 
in the tissue, respond fast, and effectively cope with 
every invading pathogen [2]. Tissue-resident cells 
extend across adaptive and innate immunity and, as 
integral part of an immune sensing network, provide 
first-line tissue-specific immune protection. Despite 
its protective function, mounting evidence also high-
lights the role of derailed tissue-resident immunity in 
disease pathogenesis. Although the role of the adap-
tive tissue-resident immunity in sustaining respiratory 
health has been significantly appraised [3, 4], innate 
and innate-like immune cell subtypes are also impor-
tant in this context [5]. In this review, we focus on the 
main innate, innate-like and adaptive lung-resident 
immune subsets and discuss their ontogeny and role 
in respiratory health and disease.
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Tissue‑resident innate immune cells 
in pulmonary homeostasis

Macrophages, key orchestrators of respiratory 
immunity

Lung-resident macrophages comprise the alveolar (AM) 
and interstitial (IM) macrophages [5–7]. AM are the 
majority of lung-resident macrophages and are located 
in the alveolar space thereby constantly facing external 
stimuli, while IM are fewer and can be found within the 
lung parenchyma [7] (Fig. 1). AM interact closely with the 
respiratory epithelium and remove invading pathogens and 
other particles [5] through phagocytosis.

Lung-resident macrophages arise independently either 
from embryonic progenitor cells or circulating monocytes 
(Fig. 2) [6, 8, 9]. Studies in mice highlight a fetal origin 
of AM in steady state, which emerge as the end-products 
of the postnatal maturation of fetal liver- and yolk sac-
derived monocytes residing in the lung, in response to 
transforming growth factor β (TGF‐β), cytokine granu-
locyte–macrophage colony‐stimulating factor (GM‐CSF) 
and peroxisome proliferator‐activated receptor γ (PPARγ) 
[9–12]. The life-long maintenance of AM relies on their 
local self-expansion and is largely independent of circulat-
ing monocytes in steady state (Fig. 2a, b) [10, 11]. How-
ever, augmented contribution of circulating monocytes to 
AM replenishment is observed with aging and upon respir-
atory infections, lung fibrosis, or regeneration (Fig. 2b) [9, 
13–17]. On the contrary, mouse IM have a heterogeneous 

developmental origin, arising mainly from circulating and 
lung monocytes, with only minimal contribution of yolk 
sac precursors early in fetal life [18].

In contrast to mouse lung macrophages, little is known 
about the development and homeostasis of human AM and 
IM. This gap in knowledge is due to the limited availabil-
ity of appropriate experimental methods and can only be 
addressed in the context of bone marrow or lung transplan-
tation or with the use of humanized mouse models. Stud-
ies in allogeneic bone marrow recipients demonstrated that 
myeloablation and thus, host AM depletion prior to trans-
plantation induces fast AM replacement with the final AM 
pool deriving mostly from donor-derived circulating mono-
cytes [19, 20]. Upon lung transplantation, AM are trans-
ferred along with the donor lung in the recipients with their 
longevity impacting donor-specific immune responses and 
potential long-term graft rejection [21, 22]. Similarly, the 
origin of human IM is poorly understood, although mount-
ing evidence highlights the contribution of circulating 
monocytes to human lung macrophage ontogeny in general 
[23]. Indeed, using a humanized mouse model, Evren et al. 
demonstrated that CD14+CD16– circulating monocytes can 
extravasate into the lung and give rise to human IM and AM 
in adults, especially upon lung injury and inflammation [24]. 
Moreover, the authors showed that the monocytic maturation 
to IM and AM is characterized by a sequential upregulation 
of CD206 and CD169, a finding in agreement with human 
studies reporting that CD206+CD169− IM develop earlier 
than CD206+CD169+ AM which appear upon lung inflation 
shortly after birth [24, 25]. More evidence supporting the 

Fig. 1   Location of immune 
tissue-resident cells in the lungs 
(alveoli and bronchus). Created 
with BioRender.com
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temporal and tissue state-dependent origin of human AM 
was recently provided by Evren et al. who characterized the 
embryonic origin of AM and pinpointed CD116+ fetal liver 
cells as human AM precursors in early life and steady-state 
conditions [26].

Dendritic cells professional first responders 
and immune response initiators

As key antigen-presenting cells (APC), pulmonary den-
dritic cells (DCs) act promptly upon antigen encounter 
and trigger adaptive immunity by transporting antigens to 
lung-draining lymph nodes [7]. In contrast to lung-resident 
macrophages, insights into prenatal and neonatal develop-
ment, differentiation and maturation of pulmonary DCs are 
largely missing. Although DCs are not self-expanding and 
their tissue maintenance relies on bone marrow-derived 
replacement, they are considered part of lung-resident 
immunity given their long tissue persistence and slow 
replenishment [7].

Three main lung-resident DC subtypes have been identi-
fied, namely plasmacytoid DCs (pDCs), monocyte-derived 

DCs (moDCs), and conventional DCs (cDCs), which can be 
further subdivided in CD103+ cDCs (cDC1s) and CD11b+ 
cDCs (cDC2s) [5, 7, 27]. CD103+ cDCs are responsible 
for sampling and presentation of antigens from the alveolar 
space to CD8+ (and CD4+) T cells thereby inducing enhanced 
effector CD8+ T cell generation [28]. Interestingly, in the 
human lung, the CD103+ cDC equivalent subset seems to be 
the myeloid type 2 DCs (CD11c+BDCA-3+(CD141) [29, 30]. 
CD11b+ DCs and moDCs express many common markers 
and thus, can be difficultly distinguished. Nevertheless, the Fc 
receptors CD64 and/or FcεRIα are commonly used to further 
distinguish these subtypes [7]. moDCs are recruited to the 
lung upon inflammation, while their pulmonary existence in 
steady-state is unclear. Myeloid type 1 DCs (CD11c+CD1c+) 
are the human equivalent population to CD11b+ mouse DCs 
[29, 30]. The last main DC subgroup in both mouse and 
human lungs are pDCs. In mice, pDCs can be identified based 
on the expression of distinct markers like the plasmacytoid 
dendritic cell antigen-1 (PDCA-1) [7, 27]. In human lungs, 
pDCs are characterized as CD11c−BDCA-2+ [29, 30], while 
both in mice and humans, pDCs express the antiviral factor 
bone marrow stromal antigen-2 (BST-2) [31].

Fig. 2   Fetal emergence and life-long maintenance of alveolar macrophages. Origin and mechanisms for a  lungresident macrophage replenish-
ment b in a healthy or diseased lung
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Innate lymphoid cells at the interface 
between innate and adaptive immunity

Innate lymphoid cells (ILCs) are a group of diverse innate 
immune cells with a common lymphoid origin that lack 
antigen-specific receptors and are thus, not implicated into 
antigen-specific immune responses [32, 33]. Though a small 
part of lung-resident immunity, ILCs play a pivotal role 
in mounting and sustaining protective immune responses 
against invading pathogens while safeguarding tissue home-
ostasis [34, 35]. If dysregulated, ILCs may also contribute 
to respiratory disease pathogenesis [36, 37].

The ILC family consists of five main cell subsets with a 
common lymphoid origin and distinct phenotype and func-
tion, namely ILC1s, ILC2s, ILC3, natural killer (NK) cells, 
and lymphoid tissue inducer (LTi) cells. Based on develop-
mental, phenotypic, and functional similarities, these sub-
sets can be further classified into three groups, with group 1 
comprising ILC1s and NK cells, group 2 referring to ILC2s 
and group 3 consisting of ILC3s and LTi cells [38]. ILCs are 
considered as innate counterparts of T lymphocytes, with 
ILC1s, ILC2s, and ILC3s being functionally analogous to 
CD4+ T helper (Th)1, Th2, and Th17 cells, respectively, 
while NK cells are cytotoxic cells functionally resembling to 
CD8+ T cells [33, 39, 40]. Finally, LTi cells induce second-
ary lymphoid organogenesis, with their function starting in 
fetal life [41].

