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Abstract. Motivated by applications in large storage systems, we initiate the study of
incremental deterministic public-key encryption. Deterministic public-key encryption,
introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07), provides an alterna-
tive to randomized public-key encryption in various scenarios where the latter exhibits
inherent drawbacks. A deterministic encryption algorithm, however, cannot satisfy any
meaningful notion of security for low-entropy plaintexts distributions, but Bellare et
al. demonstrated that a strong notion of security can in fact be realized for relatively
high-entropy plaintext distributions. In order to achieve a meaningful level of secu-
rity, a deterministic encryption algorithm should be typically used for encrypting rather
long plaintexts for ensuring a sufficient amount of entropy. This requirement may be at
odds with efficiency constraints, such as communication complexity and computation
complexity in the presence of small updates. Thus, a highly desirable property of deter-
ministic encryption algorithms is incrementality: Small changes in the plaintext translate
into small changes in the corresponding ciphertext. We present a framework for model-
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ing the incrementality of deterministic public-key encryption. Our framework extends
the study of the incrementality of cryptography primitives initiated by Bellare, Goldre-
ich and Goldwasser (CRYPTO ’94). Within our framework, we propose two schemes,
which we prove to enjoy an optimal tradeoff between their security and incrementality
up to lower-order factors. Our first scheme is a generic method which can be based
on any deterministic public-key encryption scheme, and, in particular, can be instanti-
ated with any semantically secure (randomized) public-key encryption scheme in the
random-oracle model. Our second scheme is based on the Decisional Diffie–Hellman
assumption in the standard model. The approach underpinning our schemes is inspired
by the fundamental “sample-then-extract” technique due toNisan andZuckerman (JCSS
’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related notion of
“locally computable extractors” due toVadhan.Most notably,whereasVadhan used such
extractors to construct private-key encryption schemes in the bounded-storage model,
we show that techniques along these lines can also be used to construct incremental
public-key encryption schemes.

Keywords. Public-key encryption, Deterministic encryption, Incremental cryptogra-
phy.

1. Introduction

The fundamental notion of semantic security for public-key encryption schemes was
introduced by Goldwasser and Micali [21]. While semantic security provides strong
privacy guarantees, it inherently requires a randomized encryption algorithm. Unfor-
tunately, randomized encryption schemes break several assumptions of large storage
systems that are crucial in efficiently searching and, more generally, indexing of large
data sets. Further, randomized encryption schemes necessarily expand the length of the
plaintext, whichmay be undesirable in some applications, such as legacy code or in-place
encryption.

Deterministic encryption To deal with these and other drawbacks, Bellare et al. [4]
initiated the study of deterministic public-key encryption schemes. These are public-
key encryption schemes where the encryption algorithm is deterministic. Bellare et
al. formulate meaningful, and essentially “best possible”, security requirements for such
schemes which are inspired by and very close to semantic security. Clearly, in this
setting, no meaningful notion of security can be achieved if the space of plaintexts is
small. Therefore, Bellare et al. [4] required security to hold only when the plaintexts are
drawn from a high min-entropy distribution.
Deterministic encryption already alleviates many of the above-mentioned problems

when dealing with large data sets. For example, since the encryption algorithm is deter-
ministic, we can now do indexing and perform fast search on encrypted data. Further,
schemes that have length-preserving ciphertexts are possible as well [4].

We emphasize that security of deterministic encryption is contingent on a very strong
assumption about the underlyingdata distribution, namely that the plaintext has highmin-
entropy from the adversary’s point of view. One possibility for improving the security
margin is to encrypt longer plaintextswhenever possible; for example, by not cutting files
into smaller pieces or using larger blocks for in-place encryption. If, however, changing
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the plaintext requires re-computation of the ciphertext, doing that for any update may
quickly negate all efficiency gains from using deterministic encryption.
In general, one would typically like to avoid encrypting long plaintexts for various

efficient considerations. In the setting of randomized encryption, it is possible to divide
each plaintext m into consecutive and small blocks m = m1|| · · · ||m�, and to separately
encrypt each block mi . The notion of semantic security is sufficiently powerful to even
allow each block mi to be as small as a single bit. In the setting of deterministic encryp-
tion, however, security can hold only when each encrypted block has a sufficient amount
of min-entropy. At this point, we note that even if a plaintext m = m1|| · · · ||m� has
high min-entropy, it may clearly be the case that some of its small blocks have very low
min-entropy (or even fixed). Thus, this approach fails for deterministic encryption.

Incremental cryptography Given that we are dealingwith large plaintexts, computing the
ciphertext from scratch for the modified plaintext can be quite an expensive operation.
One such example is maintaining an (encrypted) daily backup of your hard disk on an
untrusted server. The disk may contain gigabytes of data, most of which is likely to
remain unchanged between two successive back-ups. The problem is further intensified
in various client-server settings where all of previous plaintext might not be available
when the modification request is made. In such settings where plaintext is really large,
downloading old data can be a serious problem. This issue is clearly not specific to
(deterministic) encryption and is of very general interest.
To address this issue, Bellare, Goldreich andGoldwasser [7] introduced and developed

the notion of incremental cryptography, first in application to digital signatures. The idea
is that once we have signed a document M , signing new versions of M should be rather
quick. For example, if we only flip a single bit of M , we should be able to update the
signature in time polynomial in log |M | (instead of |M |) and the security parameter λ.
Clearly, incrementality is an attractive feature to have for any cryptographic primitive
such as encryption, signatures, hash functions, and so on [8,11,12,18,23].
It is clear from our discussion that when dealing with deterministic encryption over

large databases, where we are forced to encrypt rather long plaintexts to ensure their
min-entropy, what we really need is an incremental encryption scheme. That is, the
scheme should allow quickly updating the ciphertexts to reflect small changes. In light
of the observation that deterministic encryption is most desirable when dealing with
large data volumes, perhaps it is not exaggerating to suggest that incrementality should
be an important design goal for deterministic encryption rather than merely a “nice to
have” feature.

1.1. Our Contributions

In thiswork, we formalize the notion of incremental deterministic public-key encryption.
We view incrementality and security as two orthogonal objectives, which together have
a great potential in improving the deployment of deterministic encryption schemes with
provable security properties in real-world applications.

Modeling incremental updates Intuitively, a deterministic public-key encryption scheme
is incremental if any small modification of a plaintext m resulting in a plaintext m′
can be efficiently carried over for updating the encryption c = Encpk(m) of m to
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the encryption c′ = Encpk(m′) of m′. For capturing the efficiency of such an update
operation we consider two natural complexity measures: (1) input locality (i.e., the
number of ciphertexts bits that are affected when flipping a single plaintext bit), and (2)
query complexity (i.e., the number of public key, plaintext, and ciphertext bits that have
to be read in order to update the ciphertext).
Modeling incremental updates for deterministic public-key encryption is slightly dif-

ferent than for other primitives. For example, suppose that we allow “replacements” as
considered by Bellare et al. [7]. These are queries of the form ( j, b) that replace the
j th bit of a given plaintext m by b ∈ {0, 1}. Then, if there exists a public algorithm
Update for updating the ciphertext, then one can recover the entire plaintext from the
ciphertext. Indeed, the encryption algorithm is deterministic, and hence the ciphertext
for every message is unique. The operation Update( j, 0) changes the ciphertext if and
only if the j th bit of m is 1. Therefore, we focus on the bit flipping operation instead.
This operation is specified by an index j and sets the current value of m[ j] ∈ {0, 1} to
¬m[ j] ∈ {0, 1}.

For capturing the above measures of efficiency, we model the update operation as a
probabilistic polynomial-time algorithm Update that receives as input the index i∗ of a
plaintext bit to be flipped and has oracle access to the individual bits of the public key
pk, the plaintext m to be modified, and to its encryption c = Encpk(m). That is, the
algorithm Update can submit queries of the form (pk, i), (m, i) or (c, i), which are
answered with the i th bit of pk, m, or c, respectively. We refer the reader to Sect. 3 for
the formal description of our model, which considers also update in a “private” fashion
in which the update algorithm can access the secret key but not the plaintext.

Locality lower bound An important insight is that deterministic encryption cannot have
very small incrementality. Deterministic encryption schemes require high min-entropy
messages to provide any meaningful guarantee, and we show that any scheme with low
incrementality can be secure only for messages with much higher entropy. Specifically,
we show that for every deterministic public-key encryption scheme that satisfies the
minimal notion of PRIV1-IND security for plaintext distributions of min-entropy k,
plaintext length n, and ciphertext length t , the incrementality � of the scheme must
satisfy:

� ≥ n − 3

k log t
.

Ignoring the lower-order log t factor, our proof shows in particular that the input locality
of the encryption algorithm must be roughly n/k. This should be compared with the
case of randomized encryption, where flipping a single plaintext bit may require flip-
ping only a single ciphertext bit. Indeed, consider encrypting a plaintext m as the pair
(Encpk(r), r ⊕ m) for a randomly chosen mask r . Flipping a single bit of m requires
flipping only a single bit of the ciphertext.

