Erratum to: Pseudo-Anosov extensions and degree one maps between hyperbolic surface bundles

Michel Boileau • Yi Ni • Shicheng Wang

Published online: 15 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Erratum to: Math. Z. (2007) 256:913-923 DOI 10.1007/s00209-007-0113-8

In the original publication, the proof of Lemma 4 was incorrect and it is now corrected.
In [1, Lemma 4], we constructed two homotopic pinches between closed surfaces, such that the boundary circles of the two regions we pinched are not homotopic. However, as pointed out by Tao Li, our construction in Case 1 in the original proof is not correct. In this note, we will provide a new proof of this lemma.

We start by recalling some notations from [1]. If C is a subpolyhedron of a manifold M, let $N(C)$ be a regular neighborhood of C in M. If M is a compact manifold, let $\operatorname{int}(M)$ be the interior of M. Suppose that $g_{s}>g_{t} \geq 1$ are two integers. Let F_{s}, F_{t} be two closed oriented surfaces with genus g_{s}, g_{t}, respectively. Fix a disk $D \subset F_{t}$, let $V=F_{t}-\operatorname{int}(D)$. Suppose that $p_{0}, p_{1}: F_{s} \rightarrow F_{t}$ are two pinches. Namely, there exist two compact subsurfaces $V_{0}, V_{1} \subset F_{s}$, such that p_{j} maps V_{j} homeomorphically to V, and p_{j} maps $W_{j}=F_{s}-\operatorname{int}\left(V_{j}\right)$ into $D, j=0,1$. Let $e_{j}: V \hookrightarrow F_{s}$ be the inverse of p_{j}.
Lemma 4 With the notation above, there exist two pinches $p_{0}, p_{1}: F_{s} \rightarrow F_{t}$ such that
(i) p_{0} and p_{1} are homotopic;
(ii) $e_{0}(\partial D)$ is not homotopic to $e_{1}(\partial D)$.

The online version of the original article can be found under doi:10.1007/s00209-007-0113-8.

[^0]Proof Let $h=g_{s}-g_{t}, S$ be a closed oriented surface of genus $h+1$. As in [1, Figure 2], we can choose three simple closed curves $\alpha, \beta_{0}, \beta_{1} \subset S$, such that α intersects β_{j} transversely at exactly one point, $j=0,1$, and β_{0} is homologous to β_{1}. Moreover, let $\gamma_{j}=\partial N\left(\alpha \cup \beta_{j}\right)$, then γ_{0} is not freely homotopic to γ_{1}. We may further assume that $\alpha \cap \beta_{0}=\alpha \cap \beta_{1}$, and a singular two-chain Φ connecting β_{0} and β_{1} is disjoint from α except in a small neighborhood of $\alpha \cap \beta_{0}$.

Let S^{\prime} be the surface obtained by removing an open disk about $\alpha \cap \beta_{0}$ from S, and let $\alpha^{\prime}=$ $\alpha \cap S^{\prime}, \beta_{j}^{\prime}=\beta_{j} \cap S^{\prime}$. Clearly, β_{0}^{\prime} and β_{1}^{\prime} are homologous in S^{\prime} relative to ∂S^{\prime}. So we can find a properly embedded surface $B \subset S^{\prime} \times[0,1]$, such that $B \cap\left(S^{\prime} \times\{j\}\right)=\beta_{j}^{\prime} \times\{j\}, j=0,1$. We may assume that $B \cap\left(\alpha^{\prime} \times[0,1]\right)=\emptyset$, since B can be chosen to be a lift of $\Phi \cap S^{\prime}$, and we have assumed that Φ is disjoint from α except in a small neighborhood of $\alpha \cap \beta_{0}$.

Let T be a torus, $\xi, \eta \subset T$ be two simple closed curves which intersect transversely at exactly one point. Let T^{\prime} be the surface obtained by removing an open disk about $\xi \cap \eta$ from T, and let $\xi^{\prime}=\xi \cap T^{\prime}, \eta^{\prime}=\eta \cap T^{\prime}$.

Now we construct a map $Q: S^{\prime} \times[0,1] \rightarrow T^{\prime}$ in three steps:
Step 1. Construct

$$
Q_{1}:\left(\partial S^{\prime} \times[0,1]\right) \cup\left(\alpha^{\prime} \times[0,1]\right) \rightarrow \partial T^{\prime} \cup \xi^{\prime}
$$

by first projecting to $\partial S^{\prime} \cup \alpha^{\prime}$, then map $\partial S^{\prime} \cup \alpha^{\prime}$ homeomorphically to $\partial T^{\prime} \cup \xi^{\prime}$.
Step 2. Extend Q_{1} to a map

$$
Q_{2}:\left(\partial S^{\prime} \times[0,1]\right) \cup\left(\alpha^{\prime} \times[0,1]\right) \cup B \rightarrow \partial T^{\prime} \cup \xi^{\prime} \cup \eta^{\prime} .
$$

This can be achieved by first mapping $\beta_{j}^{\prime} \times\{j\}$ homeomorphically to $\eta^{\prime}, j=0,1$, then send the interior of B to η^{\prime} by using the contractibility of η^{\prime}.
Step 3. Extend Q_{2} to a map

$$
Q_{3}: N\left(\left(\partial S^{\prime} \times[0,1]\right) \cup\left(\alpha^{\prime} \times[0,1]\right) \cup B\right) \rightarrow N\left(\partial T^{\prime} \cup \xi^{\prime} \cup \eta^{\prime}\right),
$$

then send the closure of

$$
\left(S^{\prime} \times[0,1]\right) \backslash N\left(\left(\partial S^{\prime} \times[0,1]\right) \cup\left(\alpha^{\prime} \times[0,1]\right) \cup B\right)
$$

to the closure of

$$
T^{\prime} \backslash N\left(\partial T^{\prime} \cup \xi^{\prime} \cup \eta^{\prime}\right)
$$

using the contractibility of the target, and we can get the map Q we want.
Let Σ be a compact surface of genus $g_{t}-1$ with exactly one boundary component. Let P_{0} be the projection from $\Sigma \times[0,1] \rightarrow \Sigma$. Gluing the two maps P_{0} and Q together, we get a map $P: F_{s} \times[0,1] \rightarrow F_{t}$, which is a homotopy connecting two pinches $p_{0}, p_{1}: F_{s} \rightarrow F_{t}$. Clearly, Condition(ii) in the statement of this lemma is also satisfied.

Acknowledgments We are grateful to Tao Li for pointing out the mistake. The second author was partially supported by NSF Grant No. DMS-1252992 and an Alfred P. Sloan Research Fellowship.

Reference

1. Boileau, M., Ni, Y., Wang, S.: Pseudo-Anosov extensions and degree one maps between hyperbolic surface bundles. Math. Z. 256, 913-923 (2007)

[^0]: M. Boileau

 Institut de Mathématiques de Marseille, Aix Marseille Université, Marseille, France
 e-mail: michel.boileau@cmi.univ-mrs.fr
 Y. Ni (\boxtimes)

 Department of Mathematics, Caltech, Pasadena, CA 91125, USA
 e-mail: yini@caltech.edu
 S. Wang

 LMAM, Department of Mathematics, Peking University, Beijing 100871, China
 e-mail: wangsc@math.pku.edu.cn