ILCs originate from a common lymphoid progenitor, 
with their development mainly occurring in the fetal liver 
and the bone marrow postnatally [42]. Long-lasting main-
tenance of tissue-resident ILCs is mostly achieved by local 
self-renewal, but ILC replenishment by bone marrow- or 
lymphoid organ-derived precursors can also occur [43]. 
While the lung emergence of ILC1s is poorly understood, 
ILC2s and ILC3s populate the lung early in postnatal life, 
with interleukin (IL)-33 production by type II alveolar epi-
thelial cells being critical for ILC2 emergence in the lung 
[44], and insulin-like growth factor 1 deriving from alveo-
lar fibroblasts promoting ILC3 development, respectively 
[45]. ILCs reside in all parts of the respiratory tract (Fig. 1). 
Physiologically, ILC2s are the main ILC population in the 
mouse respiratory tract, while ILC3s are the predominant 
ILC subset in humans [46].

Group 1 ILCs comprise NK cells, found in blood cir-
culation and tissues, and ILC1s, which are tissue-resident 
cells located in several organs, including the lung [43, 
47]. Group 1 ILCs are typically implicated in antiviral 
and antitumor immunity [48–50]. They confer protection 
mainly through interferon (IFN)-γ secretion in response to 
IL-12, IL-15, or IL-18, which in turn boosts intracellular 
pathogen elimination and antigen presentation by other 
immune cells [49, 50] (Fig. 3). NK cells can additionally 
secrete perforin and granzyme B, two key mediators of 

their cytotoxic functions [51]. While expression of tissue 
residency markers, such as CD103 and CD69, mainly char-
acterizes ILC1s, markers associated with blood recircula-
tion, namely CD62L, sphingosine-1-phosphate receptor 
(S1PR) and CC-chemokine receptor 7 (CCR7), are mostly 
expressed by NK cells [33, 52].

As the innate counterpart of Th2 cells, ILC2s are 
involved in type 2 immunity, due to their ability to pro-
duce type 2 cytokines, such as IL-5, IL-4, and IL-13, upon 
stimulation by epithelial alarmins, including IL-33, IL-25, 
and thymic stromal lymphoprotein (TSLP) (Fig. 3) [38, 53, 
54]. Hence, ILC2s play key roles in asthma and helminth 
infection [55, 56]. In mice and humans, ILC2 develop-
ment, maintenance and function depend on the transcrip-
tion factor GATA3 [57, 58]. Interestingly, ILC2s exhibit 
tissue-specific phenotypic and functional traits, which are 
mostly determined perinatally [59, 60]. Schneider et al. 
reported the existence of fetally, perinatally, and adult-
derived ILC2s in adult tissues and identified the perinatal 
period as a key determinant of tissue-resident ILC2s and 
their distinct tissue-specific gene expression signature 
[60]. Of note, only 5–10% of lung-resident ILC2s were of 
embryonic origin 2 months after birth, indicating that the 
pool of fetal ILC2s is constantly diluted by postnatally de 
novo generated ILC2s [60]. Importantly, a tissue-specific 
de novo generation or local expansion of adult ILC2s in 
physiological or pathogenic conditions, respectively, was 
demonstrated, thereby suggesting that the local tissue 
microenvironment can define the tissue-specific profile of 
ILC2s in adult life [60]. Apart from their temporal ori-
gin, ILC2s exhibit a tissue-dependent responsiveness to 
IL-33 and IL-25, with IL-33-responding ILC2s residing 
mainly in the lung and adipose tissue in steady-state con-
ditions and IL-25-responding ILC2s mainly found in the 
intestine upon helminth infection [44, 59]. ILC2s are the 
main ILC population in the mouse lung. In steady-state 
conditions, mouse lung ILC2s express several surface 
markers, including IL7Ra, CD25, ST2, CD69, CD90, and 
CD44, while being lineage negative [34, 61]. Despite their 
similarities, mouse and human ILC2s differ in CD44 and 
CD161 expression, with mouse cells expressing the first 
and human ILC2s the second surface marker [33].

Group 3 ILCs, namely ILC3s and LTi cells, depend on 
the retinoic acid-related orphan receptor-γt (RORγt) for 
their activation and induce Th17-like immune responses 
with secretion of IL-17, IL-22, GM-CSF and/or tumor 
necrosis factor-α (TNFα) (Fig.  3) [38, 62]. ILC3s are 
characterized by functional and phenotypic heterogene-
ity. Among others, IL-18 and GATA3 can induce ILC3 
maintenance, proliferation, and cytokine production [63, 
64]. As key IL-22 producers, ILC3s play an important 
role in lung homeostasis by sustaining epithelial barrier 
integrity and function [38, 65].
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Lung tissue‑resident adaptive immunity

Tissue‑resident memory T cells specialized sentinels 
of lung‑specific immune memory

The lungs are enriched in both CD4+ and CD8+ tissue-resi-
dent memory T (TRM) cells [66, 67], with distinct transcrip-
tional profiles and functional properties [68]. TRM cells are 
pivotal sentinels of tissue homeostasis, due to their ability 
to respond rapidly to secondary infections [69] and their 
role in antitumor local immunosurveillance [70]. However, if 
dysregulated, TRM cells may also lead to pathogenic immune 
responses, as seen in the case of allergic asthma [71–74].

Typical TRM cell characteristics include their ability to 
adhere to peripheral tissues such as the lung and the gut, as 
well as their lack of homing signals. The phenotypic iden-
tification of TRM cells relies on the differential expression 
of typical surface markers, with CD69 being the most com-
monly used one for mouse and human TRM cells. CD69 is 
also a key determinant of TRM cell fate, since it competi-
tively interacts with S1PR thereby inhibiting its expression 
and impeding sphingosine-1-phosphate (S1P1)-mediated 

tissue escape [75, 76]. TRM cell tissue retention and inhibi-
tion of recirculation are also facilitated by CD44 and CD103 
upregulation as well as CD62L and CCR7 downregulation, 
respectively [77, 78].

Lung TRM cells mainly arise from effector T cells follow-
ing their DC-mediated activation and subsequent migration 
from lymphoid tissues into the lung [79, 80]. In the inflamed 
lung, recruited CD8+ effector T cells interact with the local 
tissue microenvironment, with subsequent differentiation 
into lung CD8+ TRM cells and accumulation at tissue regen-
erative sites [81, 82]. Lung monocytes and regulatory T cells 
as well as cytokines secreted by the local tissue microenvi-
ronment, such as TGF-β, IL-33, IL-15, TNF, and IFN-γ, play 
a pivotal role in TRM differentiation and tissue retention [75, 
76, 83, 84]. Specifically, TGF-β has been shown to promote 
important steps for the acquisition of a tissue-resident phe-
notype, namely CD103 and CD69 expression along with 
the downregulation of Kruppel-like factor 2 (KLF2) and 
sphingosine-1-phosphate (S1P1) [76]. During CD8+ TRM 
cell differentiation, T-box transcriptional factors, compris-
ing eomesodermin (Eomes) and T-bet, are also downregu-
lated with minimally sustained T-bet expression required for 

Fig. 3   Different subtypes of tissue-resident immune cells and their cytokine production. Created with BioRender.com
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long-term TRM survival [75]. In contrast to the generation of 
CD8+ TRM cells in other barrier tissues [85], important for 
the CD8+ effector T cell differentiation into lung TRM cells 
is their prior interaction with cognate antigen, which in turn 
induces upregulation of CD69, VLA-1, and CD103 [78, 86]. 
As shown also in other tissues including the liver, skin, kid-
ney, and small intestine [87], a key player in the formation 
of lung CD8+ TRM cells is B-lymphocyte-induced matura-
tion protein 1 (Blimp-1), which shifts the lineage choice of 
CD8+ effector T cell towards TRM and not central memory 
cells [88].

Despite more extensive investigation of CD8+ TRM cell 
biology, CD4+ TRM cells are a more abundant TRM popula-
tion in the lung and were the first identified and character-
ized resident memory CD4+ T-cell subset [89, 90]. CD4+ 
and CD8+ TRM cells share many phenotypic similarities [77] 
but differ in their generation, surface marker expression and 
response to cytokines [91]. Although co-expression of CD69 
and CD103 is a typical TRM signature and can be used for 
the identification of lung CD8+ TRM cells, lung CD4+ TRM 
cells exhibit high CD69 but only low or no CD103 expres-
sion [89, 90]. In contrast to their CD8+ counterparts, CD4+ 
TRM generation is affected mainly by IL-2 and IL-15 rather 
than TGF- β [90, 92].