Constructions We construct two deterministic public-key encryption schemes with opti-
mal incrementality up to lower-order factors. Our first construction is a general trans-
formation from any deterministic encryption scheme to an incremental one. Following
the terminology developed in [4–6], the resulting scheme from this approach is PRIV1-
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IND-secure if the underlying scheme is PRIV-IND-secure1. As a result, using the con-
struction of Bellare et al. [4] in the random-oraclemodel, we can instantiate our approach
in the random-oracle model based on any semantically secure (randomized) public-key
encryption scheme and obtain a deterministic scheme with optimal incrementality up to
lower-order factors.
Our second, more direct construction avoids the random-oracle model. It is based on

the Decisional Diffie–Hellman assumption in the standard model and enjoys optimal
incrementality up to lower-order factors. The scheme relies on the notion of smooth
trapdoor functions that we introduce (andwas implicitly used byBoldyreva et al. [6]) and
realize it in an incremental manner based on the Decisional Diffie–Hellman assumption.
Both of our constructions guarantee PRIV1-IND securitywhen encrypting n-bit plain-

texts with min-entropy k ≥ nε , where ε > 0 is any pre-specified constant. A natural
open problem that is raised by our work is whether or not there exists a scheme with
essentially optimal incrementality that is PRIV-IND-secure and not only PRIV1-IND-
secure. We note that one drawback of our second construction is that its public keys are
rather long (roughly n2/k group elements). However, this is not specific to our scheme,
as it is based on the non-incremental scheme of Boldyreva et al. [6] whose public keys
are even longer (n2 group elements).

1.2. Related Work

The problem of composing public-key encryption and de-duplication was addressed by
Douceur et al. [14] via the concept of convergent encryption, in which files are encrypted
using their own hash values as keys. Security of the scheme is argued in the random-
oracle model and under the implicit assumption of the plaintext’s high min-entropy. The
formal goal of leveraging entropy of the source to achieve information-theoretic security
with a short symmetric key was articulated by Russell andWang [28], followed byDodis
and Smith [16].
The notion of public-key deterministic encryption was introduced by Bellare et al.

[4] and then further studied by Bellare et al. [5], Boldyreva et al. [6], Brakerski and
Segev [13], Wee [30], Fuller et al. [20], and Raghunathan et al. [27]. Bellare et al. [4]
proved their constructions in the random-oracle model; subsequent papers demonstrated
schemes secure in the standard model based on trapdoor permutations [5] and lossy
trapdoor functions [6]. Brakerski and Segev [13] andWee [30] addressed the question of
security of public-key deterministic encryption in the presence of auxiliary input. Fuller
et al. [20] presented a construction based on any trapdoor function that admits a large
number of simultaneous hardcore bits, and a construction that is secure for a bounded
number of possibly related plaintexts. Raghunathan et al. [27] addressed the seemingly
inherent restriction that plaintexts distributions must be independent of the public key
of the scheme, and suggested various relaxations.

1Informally, a deterministic public-key encryption scheme is PRIV1-IND-secure if the encryption of a
single high-entropy message m reveals essentially no information about the message. In addition, such a
scheme is PRIV-IND-secure if this holds even for the encryption of a vector of messages m1, . . . , m� each of
which has high entropy, but the messages may be correlated. We refer the reader to Sect. 2.2 for the formal
definitions of these notions of security.
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Constructions of deterministic public-key encryption schemes found an intriguing
application in “hedged” public-key encryption and in “message-locked” encryption.
Hedged public-key encryption schemes [3] are public-key encryption schemes that
remain secure even if the randomness used during the encryption process is not perfect
(controlled by or leaked to the adversary) as long as the joint distribution of plaintext-
randomness has sufficient min-entropy. Message-locked encryption schemes [10] (see
also the follow-up [1]) are encryption schemes that do not rely on permanent keys,
but rather encrypt messages using keys that are derived from the messages themselves.
Such schemes provide an elegant and efficient way to achieve secure de-duplication
over encrypted data. Known constructions of both hedged and message-locked encryp-
tion scheme rely on techniques that were developed in the above-mentioned line of
research on deterministic public-key encryption.
The concept of incremental cryptography started with the work of Bellare et al. [7],

who considered the case of hashing and signing. They also provided discrete-logarithm-
based constructions for incremental collision-resistant hash and signatures supporting
block replacement operation.Constructions supportingblock insertion anddeletionwere
first developed in [8], with further refinements and new issues concerning incremental-
ity such as tamper-proof updates, privacy of updates, and incrementality in symmetric
encryption. In subsequent work, Fischlin presented an incremental signature schemes
supporting insertion/deletion of blocks, and tamper-proof updates [18] and proved a
�(

√
n) lower bound on the signature size of schemes that support substitution and

replacement operations (the bound can be improved to �(n) in certain special cases)
[19]. Bellare and Micciancio [12] revisited the case of hashing and provided new con-
structions for the same based on discrete logarithms and lattices. Buonanno et al. [11]
considered the issue of incrementality in symmetric unforgeable encryption and sug-
gested three modes of operations for AES achieving this notion.
The goal of incremental cryptography, i.e., input locality, can be contrasted with

the dual question of placing cryptography in the NC0 complexity class, i.e., identifying
cryptographic primitiveswith constant output locality. This problem has essentially been
resolved for public-key encryption in the positive by Applebaum, Ishai, and Kushilevitz
[2], who construct schemes based on standard number-theoretic assumptions and lattice
problems where each bit of the encryption operation depends on at most four bits of
the input. Applebaum et al. also argue impossibility of semantically secure public-key
encryption scheme with constant input locality [2, Appendix C.1].

1.3. Overview of Our Approach

In this section, we present a high-level overview of our two constructions. First, we
describe the well-known “sample-then-extract” approach [25,29] that serves as our
inspiration for constructing incremental schemes. Then, we describe the main ideas
underlying our schemes, each of which is based on a different realization of the “sample-
then-extract” approach.

“Sample-then-extract” A fundamental fact in the theory of pseudorandomness is that
a random sample of bits from a string of high min-entropy essentially preserves the
min-entropy rate. This was initially proved by Nisan and Zuckerman [25] and then
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refined by the work of Vadhan [29] that captured the optimal parameters. Intuitively, the
“sample-then-extract” lemma states that if X ∈ {0, 1}n has min-entropy rate δ (defined
as the ratio of the string’s entropy to its length), and XS ∈ {0, 1}t is the projection of X
onto a random set S ⊆ [n] of t positions, then XS is statistically close to a source with
min-entropy rate δ′ = �(δ).
This lemma serves as a fundamental tool in the design of randomness extractors.

Moreover, in the cryptographic setting, it was used by Vadhan [29] to construct locally
computable extractors,which allowcomputing their output by examining a small number
of input bits. Such extractors were used by Vadhan to design private-key encryption
schemes in the bounded-storage model. In this work we demonstrate for the first time
that the “sample-then-extract” approach can be leveraged to design not only private-key
encryption schemes, but also public-key encryption schemes.

A generic construction via random partitioning As already discussed, in the setting of
randomized encryption a promising approach for ensuring incrementality is to divide
each plaintext m into consecutive and rather small blocks m = m1|| · · · ||m�, and to
separately encrypt each block mi . Thus, changing a single bit of m affects only a single
block of the ciphertext. In the setting of deterministic encryption, this approach fails
since even if a plaintext m = m1|| · · · ||m� has high min-entropy, it may be the case that
some of its small blocks have very low min-entropy.
As an alternative, however, we propose the following approach: Instead of dividing the

plaintext m into fixed blocks, we project it onto a uniformly chosen partition S1, . . . , S�

of the plaintext positions to sets of equal sizes and then separately encrypt each of the
projections mS1, . . . , mS�

using an underlying (possibly non-incremental) deterministic
encryption scheme2. By the fact that we use a partition of the plaintext positions, we
ensure on the one hand that the plaintext m can be fully recovered and on the other that
each plaintext position appears in only one set (and thus the scheme is incremental).
In terms of security, since we use a uniformly chosen partition, the distribution of each
individual set Si is uniform, and therefore by carefully choosing the size of the sets
the “sample-and-extract” lemma guarantees that with overwhelming probability each
projection mSi preserves the min-entropy rate of m. Therefore, the scheme is secure
as long as the underlying scheme guarantees PRIV-IND security (see Sect. 2.2 for the
notions of security for deterministic encryption).
By instantiating this approachwith the constructions ofBellare et al. [4] in the random-

oraclemodel, we obtain as a corollary a deterministic public-key encryption schemewith
optimal incrementality up to lower-order factors based either on any semantically secure
(randomized) public-key encryption scheme, or on an extension of RSA-OAEP which
yields a length-preserving incremental scheme.

A construction based on smooth trapdoor functions Although our first construction is a
rather generic one, constructions of PRIV-IND-secure schemes are known only in the
random-oracle model. In the standard model, Boldyreva et al. [6] introduced the slightly
weaker notion of PRIV1-IND security, which considers plaintexts that have high min-
entropy even when conditioned on other plaintexts, and showed that it can be realized by

2A minor technical detail is that we would also like to ensure that we always encrypt distinct values, and
therefore we concatenate the block number i to each projection mSi .
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composing any lossy trapdoor function with a pairwise independent permutation. This
approach, however, does not seem useful for constructing incremental schemes, since
pairwise independence is inherently non-incremental. A simple observation, however,
shows that the approach of Boldyreva et al. [6] requires in fact trapdoor functions with
weaker properties that we refer to as smooth trapdoor functions (the definition and its
application are implicit in [6]).