Lung CD4+ and CD8+ TRM cells reside in specific tissue 
sites that support their longevity (Fig. 1). CD8+ TRM cells 
occupy newly constructed niches, also known as repair-asso-
ciated memory depots (RAMDs), which are associated with 
tissue regeneration upon injury and are critical for CD8+ 
TRM cell survival [81, 82]. On the other hand, CD4+ TRM 
cells contribute to the formation of inducible bronchus-asso-
ciated lymphoid tissue (iBALT), which in turn favors their 
maintenance while providing an immune network that can 
rapidly respond upon infection [93] (Fig. 1). Nevertheless, 
lung TRM cells are not as long-lived as in other organs and 
slowly decline after their generation with constant replace-
ment by circulating effector T cells locally converting into 
TRM cells [94].

BRM cells, key features of tissue‑specific humoral 
immunity

Tissue-resident B memory (BRM) cells are a subgroup 
of experienced B memory antigen-specific cells, which 
become unable to recirculate and reside in the lung by alter-
ing the expression of their receptors and chemokines [95]. 
Due to lack of typical BRM markers, identification of lung 
BRM cells can be challenging and can be mainly achieved 
through immunohistochemical tissue staining or with the 
use of intravascular staining and parabiosis animal models 
(Fig. 4) [3]. In mice, BRM cells share surface markers with 
B memory cells such as CD38 and CD73 [96], while in 
humans, they express CD27 [97]. Lung BRM cells express 

CXCR3, CXCL9, CXCL10, CXCL11, and CCR6 [98], 
which drive and retain them in the lung parenchyma, where 
they are located in the iBALT or in the basolateral surface 
of the respiratory epithelium [99] (Fig. 1). Of note, primary 
BRM cell generation depends on first antigen encounter [3], 
which occurs in iBALT and drives BRM precursors to stay 
and survive in the lung as tissue-resident cells [100]. These 
cells differ both phenotypically and functionally from B 
cells of the circulation as well as from those located in the 
lung-draining lymph nodes [3, 98]. Besides the expression 
of the above mentioned markers, BRM cells differ from the 
rest B memory cells by downregulating the homing receptor 
CD62L and upregulating tissue-resident markers, such as 
CD69 and CD103 [101]. BRM cells mainly produce antibod-
ies following a secondary infection with their response being 
faster and much more effective compared to that of other 
antibody-producing B cells [3].

γδ‑T cells, adaptive and innate‑like hybrid 
facilitators of immune surveillance

Lung-resident γδ-T cells respond rapidly to challenges and 
orchestrate elicited immune responses thereby contributing 
to antimicrobial protection, tumor surveillance, and tissue 
repair [102, 103]. Their distinct nature derives from the 
combination of conventional adaptive properties with their 
ability to mount robust innate-like responses [102].

While constituting only 1–5% of blood circulating lym-
phocytes, γδ-T cells are highly enriched in mucosal and 
epithelial tissues, such as the skin and the lung, where they 
account for 8–20% of resident pulmonary lymphocytes 
[104]. During the perinatal period, Vγ6/Vδ1-expressing 
γδ-T cells migrate from the thymus to other tissues, includ-
ing the lung [104, 105], with subsequent tissue-specific dif-
ferentiation and age-dependent pattern of Vγ gene usage 
[106]. Specifically, Vγ6+ γδ-T cells are the main γδ-T cell 
population in the lung during the first 8–10 weeks of life, 
while Vγ4+ γδ-T cells become the most abundant γδ-T cell 
subset after that time point [106]. In the adult mouse lung, 
γδ-T cells are a heterogeneous population consisting mostly 
of Vγ4+ cells, two smaller Vγ6+ and Vγ1+ cell subsets, and 
only sparse Vγ7+ cells [107]. This programmed rearrange-
ment of the Vγ gene pattern seems reasonable, consider-
ing that γδ-T cells interact with a vast variety of antigens, 
which depend both on the tissue of residence as well as on 
the age of the host, thereby conferring targeted condition-
ally adjusted immunity. Apart from the airway mucosa, lung 
γδ-T cell can be found in all non-alveolar regions (Fig. 1). Of 
note, Vγ4+ and Vγ1+ γδ-T cells are preferentially distributed 
in parenchymal lung areas [107].

Lung-resident γδ-T cells produce mainly IL-17 [103]. 
Thus, IL-17-mediated signalling seems to be a key mechanism 
underlying γδ-T cell contribution to pathogen elimination and 
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pulmonary homeostasis [108], while IL-22 production by γδ-T 
cells underlies their protective function against lung fibrosis in 
mice [109]. However, lung γδ-T cells can be also involved in 
aberrant immune responses and thus disease pathogenesis, as 
seen in the case of allergic asthma [110].

Tissue‑resident immunity in respiratory 
diseases

Tissue-resident immunity serves multiple roles in respiratory 
health and disease. In this section, we discuss the involve-
ment of all above mentioned lung-resident immune cell 

subtypes in respiratory viral and bacterial infections, asthma, 
as well as cancer and metastasis (Table 1).

Respiratory viral infections

Viruses, including the influenza virus, the respiratory syn-
cytial virus (RSV) and the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), are common causes 
of respiratory infections. Upon encountering the first line of 
local defense, namely the respiratory epithelium, a further 
immune response with implication of several circulating and 
lung-resident immune cell populations is initiated.

Fig. 4   Models to study immune tissue-resident cells in the lung. a In vivo intravenous immune cell labelling. b In situ labelling of cells through 
photoconversion. c Parabiosis model. d Orthotopic lung transplantation. Created with BioRender.com
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Influenza virus infection

Invading influenza viruses can target mouse and human 
lung-resident AM, which are, nevertheless, less suscepti-
ble to infection and exhibit lower virus replication and TNF 
production compared to monocyte-derived macrophages 
[10, 111]. Of note, AM depletion upon influenza infection 
leads to increased pulmonary viral load and worsened dis-
ease outcome, suggesting that AM enhance pathogen clear-
ance thereby protecting from severe infection [112]. This 
AM function is mainly due to type I IFN production, which 
induces pulmonary monocyte recruitment and controls viral 
replication [113]. Of note, type I IFN production may also 
underlie the anti-inflammatory behavior of AM, since it alle-
viates inflammasome activation, reduces IL-1 and enhances 
IL-10 secretion by monocyte-derived cells and moDCs [114, 
115]. However, influenza-driven AM reduction and dys-
function seem to be mediated by IFN-γ signalling thereby 
increasing susceptibility to bacterial superinfections [116]. 
Nevertheless, after influenza infection resolution in mice, 
protection from a secondary Streptococcus pneumoniae 
(S. pneumoniae) infection is conferred by newly recruited 
monocyte-derived AM that enrich the already lung-resident 
AM pool [13]. In contrast to AM, little is known about the 
interaction of IM and the influenza virus. A recent study in 
cynomolgus macaques demonstrated significantly increased 
IM accumulation in influenza-infected lungs, thereby indi-
cating a potential role of these cells in antiviral defense and 
immune response orchestration [117].

As critical orchestrators of subsequent immune 
responses, DCs are also implicated in anti-influenza 
immunity. Distinct DC subsets exhibit differential suscep-
tibility to influenza infection, mainly depending on the 
level of MHC II expression. Therefore, highly MHCII-
expressing CD103+ and CD11b+ cDCs can be easily tar-
geted by the virus, while low expressing pDCs are not 
affected [118]. MHCII molecules are known to serve as 
viral receptors or co-receptors [119], and this may likely 
explain the observed differences in DC susceptibility since 
the entire molecule or at least a region may be recognized 
by the influenza virus and enhance its binding to DCs. 
Of note, the infected migratory CD103+ cDCs (cDC1s) 
are the main APCs to lymph node-residing CD4+ and 
CD8+ T cells [79, 120]. Interestingly, cDC1 depletion in 
influenza-infected mice impaired viral clearance and exac-
erbated disease outcome [120]. Of note, cDC1s also pro-
mote CD8+ T cell survival in the lungs and development 
of robust memory response upon influenza infection [121]. 
However, at later stages of influenza infection, CD11b+ 
cDCs (cDC2) tend to gather in the lung-draining lymph 
nodes and become the main CD8+ T cell-stimulating DC 
subset [122]. Interestingly, Bosteels et al. recently demon-
strated that, upon a respiratory viral infection, pulmonary 

cDC2s acquire a hybrid phenotype in a type I IFN-depend-
ent manner, sharing expression of the Fc receptor CD64 
and of interferon regulatory factor 8 with monocytes and 
cDC1s, respectively, and exhibit then an enhanced ability 
to prime CD4 and CD8 immunity [123].

Group 1 ILCs, namely ILC1s and NK cells, contribute 
to antiviral immunity, mainly through IFN-γ secretion [49, 
50]. Of note, NK cells seem to play an ambiguous role upon 
influenza infection. Although several studies report higher 
pulmonary virus titers in influenza-infected NK cell-defi-
cient mice [124, 125], a pathogenic impact of NK cells, 
exacerbating influenza-related pathology, has also been 
described [126]. In contrast, ILC1s serve a key role in immu-
nosurveillance at sites of early viral infection and protect 
by secreting IFN-γ in response to cDC1-mediated signaling 
[50]. Additionally, in H1N1-influenza-infected mice, ILC2s 
enhance airway epithelial restoration by boosting epithelial 
cell proliferation and airway remodeling via amphiregulin 
and IL-13 production [34]. Although little is known about 
the role of ILC3s in viral respiratory infections, the implica-
tion of IL-22, a key ILC3 cytokine, in influenza infection has 
been thoroughly investigated. IL-22 contributes to lung epi-
thelial repair following infection [127]. Additionally, IL-22 
and thus IL-22-producing ILC3s confer protection against 
secondary bacterial lung infections [128].

Mouse and human studies identify virus-specific TRM 
cells in influenza-infected lungs [89, 90, 129], which fight 
acute infection through IFN-γ and TNF-a production [130] 
and support long-term protective immunity in situ [131]. 
Pulmonary influenza-specific CD8+ TRM cells confer also 
heterosubtypic protection against infection due to the pres-
ence of common or similar epitopes [69, 129, 132]. Indeed, 
CD8+ TRM cells with the ability to confer cross-protection 
against influenza A, B, and C viruses have been found in 
human lungs following influenza infection [129]. Interest-
ingly, the development of lung-resident CD8+ TRM and BRM 
cells upon influenza virus infection is supported by a newly 
identified population of follicular tissue-resident CD4+ T 
helper (TRH) cells in an IL-21-dependent manner [133]. 
Apart from TRM cells, long-lived BRM cells are also found 
in influenza-infected mouse and human lungs [3, 98, 134]. 
Importantly, influenza-specific BRM cells reside in iBALT 
and exhibit distinct transcriptional and phenotypic traits, 
including increased CXCR3, CCR6 and CD69 expression, 
which distinguish them from populations in lung-draining 
lymph nodes, spleen, or blood [98]. Upon viral re-exposure, 
pulmonary BRM cells preferentially migrate into infected 
sites, where they differentiate into plasma cells with high 
antibody production [134].

Lung-resident γδ-T cells are also involved in antiviral 
immunity. Upon neonatal influenza infection in mice, epi-
thelial cell-derived IL-33 triggered the accumulation of 
IL-17A-producing γδ-T cells in the infected lungs. In turn, 
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these cells induced type 2 immunity, ILC2 and regulatory T 
(Treg) cell recruitment and, finally, enhanced amphiregulin 
release and tissue repair [135]. In humans, the main γδ-T 
response against influenza virus infection is exerted by IFN-
γ-producing Vγ9Vδ2-T cells [136]. Indeed, activated human 
Vγ9Vδ2-T cells could kill influenza-infected human alveolar 
epithelial cells and impede viral replication in vitro [137], 
while they could also attenuate disease severity in immu-
nodeficient, infected with human influenza virus strains, 
humanized mice [138].

RSV infection

Similar to the influenza virus infection, tissue-resident 
immunity is critically involved in immune responses elic-
ited upon a RSV infection. As sentinels of respiratory barrier 
immunity, both AM and pDCs enhance viral clearance and 
thus protect from severe RSV infection [139, 140]. Indeed, 
AM or pDC depletion upon RSV infection led to increased 
lung viral load and aggravated disease pathology [139, 140]. 
The contribution of AM to viral clearance is mainly due to 
type I IFN production [113, 141]. In fact, AM seem to pro-
duce more type I IFN than pDCs, and thus play a superior 
role in antiviral immunity [113]. Interestingly, AM not only 
initiate immune response upon RSV encounter, but are also 
able to limit viral replication regardless of type I IFN [142].

Similar protective roles have been described for group 
1 ILCs upon RSV infection [143, 144]. On the contrary, 
increased ILC2s have been associated with severe RSV 
bronchiolitis in infants [145], and correlated with high TSLP 
and IL-33 levels [145]. Upon mouse RSV infection, early 
TSLP-mediated induction of IL-13-secreting ILC2s led to 
airway hyperresponsiveness (AHR) and increased mucus 
production [144]. Similarly, Wu et al. recently demonstrated 
that RSV-triggered IL-33-activated ILC2s boost AHR and 
airway eosinophilia through IL-13 production [146]. Inter-
estingly, increased ILC2 numbers persist in the mouse lung 
for several weeks post neonatal RSV infection [146, 147], 
and thus may account for the link between early-life RSV 
infection and long-term respiratory pathologies [148].

On the other hand, a protective role of virus-specific 
CD8+ TRM cells has been described upon RSV infection in 
both mice and humans [149, 150]. In RSV-immune mice, 
TRM cells amplified virus clearance thereby protecting 
against re-infection [150]. RSV infection in humans led to 
accumulation of virus-specific CD8+ TRM cells in the lungs 
during convalescence, while increased RSV-specific TRM 
cells in the airways before infection were associated with 
reduced virus titers and disease severity [149]. Virus-spe-
cific CD4+ TRM cell accumulation in the airways has also 
been reported upon experimental human RSV infection 
[151].

Upon RSV-immunization and subsequent infection, 
increased Vγ4+ γδ-T cells were found in mouse lungs and 
could produce several pro-inflammatory cytokines, including 
IFN-γ, TNF, IL-4, and IL-5, upon ex vivo stimulation [152]. 
Of note, depletion of these cells attenuated lung immuno-
pathology and disease severity and minimally enhanced 
viral proliferation without affecting viral clearance [152]. 
Additionally, RSV-infected mouse neonates failed to mount 
robust IL-17A-mediated responses, in contrast to adult mice, 
in which γδ-T cells were the main IL-17A sources. Impor-
tantly, IL-17 suppression in adult mice exacerbated RSV-
induced lung inflammation, whereas IL-17 supplementation 
in neonates had the opposite effect. Thus, increased RSV 
disease severity in infancy may be associated with an early-
life deficiency or dysfunction of lung IL-17A-producing 
γδ-T cells [153].

SARS‑CoV‑2 infection

Direct SARS-CoV-2 infection of human AM has also been 
reported [154], with subsequent AM dysfunction, exacer-
bated pro-inflammatory responses and eventually general-
ized pulmonary damage [154]. Upon severe coronavirus 
disease (COVID-19), AM expand into the alveoli along with 
neutrophils and lymphocytes, and seem to sustain an M1 
polarization thereby contributing to SARS-CoV-2-associ-
ated “cytokine storm” and acute respiratory distress syn-
drome [154, 155]. Recently, Grant et al. identified a positive 
feedback loop between SARS-CoV-2 infected AM and T 
cells whose continuous interaction perpetuates a spatially 
restricted alveolitis [156]. Of note, in vitro SARS-CoV-2 
infection of monocyte-derived macrophages and dendritic 
cells led to production of cytokines, such as IFN-α, IFN-β, 
TNF, IL-1β, IL-6, IL-10, and CXCL10 and also resulted in 
type I IFN-mediated cell death, despite its abortive character 
and the fact that the virus failed to replicate efficiently in 
these cells [157]. However, SARS-CoV-2-induced IFN pro-
duction was weaker compared to other respiratory viruses 
[158], a finding that may be attributed to newly identified 
SARS-CoV-2-encoded genes limiting IFN production [159] 
as well as a poor ability of AM to sense the invading virus 
and mount a robust IFN response [160].