Informally, a collection of smooth trapdoor functions consists of two families of
functions. Functions in one family are injective and can be efficiently inverted using
a trapdoor. Functions in the other family are “smooth” in the sense that their output
distribution on any source of input with high min-entropy is statistically close to their
output distribution on a uniformly sampled input. The only security requirement is that
a description of a randomly chosen function from the family of injective functions is
computationally indistinguishable from a description of a randomly chosen function
from the family of smooth functions. We show that any collection of smooth trapdoor
functions is a PRIV1-IND-secure deterministic encryption scheme (again, this is implicit
in [6]).

Next, we construct a collection of incremental smooth trapdoor functions based on
the Decisional Diffie–Hellman (DDH) assumption, by significantly refining the DDH-
based lossy trapdoor functions of Freeman et al. [17] (which in turn generalized those of
Peikert andWaters [26]). Our collection is parameterized by a group G of prime order p
that is generated by an element g ∈ G. A public key is of the form g A, where A ∈ Z

n×n

is sampled from one distribution for injective keys, and from a different distribution
for smooth keys3. Evaluating a function on an input x ∈ {0, 1}n is done by computing
g Ax ∈ Gn , and inversion for injective keys is done using the secret key A−1.
The key point in our scheme is the distribution of the matrix A for injective and

smooth keys. For smooth keys, the matrix A is generated to satisfy two properties. The
first is that each of its first � rows has t randomly chosen entries with values that are
chosen uniformly from Zp, and all other n − t entries are zeros (where � and t are
carefully chosen depending on the min-entropy rate). Looking ahead, when computing
the inner product of such a sparse rowwith a source of min-entropy larger than log p, the
“sample-then-extract” lemma guarantees that the output is statistically close to uniform.
In a sense, this is a realization of a locally computable extractor that is embedded in our
functions. The second property is that each of its last n−� rows is linear combinations of
the first � rows, and therefore the image of its corresponding linear map is determined by
the first � rows. This way, we can argue that smooth keys hide essentially all information
on the underlying input distribution.
For injective keys, we sample amatrix A from the distribution of smooth keys and then

re-sample all its nonzero entries with independently and uniformly distributed elements
of Zp. A subtle complication arises since such a matrix is not necessarily invertible,
as required for injective keys, but this is easily resolved (without hurting the smooth
keys—see Sect. 5 for more details). Observing that for injective keys each column of A
contains roughly t nonzero entries, this yields a PRIV1-IND-secure schemewith optimal
incrementality up to lower-order factors.

3For any matrix A = {ai j }i∈[n], j∈[n] ∈ Z
n×n
p we denote by g A ∈ Gn×n the matrix {gai j }i∈[n], j∈[n].
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1.4. Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce the notation,
tools, and computational assumptions that are used in this paper. In Sect. 3, we present
a framework for modeling the incrementality of deterministic public-key encryption
schemes. In Sect. 4, we present our generic construction, and in Sect. 5, we present we
present our DDH-based construction. Finally, in Sect. 6 we present the lower bound.

2. Preliminaries

In this section we present the basic notions, definitions, and tools that are used in this
paper.

2.1. Probability Distributions and Randomness Extraction

For a distributionX , we denote by x ← X the process of sampling a value x according to
X . Similarly, for a set�we denote byω ← � the process of sampling a valueω from the
uniform distribution over�. IfX is a distribution and f is a function defined over its sup-
port, then f (X )denotes the outcomeof the experimentwhere f (x) is evaluatedon x sam-
pled fromX . For any n ∈ N, we denote byUn the uniformdistribution over the set {0, 1}n .
The min-entropy of a distribution X on a set � is defined as H∞(X ) =

minω∈� log (1/Pr[X = ω]). A k-source is distribution X with H∞(X ) ≥ k, and
the min-entropy rate of a k-source over the set {0, 1}n is k/n. The statistical dis-
tance between two distributions X and Y over a set � is defined as SD(X ,Y) =
maxS⊆� |Pr[X ∈ S] − Pr[Y ∈ S]|. A distribution X is ε-close to a k-source if there
exists a k-source Y such that SD(X ,Y) ≤ ε. The following standard lemma (see, for
example, [15]) essentially states that revealing r bits of information on a random variable
may reduce its min-entropy by roughly r .

Lemma 2.1. Let Z be a distribution over at most 2r values, then for any distribution
X , jointly distributed with Z , and for any ε > 0 it holds that

Prz←Z
[
H∞(X |Z = z) ≥ H∞(X ) − r − log(1/ε)

] ≥ 1 − ε.

A function ν : N → R is negligible if |ν(n)| < p(n) for any polynomial p and
sufficiently large integer n. We say that two families of distributions X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are statistically close, denoted by X ≈ Y , if the statistical dis-
tance SD(Xλ,Yλ) is negligible in λ. Two families of distributions X = {Xλ}λ∈N and

Y = {Yλ}λ∈N are computationally indistinguishable, denoted by X
c≈ Y , if for any

probabilistic polynomial-time algorithm A its advantage in distinguishing the two dis-
tributions defined as

∣∣Prx←Xλ

[
A(1λ, x) = 1

] − Pry←Yλ

[
A(1λ, y) = 1

]∣∣

is a negligible function of λ.
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The “sample-then-extract” lemma The following lemma due to Vadhan [29] plays a
major role in our constructions. This is a refinement of the fundamental “sample-then-
extract” lemma that was originally proved by Nisan and Zuckerman [25], stating that a
random of sample of bits from a string essentially preserves its min-entropy rate. Vad-
han’s refinement shows that the min-entropy rate is in fact preserved up to an arbitrarily
small additive loss, whereas the original lemma loses a logarithmic factor. Intuitively,
the lemma states that if X ∈ {0, 1}n is a δn-source, and XS ∈ {0, 1}t is the projection of
X onto a random set S ⊆ [n] of t positions, then, with high probability,XS is statistically
close to a δ′t-source, where δ′ = �(δ). Whereas Nisan and Zuckerman [25] and Vadhan
[29] were concerned with the amount of randomness that is required for sampling the t
positions, in our case we can allow ourselves to sample the set S uniformly at random,
and this leads to the following simplified form of the lemma:

Lemma 2.2. ([29]—simplified) Let X be a δn-source over {0, 1}n, let t ∈ [n], and
let S denote the uniform distribution over sets S ⊆ [n] of size t . Then, there exists a
distribution W over {0, 1}t , jointly distributed with S, such that the following hold:

1. (S,XS) is 2−�(δt/ log(1/δ))-close to (S,W).
2. For any set S ⊆ [n] of size t it holds that W|S=S is a δ′t-source for δ′ = δ/4.

2.2. Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is almost identical to a (randomized)
public-key encryption scheme, where the only difference is that the encryption algo-
rithm is deterministic. More specifically, a deterministic public-key encryption scheme
is a triple of polynomial-time algorithms 
 = (KG,Enc,Dec). The key-generation
algorithm KG is a randomized algorithm which takes as input the security parameter 1λ,
where λ ∈ N, and outputs a pair (pk, sk) of a public key pk and a secret key sk. The
encryption algorithm Enc takes as input the security parameter 1λ, a public key pk, and
a plaintext m ∈ {0, 1}n(λ), and outputs a ciphertext c ∈ {0, 1}t (λ). The (possibly deter-
ministic) decryption algorithm Dec takes as input the security parameter 1λ, a secret
key sk, and a ciphertext c ∈ {0, 1}t (λ), and outputs either a plaintext m ∈ {0, 1}n(λ) or
the special symbol ⊥. For succinctness, we will always assume 1λ as an implicit input
to all algorithms and refrain from explicitly specifying it.
In terms of security, in this paper we follow the standard approach for formaliz-

ing the security of deterministic public-key encryption schemes introduced by Bellare,
Boldyreva and O’Neill [4] and further studied by Bellare et al. [5] and by Boldyreva et
al. [6]. Specifically, we consider the PRIV-IND notion of security asking that any effi-
cient algorithm has only a negligible advantage in distinguishing between encryptions of
different sequences of plaintexts as long as each plaintext is sampled from high-entropy
sources. We also consider the PRIV1-IND notion of security that focuses on a single
plaintext, and ask that any efficient algorithm has only a negligible advantage in distin-
guishing between encryptions of different plaintexts that are sampled from high-entropy
sources. This notion of security was shown by Boldyreva et al. [6] to guarantee security
for block-sources of messages (that is, for sequences of messages where each message
has high-entropy even when conditioned on the previous messages).
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For defining these notions of security, we rely on the following notation.We denote by
m = (m1, . . . , m�) a sequence of plaintexts, and by c = Encpk(m) the sequence of their
encryptions (Encpk(m1), . . . ,Encpk(m�)) under a public key pk. When encrypting
such a sequencem of plaintexts we assume in this paper without loss of generality that
mi �= m j for all i �= j ∈ [�].
Definition 2.3. (k-source �-message adversary) Let A = (A1, A2) be a probabilistic
polynomial-time algorithm, and let k = k(λ) and � = �(λ) be functions of the security
parameter λ ∈ N. For any λ ∈ N denote by (M(0)

λ ,M(1)
λ ,ST AT Eλ) the distribution

corresponding to the output of A1(1λ). Then, A is a k-source �-message adversary if
the following properties hold:

1. For each b ∈ {0, 1} it holds thatM(b)
λ =

(
M(b)

1,λ, . . . ,M
(b)
�,λ

)
is a distribution over

sequences of � plaintexts.