Upon SARS-CoV-2 encounter, DCs seem to be unexpect-
edly affected. Interestingly, a lower DC number, impaired 
antigen-presenting function and decreased type I IFN pro-
duction by DCs have been described in patients with severe 
COVID-19 [161–163]. Among cDC1s, cDC2s, and pDCs, 
only cDC2s accumulate in SARS-CoV-2-infected human 
lungs [162], while pDC apoptosis is increased [162, 164]. 
The preferential accumulation of cDC2s in SARS-CoV-2-in-
fected lungs may be explained by the fact that cDC2s can 
enhance the function of CD4+ T cells and trigger follicular 
helper T cells, which both contribute to effective antiviral 
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humoral immune responses, as shown in the case of human 
immunodeficiency virus-1 infection [165]. Of note, upon 
acute SARS-CoV-2 infection, DCs failed to induce robust T 
cell responses, thus suggesting an impaired antigen-present-
ing capacity [163, 164]. A similar DC dysfunction could be 
seen in SARS-CoV-infected rhesus macaques. In that case, 
the low rate of viral replication in all infected APCs and the 
consequently low expression of viral proteins impaired viral 
sensing from Toll-like receptors (TLRs) thereby facilitating 
viral escape from mucosal innate immunity and subsequent 
systemic dissemination using APCs, including DCs, as vehi-
cles [166]. Additionally, SARS-CoV-2 preferentially inhib-
its pDCs from producing type I IFN and can thus escape 
immune recognition [163, 167].

Our understanding of ILC implication in COVID-19 is 
limited to changes observed in peripheral blood and thus, 
insights into lung-resident ILCs are sparse. Higher expres-
sion of activation and homing markers in ILCs from infected 
individuals was associated with severe infection [168]. This 
finding together with decreased NK, ILC1 and ILC2 num-
bers in the blood of COVID-19 patients [169] suggest that 
ILCs migrate and persist in the lung upon severe infection.

SARS-CoV-2 infection also induces development of lung-
resident adaptive immune memory [170, 171]. Human stud-
ies report a long-term persistence of virus-specific lung TRM 
cells up to 10 months after primary infection [170]. Impor-
tantly, cross-reactive immunity has also been described in 
the case of SARS-CoV-2, as, due to its homology with the 
human coronaviruses OC43 and 229E, cross-reactive CD4+ 
and CD8+ T cells have been detected in the absence of a 
prior SARS-CoV-2 infection [172–174]. Although both in 
the case of influenza or SARS-CoV-2 infection, virus-spe-
cific lung TRM cells seem to be generated and cross-react 
with heterologous virus strains, whether these cells confer 
cross-protection against other antigens remains unclear. Of 
note, pre-existing immunity to influenza, either due to prior 
infection or vaccination, seems indeed to impact SARS-
CoV-2-specific T-cell immune responses, since it has been 
associated with enhanced SARS-CoV-2-specific CD4+ T 
cell immunity [175] and reduced rate of COVID-19 [176]. 
Such cross-immunity can be attributed to the structural simi-
larities of influenza virus and SARS-CoV-2 [177] and thus, 
lung TRM cells may be key players in this context, a hypothe-
sis warranting further investigation. However, little is known 
about the ability of SARS-CoV-2-specific lung TRM cells to 
sufficiently protect against re-infection. Of note, a sublethal 
mouse SARS-CoV-2 infection induced pulmonary resident 
CD4+ and CD8+ T effector cells expressing TRM-related 
markers such as CD69 and CD103, but, when adoptively 
transferred to a naïve host, these cells failed to indepen-
dently protect against a lethal SARS-CoV-2 infection [178]. 
This finding is in contrast to other studies showing that pul-
monary resident T cells are essential for vaccine-induced 

protection against coronaviruses [179]. Taken together, 
these observations may indicate that, unlike a SARS-CoV-2 
infection, a vaccination may induce the generation of lung-
resident T cells with enhanced protective capacity against 
infection. Another explanation for the inability of transferred 
pre-trained lung-resident T cells to independently protect 
against infection may be that immune responses commonly 
rely on well-orchestrated cellular events with immune cells 
acting as a network. Thus, an independent protective func-
tion of one immune cell population may not be sufficient to 
confer immunity in this case. Interestingly, a recent study 
by Zhao et al. uncovered a pathogenic role for tissue-resi-
dent memory-like Th17 (TRM17) cells as potential drivers 
of aberrant inflammation in severe COVID-19 pneumonia 
[180]. Specifically, COVID-19 severity and inflammation-
induced lung injury were associated with the interplay 
among TRM17 cells, macrophages and CD8+ T cells in the 
infected lungs [180]. Of note, patients with severe disease 
exhibited increased serum IL-17A and GM-CSF levels 
[180]. However, a potential protective function of TRM17 
cells at an early infection stage or in asymptomatic SARS-
CoV-2 infected individuals could not be ruled out. There-
fore, further studies are required to fully decipher the emer-
gence and origin as well as the role of these cells throughout 
the infection course.

Studies focusing on γδ-T cell responses upon SARS-
CoV-2 infection deal mainly with circulating γδ-T cells 
and largely neglect the lung-resident subtypes. Of note, 
decreased circulating γδ-T cells are found in the blood of 
patients with severe COVID-19 and related general lym-
phopenia [181]. Additionally, recovery from COVID-19 has 
been associated with a shift of γδ-T cells towards an effec-
tor-like phenotype with enhanced tissue infiltration capacity 
[182]. Taken together, these findings might indeed suggest a 
recruitment and retention of γδ-T cells in the infected lung 
[158, 183].

Respiratory bacterial infections

Similar to respiratory viral infections, lung-resident immu-
nity is essentially involved in protection against invading 
bacteria, such as S. pneumoniae and Mycobacterium tuber-
culosis (M. tuberculosis).

S. pneumoniae infection

AM are among the first responders to invading bacteria. 
Upon S. pneumoniae infection, TLRs of AMs can syner-
gistically prevent pneumococci from escaping immune 
recognition [184]. Following phagocytosis, pathogen 
elimination can be achieved through AM apoptosis [185]. 
Nevertheless, the elimination of phagocytized pathogens, 
such as S. pneumoniae, most commonly relies on the acidity 
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of the phagosome and AM-produced reactive oxygen and 
nitrogen species [186]. Gut microbiota-derived acetate 
was found to boost AM bactericidal activity by inducing 
production of IL-1β and in turn nitric oxide by AM [187]. 
AM are also critically involved in inflammation resolution 
and tissue repair. After infection control, reprogramming of 
AM towards the M2 activation state results in the secretion 
of anti-inflammatory cytokines, such as IL-10 and IL-1ra 
thereby controlling inflammation and boosting tissue repair 
[188]. Additionally, through AM-mediated efferocytosis, 
dead cells and their intracellular inflammatory residues are 
also removed [183, 188]. Regarding IM, several subtypes 
with distinct transcriptional profiles can be found during a 
bacterial infection [189] and they all express MHCII, a trait 
likely indicating an antigen presenting role [190]. Addition-
ally, IM population is known to expand significantly after 
exposure to bacterial unmethylated CpG DNA and can 
subsequently prevent asthma development through IL-10 
production [191]. Unlike AM, insights into the role of lung-
resident IM in respiratory bacterial infections remain sparse 
and thus, further studies focusing on this topic are needed.

Although the role of DCs in antiviral immunity is well-
described, their response to bacterial lung infections is less 
understood. As first-line defenders, DCs exert their antigen 
presenting activity also upon bacterial infections [192]. On 
the other hand, DC deficiency in S. pneumoniae-infected 
mice was associated with reduced systemic bacterial 
spread and thus, lower systemic inflammation, indicating 
the ability of pneumococci to exploit DC-mediated prote-
olysis in order to spread outside the lung [193]. Interest-
ingly, DC depletion was not accompanied by an increased 
recruitment of another immune cell type [193], and thus, 
one can only assume that other antigen presenting cells, 
such as AM, monocytes and epithelial cells undertake the 
role of DCs in this context [194].

ILCs play also an important role in host responses 
to bacterial lung infections, with ILC3s being the most 
important ILC population in this context [195]. Upon 
infection, pro-inflammatory factors such as IL-1β and 
IL-23, trigger ILC3s to secrete IL-17 and IL-22 [195], 
which subsequently enhance airway epithelial barrier 
function and promote immune responses against S. pneu-
moniae [196]. Apart from ILC3s, NK cells contribute also 
to bacterial clearance, likely due to their ability to produce 
IL-22 and IL-15 [197]. On the other hand, ILC2s seem 
to indirectly impede immune response to S. pneumoniae 
by skewing AM phenotype and function towards an M2 
activation state thereby favoring immune quiescence in 
homeostasis [44].

TRM and BRM cells are also integral parts of immune 
defense against bacterial pneumonia. Bacterial respira-
tory infections lead to IL-12/IL-18-mediated bystander 
activation of virus-specific lung CD8+ TRM cells, which 

in turn secrete IFN-γ and attract neutrophils into the lung 
thereby reducing disease severity [198]. Importantly, neu-
trophil recruitment in S. pneumoniae-infected lungs can 
also be boosted by CD4+ TRM cells, which, in response 
to pneumococcal antigens, produce IL-17 and reprogram 
lung epithelial transcriptome to accelerate antimicrobial 
responses [199]. Interestingly, treatment with antibiotics 
such as clarithromycin was associated with a reduced lung 
CD4+ TRM cell number and thus impaired host response 
to a S. pneumoniae re-infection. Such an impairment of 
tissue-resident immune memory cells may be a mecha-
nism, underlying the long-term ability of extensive anti-
biotic use to dysregulate immune responses and weaken 
the host’s defense against a re-infection [200]. BRM cells 
are also elicited in human and mouse lungs after pneu-
mococcal infection and their depletion from experienced 
mouse lungs prior to a re-infection has been associated 
with increased disease severity [201].

As IL-17 sources, lung resident γδ-T cells are essen-
tially involved in host immune defense against bacte-
rial infections. Additionally, γδ-T cells contribute to the 
resolution of pneumococcal inflammation, since they can 
expand and drastically reduce the number of lung DCs and 
AM following S. pneumoniae clearance [202].

M. tuberculosis infection

As in the case of pneumococcal infection, AM are essen-
tially involved in the elimination of M. tuberculosis upon 
infection. The central TLR adapter protein myeloid differen-
tiation factor 88 (MyD88) and the macrophage receptor with 
collagenous structure (MARCO) are essential for elimina-
tion of both S. pneumoniae and M. tuberculosis [203–205], 
by, among others, mediating AM interaction with another 
integral sensor of tissue-specific defense, namely the lung 
epithelium [204]. Invading mycobacteria are easily recog-
nized and phagocytosed by AM, which subsequently secrete 
pro-inflammatory cytokines and exert bactericidal effects by 
highly expressing inducible nitric oxide synthase and antimi-
crobial agents [206]. Despite their –largely- protective role 
in bacterial respiratory infections, upon a M. tuberculosis 
infection, IL-1-mediated interplay between infected AM and 
non-hematopoietic cells facilitates the migration of the for-
mer from the alveolar space to the lung interstitium thereby 
favoring tuberculosis progression [207]. AM ability to sup-
port M. tuberculosis intrapulmonary dissemination can be 
explained by the fact that M. tuberculosis bacilli can survive 
in the phagosomes of AM, and thus AM depletion in M. 
tuberculosis-infected mice enhances bacterial clearance and 
ameliorates disease outcome [208].

DCs are also critically involved in host defense against 
M. tuberculosis. Bacillus phagocytosis and induced cytokine 
production by DCs control the infection and granuloma 
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formation [209]. Infected DCs migrate to draining lymph 
nodes and trigger adaptive immune responses [210]. 
Mycobacterium-specific Th1 responses are orchestrated by 
CD11b+ cDCs, while at the same time being suppressed 
by CD103+ cDCs via IL-10 production [211]. Additionally, 
moDCs highly express pro-inflammatory cytokines to sup-
port mycobacterium elimination and enhance Th2 and Th17 
immune responses [212]. However, little is known about 
the role of pDCs in tuberculosis, although their number 
increases in lung-draining lymph nodes upon mycobacte-
rial infection [213].

Recent evidence has uncovered a critical implication of 
ILCs in antimycobacterial immunity. Studies in mice dem-
onstrate a protective role of lung-resident IFN-γ-producing 
NK cells in M. tuberculosis infection, which can bind on 
the pathogen and exert cytotoxic effects [214]. Addition-
ally, early innate immune responses to M. tuberculosis are 
further facilitated by ILC3s via IL-17 and IL-22 production 
[214, 215].

The presence of antigen-specific IL-17-producing CD4+ 
and CD8+TRM cells in M. tuberculosis-infected human lungs 
has also been recently reported [216], an intriguing finding 
raising discussions about the efficiency of tissue vaccines 
against tuberculosis, in an effort to boost TRM cell presence 
in the passively immunized lung [217]. Finally, through 
IL-17 production, lung γδ-T cells also play an important role 
in host immune response against M. tuberculosis, including 
granuloma formation [218, 219].

Asthma

Asthma is one of the most widespread respiratory conditions 
worldwide. Its pathogenesis is driven by chronic airway inflam-
mation, AHR and remodeling which overall result in episodic 
manifestation of respiratory symptoms including wheezing, 
coughing, and dyspnea. Due to improved understanding of the 
disease, asthma is now considered as a heterogeneous entity 
consisting of distinct disease endotypes and phenotypes [220]. 
Asthma endotypes refer to underlying inflammatory pathways 
that result in the clinical features of the disease, namely the 
asthmatic phenotypes [220, 221]. The most well-recognized 
and defined endotypes of asthma are the type 2-high and type 
2-low endotypes, characterized by eosinophilic or neutrophilic/
paucigranulocytic airway inflammation, respectively [220–222]. 
Patients with eosinophilic or neutrophilic asthma share simi-
lar clinical symptomatology but different endotypes need to 
be taken into account for optimal selection of treatment strate-
gies [221, 222]. Although different molecular and immune cell 
pathways predominate distinct disease endotypes, lung-resident 
immunity is an essential part of all asthma-related immune 
responses.

AM seem to play a rather dichotomous role in asthma 
pathogenesis. Although AM depletion exacerbated allergic 

airway inflammation (AAI) in mice [223], AM-produced 
mediators, including CCL17, CCL8, and CCL24, enhanced 
type 2 immunity and eosinophilia in asthmatic patients and 
mice [224]. Additionally, AM from patients with asthma 
secrete more pro-inflammatory mediators, such as TNF-a, 
IL-1β, IL-6, IL-8, and IL-17, which promote AAI [225]. In 
asthmatic patients, the dysfunctional AM phagocytotic and 
efferocytotic capacity perpetuate inflammation and tissue 
remodelling and trigger disease exacerbations [226–228]. 
Of note, an impaired phagocytic capacity is not a general 
feature of asthma as it correlates with disease severity and 
depends on the type of product to be phagocytosed [229]. 
Additionally, AM from patients with severe—but not mild- 
asthma exhibit a defective efferocytotic capacity, which in 
turn is associated with an impaired anti-inflammatory func-
tion [228, 230]. On the contrary, apoptotic cell efferocytosis 
by monocyte-derived macrophages from asthmatic patients 
remains intact [231], a finding that may be attributed to the 
different cellular origin of lung-resident macrophages [10]. 
Similarly, lung-resident macrophages exhibit an impaired 
anti-inflammatory behavior in asthma. Reduced IL-10+ mac-
rophages were observed in asthmatic patients [232], while an 
increase of IL-10+ IM could dampen airway inflammation 
or prevent neutrophilic asthma in mice [233]. However, the 
exact mechanisms underlying macrophage dysfunction and 
its impact on asthma manifestation remain elusive and thus, 
further studies in this field are warranted.