2. For any λ ∈ N, i �= j ∈ [�], b ∈ {0, 1}, and sequence
(

m(b)
1 , . . . , m(b)

�

)
in the

support ofM(b)
λ it holds that m(b)

i �= m(b)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [�], and state ∈ {0, 1}∗ it holds that
M(b)

i,λ |ST AT Eλ
= state is a k(λ)-source.

Definition 2.4. (PRIV-IND)A deterministic public-key encryption scheme
 = (KG,

Enc,Dec) is PRIV-IND-secure for k(λ)-source �(λ)-message adversaries if for any
probabilistic polynomial-time k(λ)-source �(λ)-message adversary A = (A1, A2) there
exists a negligible function ν(λ) such that

AdvPRIV−IND

,A,λ

def=
∣∣
∣Pr

[
ExptPRIV−IND


,A,λ (0) = 1
]

− Pr
[
ExptPRIV−IND


,A,λ (1) = 1
]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV−IND

,A,λ (b) is defined as follows:

1. (pk, sk) ← KG(1λ).
2. (m0,m1, state) ← A1(1λ).
3. c ← Encpk(mb).
4. Output A2(1λ, pk, c, state).

Definition 2.5. (PRIV1-IND) A deterministic public-key encryption scheme 
 =
(KG,Enc,Dec) is PRIV1-IND-secure for k(λ)-source adversaries if for any proba-
bilistic polynomial-time k(λ)-source 1-message adversary A = (A1, A2) there exists a
negligible function ν(λ) such that

AdvPRIV1−IND

,A,λ

def=
∣∣∣Pr

[
ExptPRIV1−IND


,A,λ (0) = 1
]

− Pr
[
ExptPRIV1−IND


,A,λ (1) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV1−IND

,A,λ (b) is defined as follows:

1. (pk, sk) ← KG(1λ).
2. (m0, m1, state) ← A1(1λ).
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3. c ← Encpk(mb).
4. Output A2(1λ, pk, c, state).

2.3. The Decisional (Matrix-)DDH Assumption

Our second construction relies on the matrix form of the Decisional Diffie–Hellman
(DDH) assumption, which is implied by the DDH assumption, as shown by Boneh,
Halevi, Hamburg and Ostrovsky [9], and generalized by Naor and Segev [24]. Let
GroupGen be a probabilistic polynomial-time algorithm that takes as input a secu-
rity parameter 1λ, and outputs a triplet (G, p, g) where G is a group of prime order
p that is generated by g ∈ G, and p is a λ-bit prime number. For any matrix
A = {ai j }i∈[a], j∈[b] ∈ Z

a×b
p , we denote by g A ∈ Gn×n the matrix {gai j }i∈[a], j∈[b].

In addition, we denote by Rki (Z
a×b
p ) the set of all a × b matrices over Zp of rank i .

The matrix form of the DDH assumption states that for any integers a, b, i , and j
such that 1 ≤ i < j ≤ min{a, b} the distributions {(G, p, g, gX )}X←Rki (Z

a×b
p ),λ∈N and

{(G, p, g, gY )}Y←Rk j (Z
a×b
p ),λ∈N are computationally indistinguishable,where (G, p, g) ←

GroupGen(1λ).

3. Modeling Incremental Deterministic Public-Key Encryption

In this section, we present a framework for modeling the incrementality of determin-
istic public-key encryption schemes. Intuitively, a deterministic public-key encryption
scheme is incremental if any small modification of a plaintext m resulting in a plaintext
m′ can be efficiently carried over for updating the encryption c = Encpk(m) of m to
the encryption c′ = Encpk(m′) of m′. For capturing the efficiency of such an update
operation, we consider two natural complexity measures4:

• Input locality: The number of ciphertexts bits that are affected when flipping a
single plaintext bit.

• Query complexity: The number of public key, plaintext, and ciphertext bits that
have to be read in order to update the ciphertext when flipping a single plaintext bit.

For capturing the above measures of efficiency, we model the update operation as a
probabilistic polynomial-time algorithm Update that receives as input the index i∗ of a
plaintext bit to be flipped and has oracle access to the individual bits of the public key
pk, the plaintext m to be modified, and to the encryption c = Encpk(m). Specifically,
we equip the update algorithm with access to an oracle, denotedO, that is given as input
a triplet (pk, m, c). The algorithmUpdate can submit oracle queries of the form (pk, i),
(m, i) or (c, i), which the oracleO answers with the i th bit of pk, m, or c, respectively.
More formally, let 
 = (KG,Enc,Dec) be a deterministic public-key encryption

schemewithmessage space {0, 1}n and ciphertext space {0, 1}t (where n = n(λ) and t =
t (λ) are functions of the security parameter λ ∈ N), and letUpdate be its corresponding
update algorithm. We denote by S ← UpdateO(pk,m,c)(1λ, i∗) the process in which the

4For simplicity, we focus on the case where both plaintexts and ciphertexts are represented as bit strings.
We note, however, that our approach easily generalizes to arbitrary message and ciphertext spaces.
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update algorithmwith input i∗ ∈ [n] and oracle access to the individual bits of the public
key pk, the plaintext m to be modified, and to its encryption c = Encpk(m), outputs a
set S ⊆ [t] of positions indicating which bits of the ciphertext c have to be flipped.

Definition 3.1. (Incremental deterministic PKE) Let
 = (KG,Enc,Dec) be a deter-
ministic public-key encryption scheme with message space {0, 1}n and ciphertext space
{0, 1}t , where n = n(λ) and t = t (λ) are functions of the security parameter λ ∈ N. The
scheme 
 is�(λ)-incremental is there exists a probabilistic polynomial-time algorithm
Update satisfying the following requirements:

1. Correctness: There exists a negligible function ν(λ) such that for all λ ∈ N, for
any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n] it holds that

Pr

⎡

⎣c′ = Encpk(m
′)

∣
∣∣
∣∣
∣

(pk, ·) ← KG(1λ), c = Encpk(m), S ← UpdateO(pk,m,c)(1λ, i∗)
m′[i∗] = ¬m[i∗] and m′[i] = m[i] for all i ∈ [n] \ {i∗}

c′[ j] = ¬c[ j] for all j ∈ S and c′[ j] = c[ j] for all j ∈ [t] \ S

⎤

⎦

≥ 1 − ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.
2. Input locality: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·)

outputs sets S of size at most �(λ).
3. Query complexity: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·)

issues at most �(λ) queries to the oracle O.

Access to the plaintext When providing the update algorithm with oracle access to the
bits of the plaintext m ∈ {0, 1}n , we can assume without loss of generality that the only
update operations are to flip the i th bit of m for i ∈ [n]. That is, one can also consider
the operation of setting the i th bit of m to 0 or 1, but this can be handled by first querying
the i th bit of m and then flipping it if it is different than the required value. We note,
however, that for supporting only flipping operations it is not clear that access to the
plaintext must be provided.
An important observation is thatwhen access to the plaintext is not provided (i.e., when

the update algorithm can query only the public key and the ciphertext), it is impossible
to support the operation of setting a bit to 0 and 1 while providing PRIV1-IND security.
That is, any such update algorithm can be used to attack the PRIV1-IND security of
the scheme by distinguishing between encryptions of high-entropy messages (and this
holds for any level of incrementality)5.

Privately incremental schemes In various scenarios, it may be natural to provide the
update algorithm with access not to the plaintext m but rather to the secret key sk
(and thus indirect access to the plaintext which may be less efficient in terms of query

5Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1 outputs
(m0, m1, state)wherem0 ← Uk ||0n−k andm1 ← Un are sampled independently at random, and state = ⊥.
That is, m0 is a distributed uniformly conditioned on ending with 0n−k , and m1 is distributed uniformly. The
algorithm A2 on input c = Encpk (mb) invokes the update algorithm to set the leftmost k bits of the plaintext
corresponding to c to 0, and then compares the resulting ciphertext to Encpk (0n). Note that if b = 0, then the

two ciphertexts are always equal, and if b = 1, then they are equal only with probability 2−(n−k).
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complexity). Consider, for example, a scenario in which a client stores an encrypted
version F̄ of a file F on a remote and untrusted server. In this the client does not have
direct access to the file F , but only indirect access by using its secret key to recover
parts of the file. In such a scenario, it is required to capture the efficiency of the client
by considering its query complexity to the secret key (and ciphertext) and not to the
plaintext. This leads to a natural variant of Definition 3.1 in which the update algorithm
is given oracle access to the public key pk, the secret key sk, and the ciphertext c (but
no direct access to the plaintext).

Definition 3.2. (Privately incremental deterministic PKE) Let 
 = (KG,Enc,Dec)
be a deterministic public-key encryption scheme with message space {0, 1}n and cipher-
text space {0, 1}t , where n = n(λ) and t = t (λ) are functions of the security parameter
λ ∈ N. The scheme 
 is �(λ)-privately incremental is there exists a probabilistic
polynomial-time algorithm Update satisfying the following requirements:

1. Correctness: There exists a negligible function ν(λ) such that for all sufficiently
large λ ∈ N, for any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n] it holds that

Pr

⎡

⎣c′ = Encpk(m
′)

∣∣
∣∣
∣
∣

c = Encpk(m), S ← UpdateO(pk,m,c)(1λ, i∗)
m′[i∗] = ¬m[i∗] and m′[i] = m[i] for all i ∈ [n] \ {i∗}

c′[ j] = ¬c[ j] for all j ∈ S and c′[ j] = c[ j] for all j ∈ [t] \ S

⎤

⎦

≥ 1 − ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.
2. Input locality: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·)

outputs sets S of size at most �(λ).
3. Query complexity: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·)

issues at most �(λ) queries to the oracle C.

4. A Generic Construction via Random Partitioning

In this section, we present a generic construction of an incremental PRIV1-IND-secure
deterministic public-key encryption scheme from any PRIV-IND-secure deterministic
public-key encryption scheme. As discussed in Sect. 1.3 our approach is a “randomized”
alternative to the commonly-used approach of dividing the plaintext into small blocks
and encrypting each block. Instead of dividing an n-bit plaintext m into fixed blocks,
we project it onto a uniformly chosen partition S1, . . . , Sn/t of the plaintext positions
{1, . . . , n} to sets of size t each and then separately encrypt each of the projections
mS1 , . . . , mSn/t using the underlying encryption scheme. Thus, when flipping a single
bit of m we only need to update the encryption of the projection mSi for which the
corresponding position belongs to the set Si . Therefore, the resulting scheme enjoys the
same incrementality that the underlying scheme has for small blocks. A more formal
description follows.
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The scheme Let 
′ = (KG′,Enc′,Dec′) be a deterministic public-key encryption
scheme for n′-bit plaintexts that is PRIV-IND-secure for k′-source �′-message adver-
saries, where n′ = n′(λ), k′ = k′(λ) and �′ = �′(λ) are functions of the security
parameter λ ∈ N. We construct an incremental deterministic public-key encryption
scheme 
 = (KG,Enc,Dec,Update) for n-bit plaintexts that is PRIV1-IND-secure
for k-source adversaries, where n = n(λ) and k = k(λ) are functions of the security
parameter λ ∈ N as follows:

• Key generation The algorithm KG on input the security parameter 1λ samples
(pk′, sk′) ← KG′(1λ) together with a uniformly chosen partition S1, . . . , Sn/t of
[n], where each set in the partition is of size t = αn log n

k · k′ for a sufficiently large
constant α ≥ 1.6 It then outputs pk = (pk′, S1, . . . , Sn/t ) and sk = sk′.7

• Encryption The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n outputs the
ciphertext (Enc′

pk′(1||mS1), . . . ,Enc
′
pk′(n/t ||mSn/t )).

• Decryption The algorithm Decsk(·) on input a ciphertext (c1, . . . , cn/t ) computes
mSi = Dec′

sk′(ci ) for every i ∈ [n/t] and outputs the plaintext m defined by the
projections mS1, . . . , mSn/t .

• Update The algorithmUpdateO(pk,m,c)(·) on input an index i∗ ∈ [n] of a plaintext
bit to beflipped, first finds the unique j∗ ∈ [n/t] such that i∗ ∈ S j∗ . Then, it retrieves
the projection mS j∗ , and computes m′

S j∗ by flipping the plaintext bit in position i∗

in m. Finally, it computes c′
j∗ = Enc′

pk′( j∗||m′
S j∗ ) and c j∗ = Enc′

pk′( j∗||mS j∗ ),
and outputs the set of positions on which they differ.

The security of the scheme The main idea underlying the proof of security is that for a
plaintext m that has min-entropy k, the “sample-and-extract” together with our choice
of parameters, and the fact that each set Si is individually uniform imply that each of the
encrypted strings i ||mSi is a distribution with min-entropy k′. The PRIV-IND security
of 
′ then immediately yields the PRIV1-IND security of 
. This enables us to prove
the following theorem:

Theorem 4.1. Let n = n(λ), k = k(λ), and k′ = k′(λ), let α ≥ 1 be a sufficiently large
constant as above, and assume that 
′ encrypts n′-bit plaintexts and is PRIV-IND-secure
for k′-source �′-message adversaries, where t = αn log n

k · k′, n′ = t + �log(n/t)�, and
�′ = n/t . Then, the scheme 
 is PRIV1-IND-secure for k-sources.

Proof. For any k-source adversary A = (A1, A2) against PRIV1-IND security of the
scheme 
, we show that there exists an adversary A′ = (A′

1, A′
2) that is statistically

close to a k′-source n/t-message adversary against the PRIV-IND security of the scheme

′ and has the same advantage.

The algorithm A′
1. On input 1λ the algorithm A′

1 samples
(
m(0), m(1), state

) ←
A1(1λ) and a uniformly chosen partition S1, . . . , Sn/t of [n], where each set in the

6We note that the constant α is determined by the hidden constant in the statistical closeness
2−�(δt/ log(1/δ)) from Lemma 2.2.

7Without loss of generality we can assume that t divides n, as otherwise we can pad plaintexts with at
most t zeros, and for our choice of parameters this would only have a minor effect on the min-entropy rate.
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partition is of size t = � 4n
k · k′�. Then, it outputs (m0,m1, state′), where mb =(

1||m(b)
S1

, . . . , n/t ||m(b)
Sn/t

)
for each b ∈ {0, 1}, and state′ = (state, S1, . . . , Sn/t ).

The algorithm A′
2. On input (1

λ, pk′, c, state′) the algorithm A′
2 first parses state

′
as state′ = (state, S1, . . . , Sn/t ) and defines pk = (pk′, S1, . . . , Sn/t ). Then, it
outputs A2(1λ, pk, c, state).

Note that A′ provides a perfect simulationof theExptPRIV−IND

,A,λ (0) andExptPRIV−IND


,A,λ (1)
to A, and therefore we only need to prove that A′ is statistically close to a k′-
source n/t-message adversary. First, observe that in any vector of plaintexts mb =(
1||m(b)

S1
, . . . , n/t ||m(b)

Sn/t

)
that is produced by A1 it always holds that all plaintexts are

distinct (and this holds for both b = 0 and b = 1). Second, the fact that A is a k-source
adversary means that for each b ∈ {0, 1} the plaintext m(b) is sampled from a source
with min-entropy at least k over {0, 1}n , even when conditioned on state. In turn, the
“sample-then-extract” lemma (see Lemma 2.2) guarantees that for every j ∈ [n/t] the
projectionm(b)

S j
is ε-close to a source withmin-entropy δt/4 over {0, 1}t , where δ = k/n,

and ε = 2−�(δt/ log(1/δ)). Our choice of t = αn log n
k · k′ guarantees that

δ

4
· t ≥ k′ + 1,

and

ε ≤ 2−(k′+1).

This implies, in particular, that m(b)
S j

is a k′-source, and concludes the proof of the
theorem. �

The incrementality of the schemeWhenflipping a single bit of a plaintextm, we only need
to update a single output block. The underlying schememight have trivial incrementality
and require to re-encrypt the whole block (which is significantly shorter than the length
of the plaintext m), as described above. In terms of oracle access to the individual bits
of pk, m, and c, this requires accessing �log(n/t)� bits of pk, t bits of m, and all the bits
of pk′. Given that the length of pk′ may depend only on the security parameter (i.e., n
and k can be chosen afterward and be significantly larger), the dominant factor here is
t = αn log n

k · k′. We prove the following theorem:

Theorem 4.2. Let n = n(λ), k = k(λ), k′ = k′(λ), and w′ = w′(λ) be functions
of the security parameter λ ∈ N, and assume that 
′ encrypts n′-bit plaintexts with
r ′-bit ciphertexts and w′-bit public keys. Then, the scheme 
 has incrementality � =
max{r ′,

⌈
log k

4k′
⌉ + αn log n

k · k′ + w′}.

Proof. The correctness of the Update algorithm is easy to verify, and here we upper-
bound the input locality and query complexity of the scheme 
 (recall Definition 3.1).

For an upper bound on the input locality, note that when flipping the bit mi∗ of a
plaintext m we only need to update a single output block. This block is the encryption
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of the projection mS j∗ for which i∗ ∈ S j∗ . Therefore, the number of ciphertext bits that
need to be changed is at most r ′, the bit-length of the ciphertexts produced by the scheme

′. Thus, the input locality of the scheme 
 is at most r ′.

For an upper bound on the query complexity, note that the update algorithm first
needs to find the unique j∗ ∈ [n/t] such that i∗ ∈ S j∗ . Using a suitable encoding of
the partition S1, . . . , Sn/t , this can be done by accessing only �log(n/t)� bits of the
public key. Then, it needs to retrieve the projection mS j∗ , and this requires accessing
t bits of m. Finally, for computing the new ciphertext block the update algorithm also
needs to access the public key pk′ of the scheme 
′, whose length is w′ bits. Recall that
t = αn log n

k · k′, and therefore the query complexity of the scheme 
 is at most

⌈
log

n

t

⌉
+ t + w′ ≤

⌈
log

k

4k′

⌉
+ αn log n

k
· k′ + w′.