Similar to AM, DCs also contribute to asthma-related 
immunity. Upon allergen encounter, DCs trigger naïve Th 
cell differentiation and thus Th2 and ILC2 accumulation 
with type 2 cytokine production [234]. Both lung-resident 
cDC1s and cDC2s are able to elicit a strong Th2 response 
upon house dust mite (HDM) exposure [235–237], while 
CD103+ cDC1-deficient mice exhibit attenuated AHR and 
eosinophilia upon ovalbumin-induced asthma [238]. Of note, 
pDCs can be divided into distinct subpopulations based on 
the expression of the surface markers CD8α or CD8β, which 
were shown to either prevent or enhance asthma manifesta-
tion in mice [239]. Interestingly, expression of these markers 
can be observed after TLR agonist-mediated stimulation and 
has been linked with distinct cytokine expression profiles 
and a tolerogenic DC phenotype [239, 240]. Importantly, 
DCs can not only trigger and sustain but also control and 
limit allergic Th2 immune responses [241, 242]. For exam-
ple, CD103+ DCs seem indeed to play an important role in 
pulmonary tolerance, since they are able to induce Treg cell 
generation in ovalbumin-challenged mice [241, 242], while 
their absence has been linked with exacerbated AAI and 
eosinophilia in both ovalbumin- and HDM-induced asthma 
[241–243]. Interestingly, regular administration of Helico-
bacter pylori extract to ovalbumin-treated mice attenuated 
AAI, eosinophilia and AHR, with the success of the treat-
ment relying mainly on CD103+ DCs and their intrinsic 
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IL-10 production [244]. Treg cell generation can also be 
induced by pDCs, which seem to mostly attenuate AAI and 
promote pulmonary tolerance to harmless inhaled antigens 
[245, 246].

As well-known type 2 cytokine producers, ILC2s are 
highly involved in asthma pathogenesis [56]. Indeed, 
increased blood circulating and lung-resident ILC2s can 
be found in asthmatic patients [56, 247]. Interestingly, this 
increase applies mainly to eosinophilic asthma, whereas 
neutrophilic asthma has been associated with elevated 
ILC1s and ILC3s [248]. ILC2s boost airway eosinophilia 
via IL-5 production [249] and enhance AHR, goblet cell 
hyperplasia and Th2-mediated AAI through IL-13 secretion 
[37, 250]. Additionally, increased bronchial epithelial bar-
rier permeability and disrupted tight junction integrity have 
been associated with ILC2s and IL-13 production [251]. A 
recent study identified the neuropeptide neuromedin U as a 
powerful effector of AAI through ILC2 activation [252]. On 
the other hand, several mediators, including IFN-γ, IL-1β, 
and Nrf2, have been found to tightly control ILC2-mediated 
immunity thereby preventing or suppressing AAI in mice 
[250, 253, 254]. Although little is known about the role of 
ILC1s in asthma, NK cells can be both protective and patho-
genic in this context. On one hand, NK cells seem to restrict 
AAI by promoting eosinophilic apoptosis and impeding 
viral-induced allergic immune responses [143, 255]. Of note, 
severe asthma has been associated with decreased lipoxin A4 
and thus, impaired ability of NK cells to trigger eosinophil 
apoptosis [256]. In mice, IFN-γ-producing NK cells and 
ILC1s can suppress ILC2 expansion and activation thereby 
contributing to type 2 inflammation resolution [257]. Con-
sistently, NK cell depletion during the early phase of papain-
induced lung inflammation in mice led to ILC2 expansion, 
increased type 2 cytokine production and thus, aggravated 
asthma manifestation [258]. On the other hand, NK cells can 
also promote type 2 cytokine production and thus, trigger 
AAI [259]. Overall, NK cells are critically involved in the 
phase of sensitization upon allergen encounter, facilitate the 
balance between Th1 and Th2 inflammation and finally con-
tribute to the resolution of allergic inflammation. The impact 
of NK cells on these steps depends largely on their activa-
tion status and subtype. Of note, the result of NK activation 
can be influenced by the type of environmental stimulus, 
the cytokine and inflammatory milieu, the interaction with 
other parenchymal and immune cells, the differentiation 
status of the cell and the developmental phase of the host 
individual [260]. Since immune cells, and in this case NK 
cells, exert their functions within an interacting network, a 
modulation of this cross-talk in favor of NK activation or 
inhibition may be a promising immunotherapeutic approach. 
A better understanding of the implication of NK cells in 
allergic asthma including the crucial elements that govern 
their dichotomous mechanisms of action is thus required. 

Finally, although insights into the role of group 3 ILCs in 
asthma are sparse, IL-17-producing ILC3s may be involved, 
since IL-17 has been associated with neutrophilic asthma in 
both humans and mice [261].

TRM and BRM cells are also implicated in the pathogen-
esis of asthma [73, 262]. Specifically, Th2-TRM cells secrete 
cytokines that promote and sustain airway eosinophilia 
[72] [262]. Upon HDM exposure, IL-2 signalling enables 
the generation, migration and retention of allergen-specific 
Th2-TRM cells in the lungs, where they drive AAI [72]. Of 
note, these long-lived pathogenic cells remain in the mouse 
lung for its entire lifetime as safekeepers of allergic memory 
[71]. Therefore, allergen re-challenge induces rapid Th2-
TRM cell proliferation and type 2 cytokine secretion with 
subsequent exacerbated clinical features of asthma [73, 74]. 
BRM cells could also be identified in the lungs of HDM-
sensitized and challenged mice and were implicated in the 
allergic response, while HDM re-challenge resulted in their 
activation [263].

Lung-resident γδ-T cells seem to play a dichotomous role 
in allergen-induced Th2 immunity. In ovalbumin-induced 
asthma, γδ-T cell-deficient mice had reduced AHR, airway 
eosinophilia, peribronchial lymphocytic infiltration as well 
as lower serum IgE and lung IL-5 levels compared to wild-
type mice [264, 265]. Besides promoting airway eosinophilia 
and regulating IgE production, Vγ1+ γδ-T cells boost AHR 
by suppressing IL-10-producing Treg cells in the lung of 
ovalbumin-treated mice [266]. However, IL-17-producing 
γδ-T cells have been identified as key regulators of pul-
monary allergic responses, as they could ameliorate AHR 
thereby enhancing resolution of eosinophilic and Th2-medi-
ated AAI [110, 267]. Indeed, activation of Th17-like γδ-T 
cells has been associated with lower AHR [268], attenuated 
airway eosinophilia as well as increased neutrophil airway 
recruitment [268] and higher AM number [110].

Tissue‑resident immunity in lung cancer 
and metastasis

Lung cancer is the most frequently occurring type of cancer and 
the leading cause of cancer-related death in men worldwide, 
while it has the third highest incidence and second highest can-
cer-related mortality in women [269]. Apart from primary tumor 
growth, the lungs are frequently targeted by metastatic tumor 
cells originating from primary tumors located at other parts of 
the lung itself or distant sites, such as the breast, colon or the skin 
[270]. Similar to lung cancer, lung metastasis is a major health 
burden worldwide and a common cause of cancer-related death 
[271]. Although the pathogenesis of lung cancer and metastasis 
has not been fully elucidated yet, mounting evidence identifies 
the lung microenvironment and the crosstalk between cancer and 
immune cells as key players in this process [272].
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Tissue-resident immune cells can play a critical role in 
tumor surveillance and immunity. Despite the multifaceted 
nature of lung-resident immunity, most studies focus on the 
role of TRM or –to a smaller extent- of tissue-resident mac-
rophages in lung tumorigenesis and metastasis formation, 
while insights into the potential involvement of other resi-
dent immune cell subsets are largely missing.

During tumor or metastasis formation, lung-resident mac-
rophages are among the first cells to interact with tumor cells 
and may thus play a critical role in this process. Th2-driven 
inflammation can be typically found at tumor sites and tumor 
microenvironment (TME) [273], and evidence demonstrates that 
IL-4 boosts tissue-resident macrophage proliferation [274]. In 
the mouse lung, monocyte-derived macrophages were shown 
to induce metastasis, while tissue-resident macrophages were 
associated with primary tumor growth [275]. Additionally, 
tumor-associated macrophages (TAMs) in mouse lungs were 
shown to be tissue-resident IM and CCR2-dependent recruited 
macrophages, with the former mainly promoting tumor growth 
in—among others- an IL-9-dependent manner [276], and the 
latter facilitating tumor cell dissemination [275]. In accordance 
to these findings, intratracheal L-Clodronate-mediated AM 
depletion did not affect lung metastasis of mammary carcinoma-
derived Met-1 cells [277]. However, a role of AM in metastasis 
cannot be ruled out, since in a mouse model of breast cancer, 
AM were found to enhance lung metastasis by impeding anti-
tumor T cell activity in the lung and thus, could be identified as 
an important resident of the pre-metastatic niche and a potent 
target of future cancer immunotherapies [278].