�

Specific instantiations Our generic construction can be instantiated with the two PRIV-
IND-secure schemes of Bellare at el. [4] in the random-oracle model. These schemes
encrypt n′-bit messages and are PRIV-IND-secure for any (fixed) super-logarithmic
min-entropy k′. For example, when choosing k′ = log2 n, the dominant factor t in the
incrementality of our schemes becomes t = O( n

k · log3 n). Their first scheme is based on
any semantically secure (randomized) public-key encryption scheme, and their second
scheme is length-preserving extension of RSA-OAEP. We note that when instantiating
our generic construction with their length-preserving scheme there is in fact no need
to concatenate the block number i to each projection mSi (for ensuring that we always
encrypt distinct values), but only to use the block number as a prefix for the random
oracle when encrypting mSi . Therefore in this case the resulting scheme is still a length-
preserving one.

5. A Construction Based on the Decisional Diffie–Hellman Assumption

In this section, we construct a deterministic public-key encryption scheme that enjoys
essentially optimal incrementality, and guarantees PRIV1-IND security based on the
Decisional Diffie–Hellman (DDH) assumption.We begin by introducing rather standard
notation and then describe the scheme.

Notation Let G be a group of prime order p that is generated by g ∈ G. Recall that
for any matrix A = {ai j }i∈[n], j∈[n] ∈ Z

n×n
p we denote by g A ∈ Gn×n the matrix

{gai j }i∈[n], j∈[n]. In addition, for a column vector m = (m1, . . . , mn)T ∈ Z
n
p and a

matrix A = {ai j }i∈[n], j∈[n] ∈ Z
n×n
p we define

A � gm def= g A � m
def= g Am = (g

∑
i a1,i mi , . . . , g

∑
i an,i mi )T ∈ Gn .
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The scheme Let GroupGen be a probabilistic polynomial-time algorithm that takes as
input the security parameter 1λ, and outputs a triplet (G, p, g) where G is a group of
prime order p that is generated by g ∈ G, and p is a λ-bit prime number. The scheme is
parameterized by the security parameter λ, the message length n = n(λ), and the min-
entropy k = k(λ) for which the scheme is secure. Both n and k are polynomials in the
security parameter. The scheme 
 = (KG,Enc,Dec,Update) is defined as follows:

• Key generation The algorithm KG on input the security parameter 1λ samples
(G, p, g) ← GroupGen(1λ), and a matrix A ← An,k,p, where An,k,p is a distri-
bution over Z

n×n
p which is defined below. It then outputs pk = (G, p, g, g A) and

sk = A−1.
• Encryption The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n outputs the
ciphertext g A � m = g Am ∈ Gn .

• DecryptionThe algorithmDecsk(·) on input a ciphertext gc = (gc1, . . . , gcn ) ∈ Gn

first computes w = A−1 � gc = g A−1c ∈ Gn , and lets w = (gm1, . . . , gmn ). If
m = (m1, . . . , mn) ∈ {0, 1}n (note that this test can be computed efficiently) then
it outputs m, and otherwise it outputs ⊥.

• Update The algorithm UpdateO(pk,m,c)(·), where gc = (gc1, . . . , gcn ) ∈ Gn , on
input an index i∗ ∈ [n] of a plaintext bit to be flipped, first computes the set S ⊆ [n]
of the indices of the rows of A that have a nonzero element in position i∗ (using a
straightforward lookup table this requires accessing |S| log n bits of pk). Then, for
each j ∈ S the update algorithm has to modify the ciphertext component gc j . The

modified component, denote gc′
j , is computed as gc′

j = gc j · ga j,i∗ if mi∗ = 0 and

as gc′
j = gc j · g−a j,i∗ if mi∗ = 1 (this requires accessing the bit mi∗ as well as the

|S| elements ga j,i∗ , each of which is log p bits).

The distributionAn,k,p For completing the description of our scheme, it remains to
specify the distributionAn,k,p that is defined overZ

n×n
p . Looking ahead this distribution

will be used to define the distribution of injective keys in our collection of smooth
trapdoor functions. In fact, we find it convenient to first specify the distribution Ãn,k,p

that will be used to define the distribution of smooth keys. These two distributions rely
on the following distributions as building blocks:

• Rn,k,p: sparse random � × n matrices. The distributionRn,k,p is defined as a ran-
dom sample fromZ

�×n
p matrices that have exactly t = � n

k ·16 log p� nonzero entries
in each row, where � = �k/(2 log p)�.

• Dn,k,p: diagonally-striped � × n matrices. The distribution Dn,k,p is defined as a
random sample from Z

�×n
p matrices whose elements di j are nonzero if and only if

i ≡ j (mod �) (for simplicity we assume that n is divisible by �).

The distribution Ãn,k,p overZ
n×n
p is defined as matrices Ã obtained by independently

sampling R ← Rn,k,p, D1 ← Dn,k,p, and D2 ← Dn,k,p, and letting Ã
def= DT

2 ×
(R + D1). Then, the distributionAn,k,p is defined as matrices A obtained by sampling a
matrix Ã ← Ãn,k,p and then re-sampling all its nonzero entries from Zp independently
and uniformly at random. In other words, the resulting matrix A preserves zeroes of the
matrix Ã, while randomizing all other elements (and thus linear dependencies between
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Fig. 1. The distributions Rn,k,p , Dn,k,p and Ãn,k,p .

rows) of the original matrix. See Fig. 1 for an illustration of the distributions Rn,k,p,
Dn,k,p and Ãn,k,p.
Intuitively, the matrix D1 is only meant to ensure that such the resulting matrix A is

invertible. Indeed, the matrix D1 guarantees that with an overwhelming probability all
the elements on the main diagonal of A are nonzeros. Now, ignoring the matrix D1, the
matrix Ã is generated to satisfy two properties. The first is that each of its first � rows
has t randomly chosen entries with values that are chosen uniformly from Zp, and all
other n − t entries are zeros. Looking ahead, when computing the inner product of such
a row with a source of min-entropy larger than log p, the “sample-then-extract” lemma
(see Lemma 2.2) guarantees that the output is statistically close to uniform. The second
property is that each of its last n − � rows is a linear combination of the first � rows, and
therefore the action of its corresponding linear map is determined by the first � rows.

The incrementality of the scheme When naturally storing the public-key element g A

as a sparse matrix, listing only the entries corresponding to the nonzero entries of A,
the dominant factor in the incrementality of the scheme corresponds to the maximal
number of nonzero entries in the columns of A (multiplied by log p). For our choice
of t = � n

k · 16 log p� and � = �k/(2 log p)�, each column of the matrix A has at most
O(t + n/�) = O( n

k · log p) nonzero entries with all but a negligible probability.

Theorem 5.1. Let n = n(λ) and k = k(λ) be functions of the security parameter
λ ∈ N. Then, the scheme 
 has incrementality � = n

k · 40λ(log n + λ).

Proof. The correctness of the Update algorithm is easy to verify, and here we upper-
bound the input locality and query complexity of the scheme 
 (recall Definition 3.1).

For bounding the input locality, note that when flipping the bit mi∗ of a plaintext m
the update algorithm computes the set S ⊆ [n] of the indices of the rows of A that
have a nonzero element in position i∗. Only these rows of the ciphertext have to be
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updated (where each such row consists of log p bits). Noting that with an overwhelming
probability |S| ≤ 2(t+n/�) ≤ n

k ·40 log p, and that p is aλ-bit prime number. Therefore,
the input locality of the scheme is at most n

k · 40λ2.
For bounding the query complexity, note that computing the set S ⊆ [n] of the indices

of the rows of A that have a nonzero element in position i∗ can be done by accessing
|S| log n bits of pk (say, using a lookup table). Then, for each j ∈ S the update algorithm
has to modify the ciphertext component gc j . This requires accessing the bit mi∗ as well
as the |S| elements ga j,i∗ , each of which is log p bits. As before, with an overwhelming
probability |S| ≤ n

k · 40 log p, and therefore the query complexity of the scheme 
 is at
most

|S|(log n + log p) ≤ n

k
· 40λ(log n + λ).

�

The security of the scheme As discussed in Sect. 1.3, the security of our scheme is based
on the notion of smooth trapdoor functions, which we formalize in Sect. 5.1, and then in
Sect. 5.2 we show that our scheme is in fact a collection of smooth trapdoor functions.
This enables us to prove the following theorem:

Theorem 5.2. For any n = n(λ) and k = k(λ) such that 16 log p ≤ k ≤ n, under
the Decisional Diffie–Hellman assumption the scheme 
 is PRIV1-IND-secure for k-
sources.

5.1. Smooth Trapdoor Functions

A collection of smooth trapdoor functions consists of two families of functions. Func-
tions in one family are injective and can be efficiently inverted using a trapdoor. Func-
tions in the other family are “smooth” in the sense that their output distribution on any
source of input with high min-entropy is statistically close to their output distribution
on a uniformly sampled input. The only security requirement is that a description of
a randomly chosen function from the family of injective functions is computationally
indistinguishable from a description of a randomly chosen function from the family of
smooth functions.