Recent findings suggested that tumor-associated lympho-
cytes in non-small cell lung cancer (NSCLC) exhibit TRM 
cell function [279]. In TME, CD8+ TRM cells comprise a 
homogeneous CD103+ CD49+CD69+ population character-
ized by T-bet, porylated (p)STAT-3, and Aiolos transcription 
factor expression, while a small subset produces IFN-γ and 
IL-17 [279].

In human NSCLC, cytotoxic CD8+ T cells with high 
CD103 expression exhibit increased cytotoxicity, are highly 
proliferative, and can thus contribute to robust antitumor 
immunity [280]. In early-stage NSCLC, effector memory T 
cells face tumor-related antigens and transform into CD103+ 
TRM cells with antitumor activity [281]. Of note, the function 
of CD8+ tumor-infiltrating lymphocytes (TIL) in this stage 
seems to be determined by a balance between an antitumor 
CD103+ TRM program and an exhaustion program driven 
by Eomes expression. During tumor growth, the exhaustion 
program may prevail, thus reducing TIL function [281].

Furthermore, transcription factors may be also essentially 
involved in this process. A gradual reduction of TILs as well 
as progressively reducing nuclear factor of activated T cells 
(NFATc1) expression in cancer cells have been described in 
patients with advanced-stage NSCLC [282]. Interestingly, 
enhanced tumor growth together with decreased effector 

memory and CD103+ TRM cells were observed in tumor-bearing 
lungs of mice with T-cell-specific NFATc1 inactivation, thus 
highlighting the role of this transcription factor in cytotoxic 
T-cell immunity and TRM cell tissue retention [282, 283]. Addi-
tionally, CXCR6 surface expression on mouse and human lung 
TRM cells upon tumor antigen encounter facilitates their migra-
tion and maintenance in lung TME [284]. Moreover, CD103+ 
TRM cell-derived granzyme B and IFN-γ in humans control 
tumor formation and metastasis through fibronectin secretion, 
facilitate the priming of newly generated tumor-specific T cells, 
and boost immune cell recruitment in the tumor [285]. Interest-
ingly, enhanced proliferation of CD103+ T cells in tumors with 
high CD8+ T cell numbers was associated with a prolonged 
survival, a finding likely identifying CD8+CD103+ TRM cell 
infiltration as a positive prognostic factor [70, 286].

Although several studies report an association of CD8+ 
TRM cells in human NSCLC with a good disease prognosis 
[283], little is known about the role of CD4+ TRM-like TILs 
in this context. CD4+ TRM cells are a phenotypically and 
functional heterogeneous population and thus, multiple, even 
contradictory, functions in TME are to be expected. Of note, 
CD8+ T cell cytotoxicity largely depends on CD4+ TRM cells, 
which can also hinder tumor growth via IFN-γ production or 
by tumor cell elimination [287].

Regarding the implication of TRM cells in lung metastasis, 
Christian et al. recently demonstrated that TRM cells develop 
in the tumor, the contralateral mammary mucosa, and the 
pre-metastatic lung. In a functional level, CXCR6 is criti-
cally involved in TRM retention in the primary tumor. This 
amplifies tumor-derived TRM cells in the lung and induces 
protection against metastasis, thus, overall suggesting a 
potential strategical approach to prevent metastasis [288].

TRM cells are currently considered a valuable tool in 
tumor immunotherapy. For instance, checkpoint therapy 
enhanced TRM formation in mice with melanoma [289]. Spe-
cifically, programmed cell death protein (PD)-1 inhibition 
in combination with central memory T cell transfer induced 
TRM infiltration and subsequently inhibited tumor growth 
[289]. Similarly, PD-1 inhibition in human NSCLC-derived 
TRM cells boosted their cytotoxic capacity against autolo-
gous tumor cells ex vivo [70]. Additionally, PD-1 blockade 
enhanced CD8+CD103+ TRM cell proliferation in patients 
with melanoma, with higher cell numbers correlating with 
longer survival [290]. Hence, TRM modulation appears to be 
a potent future approach to enhance cancer therapy efficacy.

Research approaches for lung 
tissue‑resident immunity assessment

Since the first identification of tissue-resident immunity, its 
assessment has been a challenge and calls for constant opti-
mization of respective research approaches.
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A first and likely the simplest method to address tissue-
residence is the in vivo immune cell labelling (Fig. 4a). 
Intravenous staining distinguishes between immune cells in 
vasculature and those outside intact endothelium, e.g., in the 
lung parenchyma [291].

Another technique to label cells in the lung and track their 
movement in vivo is the photoconversion of one lung after 
thoracotomy (Fig. 4b). This method is possible for mice car-
rying the Kaede protein, a coral-derived fluorescent protein 
whose emission alters from green to red fluorescence after 
exposure to violet light. Photoconversion allows in situ labe-
ling of Kaede protein-expressing cells in the lung [292].

Assessment of lung-resident immunity can also be 
achieved with parabiosis (Fig. 4c). Surgical generation of 
parabiotic pairs is the conjoining of two congenic mice, 
which share their blood circulation through newly devel-
oped vasculature within approximately one week. Through 
the blood circulation, recirculating lymphocyte popula-
tions equilibrate between the mice of the pair. Failure of 
an immune cell population to equilibrate between tissues in 
each mouse of the parabiotic pair indicates residence [293].

Finally, another powerful method to track tissue-resident 
immune cells is orthotopic lung transplantation, allowing 
both cell ingress and egress assessment (Fig. 4d). Tissue-
resident cells are transplanted together with the organ in the 
recipient congenic mouse, thus, allowing one to discriminate 
between tissue-resident and circulating immune cells by the 
analysis of the congene in the transplant organ and in the 
periphery [66, 294].

Sex‑specific differences in tissue resident 
immunity

Sex differences in both innate and adaptive immunity are 
well documented in humans and mice [295]. However, 
insights into a potential sexual dimorphism of tissue-res-
ident immunity remain sparse. Of note, sex differences in 
tissue-resident immune cells can be tissue- or organ-specific. 
For example, female mice have higher number of tissue-
resident macrophages, T and B cells in naïve peritoneal 
and pleural cavities, compared to male ones [296]. Within 
macrophages, upregulated expression of TLRs, especially 
TLR2 and TLR4, was demonstrated and associated with 
a higher phagocytotic capacity in female mice. Among T 
cell subpopulations, CD4+ and CD8+ cells, but not Treg or 
γδ-T cells, were significantly increased in females compared 
to males. Additionally, increased lung-resident ILCs were 
observed in female compared to male mice in steady-state 
conditions [297, 298].

Further phenotypic and functional characterization of 
sex-specific differences in tissue-resident immunity is war-
ranted to elucidate the mechanisms underlying the sex-spe-
cific manifestation of several respiratory immune diseases. 
For example, a sex bias in the incidence and severity of 
allergic asthma is well-established, with male and female 
predominance in childhood and adulthood, respectively 
[299]. Given the aforementioned role of tissue-resident 
immunity in asthma pathogenesis, sex-specific differences 
in tissue-resident immune cells and responses may – at 
least to some extent- account for this sex bias. Although the 
mechanisms driving the observed sex disparity in relation 
to asthma in general remain unclear, a crosstalk between 
immune cells and sex hormones seems to play a key role 
in this context and could likely apply in the case of tissue-
resident immunity. Indeed, androgen signaling impacts ILC2 
responsiveness while estrogen-mediated signaling influences 
macrophage polarization and therefore contribute to sex dif-
ferences in allergic asthma [300, 301]. Additionally, estro-
gens promote mast cell degranulation thereby exacerbating 
asthma severity [297].

In conclusion, more studies are required in order to 
thoroughly characterize a potential sexual dimorphism in 
lung-resident immunity and uncover its role in respiratory 
health and disease. If obtained, such insights would pave 
the way for targeted optimized therapeutic approaches in a 
sex-dependent, highly personalized manner.
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