Definition 5.3. (Smooth trapdoor functions) Let n = n(λ) and k = k(λ) be functions
of the security parameter λ ∈ N. A collection of (n, k)-smooth trapdoor functions is
a 4-tuple of probabilistic polynomial-time algorithms (KGInj,KGSmooth,F,F−1) such
that:

1. Injectivity: With overwhelming probability over the choice of (pk, sk) ←
KGInj(1λ), for every x ∈ {0, 1}n it holds that F−1

sk (Fpk(x)) = x .
2. Smoothness: For every k-source X = {Xλ}λ∈N over {0, 1}n the statistical distance

between the distributions {(pk,Fpk(x)) : pk ← KGSmooth(1λ), x ← Xλ}λ∈N and
{(pk,Fpk(x)) : pk ← KGSmooth(1λ), x ← Un}λ∈N is negligible in λ.

3. Indistinguishability: The two distributions {pk : (pk, sk) ← KGInj(1λ)}λ∈N and
{pk : pk ← KGSmooth(1λ)}λ∈N are computationally indistinguishable.
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We note that the definition of a hidden universal-mode encryption of Boldyreva et
al. [6] is stronger than our definition of smooth trapdoor functions, as evident from our
construction in this section, which is not universal in its smooth mode (that would inter-
fere with the incrementality requirement). In addition, Boldyreva et al. showed that the
composition of any lossy trapdoor function with a pairwise independent permutation is
a hidden universal-mode encryption, and thus a collection of smooth trapdoor functions.
The pairwise independent permutation, however, again contradicts the incrementality
property that we require.
The following theorem states that any collection of smooth trapdoor functions is also

a PRIV1-IND-secure deterministic public-key encryption scheme. The theorem was
implicitly proved by Boldyreva et al. [6, Theorem 5.1], and here we provide its proof
for completeness in light of our new notion of smooth trapdoor functions.

Theorem 5.4. Let n = n(λ) and k = k(λ) be functions of the security parameter
λ ∈ N, and let (KGInj,KGSmooth,F,F−1) be a collection of (n, k)-smooth trapdoor
functions. Then 
 = (KGInj,F,F−1) is a deterministic public-key encryption scheme
that is PRIV1-IND-secure for k-sources.

Proof. Let A = (A1, A2) be a k-source adversary. For any λ ∈ N and b ∈ {0, 1}
we denote by Ẽxpt

PRIV1−IND

,A,λ (b) the experiment that is obtained from the experi-

ment ExptPRIV1−IND

,A,λ (b) by sampling the public key pk using KGSmooth(1λ) instead

of KGInj(1λ). Then,

AdvPRIV1−IND

,A,λ =

∣
∣∣Pr

[
ExptPRIV1−IND


,A,λ
(0) = 1

]
− Pr

[
ExptPRIV1−IND


,A,λ
(1) = 1

]∣∣∣

≤
∣
∣∣
∣Pr

[
ExptPRIV1−IND


,A,λ
(0) = 1

]
− Pr

[
Ẽxpt

PRIV1−IND

,A,λ (0) = 1

]∣
∣∣
∣

(5.1)

+
∣∣
∣
∣Pr

[
Ẽxpt

PRIV1−IND

,A,λ (0) = 1

]
− Pr

[
Ẽxpt

PRIV1−IND

,A,λ (1) = 1

]∣∣
∣
∣

(5.2)

+
∣
∣
∣
∣Pr

[
Ẽxpt

PRIV1−IND

,A,λ (1) = 1

]
− Pr

[
ExptPRIV1−IND


,A,λ
(1) = 1

]∣∣
∣
∣ .

(5.3)

Bydefinition for anyb ∈ {0, 1} the experimentsExptPRIV1−IND

,A,λ (b) and Ẽxpt

PRIV1−IND

,A,λ (b)

differ only on the distribution of the public key pk. Therefore, the indistinguishabil-
ity property of the collection (KGInj,KGSmooth,F,F−1) between public keys that are
“injective” and “smooth” directly guarantees that the terms (5.1) and (5.3) are negligible.
In addition, the smoothness property of the collection (KGInj,KGSmooth,F,F−1)

and the fact that A is a k-source adversary guarantee that in the experiments

Ẽxpt
PRIV1−IND

,A,λ (0) and Ẽxpt

PRIV1−IND

,A,λ (1) the ciphertext c = Encpk(mb) is statisti-

cally close to the image of a uniformly distributed message from A’s point of view. This
implies that also the term (5.2) is negligible and concludes the proof of the theorem. �
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5.2. Proof of Security

The description of our encryption scheme naturally defines a 4-tuple (KGInj,KGSmooth,

F,F−1), which we show here to be a collection of smooth trapdoor functions. For
completeness, we describe this collection explicitly here.

• Generation of injective keys The algorithmKGInj on input the security parameter 1λ

samples (G, p, g) ← GroupGen(1λ), and a matrix A ← An,k,p. It then outputs
pk = (G, p, g, g A) and sk = A−1.

• Generation of smooth keysThe algorithmKGSmooth on input the security parameter
1λ samples (G, p, g) ← GroupGen(1λ), and amatrix A ← Ãn,k,p. It then outputs
pk = (G, p, g, g A).

• EvaluationThe algorithmFpk(·)on inputm ∈ {0, 1}n outputs g A�m = g Am ∈ Gn .
• Inversion The algorithm F−1

sk (·) on input gc = (gc1, . . . , gcn ) ∈ Gn first com-

putes w = A−1 � gc = g A−1c ∈ Gn , and lets w = (gm1, . . . , gmn ). If
m = (m1, . . . , mn) ∈ {0, 1}n (note that this test can be computed efficiently)
then it outputs m, and otherwise it outputs ⊥.

The security of our encryption scheme (i.e., Theorem 5.2) then follows as a corollary
by putting together Theorem 5.4 and the following theorem:

Theorem 5.5. For any n = n(λ) and k = k(λ) such that 16 log p ≤ k ≤ n, let
t = � n

k · 16 log p� and � = �k/(2 log p)�. Then, under the Decisional Diffie–Hellman
assumption, (KGInj,KGSmooth,F,F−1) is a collection of (n, k)-smooth trapdoor func-
tions.

Proof. We prove the theorem using the following three lemmas, establishing the
required properties of injectivity, smoothness, and indistinguishability.

Lemma 5.6. (Injectivity) With overwhelming probability over the choice of (pk, sk) ←
KGInj(1λ), for every x ∈ {0, 1}n it holds that F−1

sk (Fpk(x)) = x.

Proof of Lemma 5.6. We prove the lemma by showing that a matrix drawn fromAn,k,p

is invertible except with probability O(n/p). Consider the intermediate steps of drawing
amatrix A fromAn,k,p. First R, D1 and D2 are sampled fromRn,k,p,Dn,k,p, andDn,k,p,
respectively. Then the matrix Ã is computed as A = DT

2 × (R + D1), and the matrix A is
produced by re-sampling all its nonzero entries. We show that A is invertible by arguing
that all elements on its main diagonal are nonzero, except with probability O(n/p).
Call the elements of an � × n matrix with coordinates (u, v), where u ≡ v (mod �),

pseudodiagonal. The pseudodiagonal elements of D2 are nonzero by construction. There
are exactly n pseudodiagonal elements chosen at random in D1, and with probability
O(n/p) one of them is zero. The probability that any of the pseudodiagonal elements
of D1 is canceled after summing it with R is O(n/p). Conditioning on these events not
happening, i.e., all pseudodiagonal elements of D1 + R are not zero, all elements on the
main diagonal of M that are products of two pseudodiagonal elements from D1 + R and
D2, are thus also nonzero.
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It means that when the nonzero entries of the matrix Ã are re-sampled to produce A,
all elements on the main diagonal of A will be assigned fresh random values from Zp,
and thus they will all be nonzero except with probability O(n/p). This is sufficient to
imply invertibility with high probability: Express det A as a function of formal variables
corresponding to the nonzero elements of A. The total degree of this polynomial is n,
and since the main diagonal of A is nonzero, the polynomial is not identically zero. By
the Schwartz-Zippel lemma, the probability that this polynomial evaluates to zero (and
thus the matrix is rank-deficient) is O(n/p). �

Lemma 5.7. (Smoothness) For any n = n(λ) and k = k(λ) such that 16 log p ≤ k ≤
n, let t = � n

k · 16 log p� and � = �k/(2 log p)�. Then, for every k-source X = {Xλ}λ∈N
over {0, 1}n the statistical distance between the distributions {(pk,Fpk(x)) : pk ←
KGSmooth(1λ), x ← Xλ}λ∈N and {(pk,Fpk(x)) : pk ← KGSmooth(1λ), x ← Un}λ∈N
is negligible in λ.

Proof of Lemma 5.7. Fix λ ∈ N, and let Ã ← Ãn,k,p, x ← Xλ, and y = Ax . The
first observation is that such a matrix Ã has rank at most � as it is a product of matrices
of dimensions n × � and � × n, each having rank at most �. Further, for such a matrix
Ã of rank �, the first � entries of y determine the rest of y. Indeed, if i and j are two
coordinates and i ≡ j (mod �), then yi/y j is exactly the ratio of the corresponding
(nonzero) elements of D2 with coordinates (i, i mod �) and ( j, j mod �) (identifying
columns 0 and � of D2).
Therefore, it is sufficient to consider the distribution of y = Ax over the first �

coordinates of the result, denoted as Y1, . . . ,Y�. We shall prove that (Y1, . . . ,Y�) is
statistically close to the uniform distribution over Z

�
p (i.e., independent of X , and thus

the lemma easily follows). Specifically, for every i ∈ [�] we prove that with an over-
whelming probability over the choice of (y1, . . . , yi−1) ← (Y1, . . . ,Yi−1), it holds that
the distribution of Yi when conditioned on Y1 = y1, . . . ,Yi−1 = yi−1 is statistically
close to the uniform distribution over Zp. A standard hybrid argument implies the claim
about the joint distribution of Y1, . . . ,Y�.
Recall that X is a source of min-entropy k. Lemma 2.1 guarantees that with an

overwhelming probability over the choice of (y1, . . . , yi−1) ← (Y1, . . . ,Yi−1), the

min-entropy of X conditioned on Y1 = y1, . . . ,Yi−1 = yi−1 is at least k′ def= k − (i −
1) log p − ω(log λ) (intuitively, the values y1, . . . , yi−1 reduced the min-entropy of the
k-source X by essentially no more than (i − 1) log p bits). Note that since i ≤ � and
� = �k/(2 log p)�, it holds that

k′ = k − (i − 1) log p − ω(log λ)

≥ k − (� − 1) log p − ω(log λ)

≥ k − � log p

≥ k/2.

Consider the evaluation of yi = 〈 Ã(i), x〉, where Ã(i) is the i th row of Ã. By construction,
Ã(i) = di (R(i) + D(i)

1 )T, where di is a pseudodiagonal element of D2. Let S be the set
indices of the t nonzero entries of R(i) (the i th row of R). By Lemma 2.2, the projection
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of X onto S, denoted as XS , is 2−�(δt/ log(1/δ))-close to a δt/4-source over t bits, where
δ = k′/n. Note that since k′ ≥ k/2 and t = � n

k · 16 log p�, then

δt

4
= k′t

4n

≥ kt

8n
≥ 2 log p.

The action of Ã(i)
S on XS is statistically close to the scalar product of a δt/4-source with

a uniform vector (we account for the entries of Ã(i)
S being nonzero by adding another

t/p term to the statistical distance), which is a universal hash function from {0, 1}t to
Zp. By the leftover hash lemma8, since δt/4 ≥ 2 log p, the statistical distance between
Yi and the uniform distribution over Zp given S, y1, . . . , yi−1 is negligible. �

Lemma 5.8. (Indistinguishability) Under the Decisional Diffie–Hellman assumption,
the distributions {pk : (pk, sk) ← KGInj(1λ)}λ∈N and {pk : pk ← KGSmooth(1λ)}λ∈N
are computationally indistinguishable.

Proof of Lemma 5.8. Consider a sample from the distribution Ãn,k,p. It is obtained
by sampling a sparse � × n matrix (from the distribution Rn,k,p + Dn,k,p), and then
replicating every row of this matrix n/� times multiplying it with a random nonzero
field element each time. The distribution An,k,p is sampled by drawing a matrix from
Ãn,k,p and re-sampling all its nonzero elements. Therefore, matrix minors defined as
all nonzero elements of rows congruent modulo � have rank 1 if the matrix is drawn
from Ãn,k,p and rank n/� if it comes from An,k,p. We use this observation together
with the matrix-DDH assumption (which is implied by the decisional Diffie–Hellman
assumption—see Sect. 2.3) to prove the lemma.

Consider hybrid distributions H0,…,H�, where H0 = gÃn,k,p and H� = gAn,k,p .
Each intermediate distribution Hi is obtained by drawing a matrix from Ãn,k,p and re-
sampling all rows congruent to an element of the set {0, . . . , i − 1} modulo � (if i = 0,
no rows are re-sampled).
The difference between Hi and Hi+1 is in the distribution of rows congruent to i

modulo �. We now change the procedure for sampling fromHi andHi+1 by embedding
an instance of the matrix-DDH problem. Draw a matrix from Hi . Let the number of
entries not equal to g0 in the i th row be r . Sample a random rank-1 matrix A from
Z

n/�×r
p . Replace the minor ofHi corresponding to the entries not equal to 1 in the rows

congruent to i modulo �with g A. Analogously, change the distributionHi+1 by replacing
the similarly defined minor with the matrix gB , where B is a random n/�-rank matrix
of size n/� × r . It is easy to check that except with probability O(n2/p) (to account for

8Recall that a collectionH of functions H : U → V is universal if for any x1, x2 ∈ U such that x1 �= x2
it holds that PrH←H[H(x1) = H(x2)] = 1/|V |. The leftover hash lemma [22] states that for any k-source
X over U with k ≥ log |V | + 2 log(1/ε) + �(1), it holds that the distribution (H, H(X )), where H ← H,
is ε-close to the uniform distribution overH × V .
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a possibility of zero elements in A or B) the new sampling procedures do not change
the distributions Hi and Hi+1.

By the matrix-DDH assumption, the resulting distributions are computationally indis-
tinguishable. Applying the hybrid argument to the sequenceH0,…,H�, we complete the
proof.

From the properties of injectivity (Lemma 5.6), smoothness (Lemma 5.7), and indis-
tinguishability (Lemma 5.8) the claim of Theorem 5.5 follows. �

6. The Lower Bound

In this section, we prove a lower bound on the incrementality of deterministic public-key
encryption schemes (the reader is referred to Definition 3.1 for our notion of incremen-
tality). In what follows we state our lower bound, provide a high-level overview of its
proof, and then provide its formal proof.

Theorem 6.1. Let n = n(λ), t = t (λ), k = k(λ), and � = �(λ) be functions of the
security parameter λ ∈ N, and let 
 = (KG,Enc,Dec) be a deterministic public-
key encryption scheme with plaintext space {0, 1}n and ciphertext space {0, 1}t . If 
 is
�-incremental and PRIV1-IND-secure for k-sources, then � ≥ n−3

k log t .

Proof overview Our definition of incrementality implies the following simple fact for
any �-incremental scheme: With an overwhelming probability over the choice of the
public key, for any two plaintexts that differ in exactly one position, their corresponding
ciphertexts differ in at most � positions. This follows directly from combining the
correctness requirement and input locality requirement in Definition 3.1.
Given a public key for which the above holds, consider now the encryption of the

n-bit messages m0 and m1 sampled as m0 ← Uk ||0n−k and m1 ← Un . That is, m0 is
distributed uniformly conditioned on ending with 0n−k , and m1 is distributed uniformly.
We claim that if� is smaller than roughly n/(k log t), then it is quite simple to distinguish
the encryptions of these two messages. Since the messages m0 and 0n differ in at most
k positions, then their encryptions differ in at most k� positions. However, using a
simple counting argument we show that this is not the case for m1. This translates into
an adversary against the PRIV1-IND security of the scheme, where the advantage of
this adversary yields a lower bound on the incrementality �.

Proof of Theorem 6.1. Assuming that 
 is a �-incremental scheme, Definition 3.1
implies that there exists a negligible function ε = ε(λ) and a sequence of sets {Pλ}λ∈N
of public keys such that the following two properties hold:

1. For all sufficiently large λ ∈ N it holds that Pr(pk,sk)←KG(1λ)[pk ∈ Pλ] > 1−ε(λ).
2. For all sufficiently large λ ∈ N, pk ∈ Pλ, and m, m′ ∈ {0, 1}n , if m and m′ differ

on at most one position then the ciphertexts c = Encpk(m) and c′ = Encpk(m′)
differ on at most � positions.
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Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1 on
input 1λ outputs (m0, m1, state) where m0 ← Uk ||0n−k and m1 ← Un are sampled
independently at random, and state = ⊥. That is, m0 is distributed uniformly condi-
tioned on ending with 0n−k , and m1 is distributed uniformly. The algorithm A2 on input
a public key pk and a ciphertext c = Encpk(mb) first computes c∗ = Encpk(0n). Then,
if the Hamming distance between c and c∗ is at most k� then it outputs 0, and otherwise
it outputs 1. We now analyze the advantage of A by considering the cases b = 0 and
b = 1.

The case b = 0TheHammingdistance betweenm0 and0n is atmost k, and therefore
for any pk ∈ Pλ the Hamming distance between c = Encpk(m0) and c∗ =
Encpk(0n) is at most k�. Thus, for any pk ∈ Pλ the adversary A will always
output 0. This implies that for all sufficiently large λ ∈ N it holds that

Pr
[
ExptPRIV1−IND


,A,λ (0) = 1
]

≤ Pr(pk,sk)←KG(1λ)[pk /∈ Pλ] < ε. (6.1)

The case b = 1 In this case we prove an upper bound on the probability that the
Hamming distance between c = Encpk(m1) and c∗ = Encpk(0n) is at most k�.
The encryption algorithm outputs t-bit ciphertexts, and note that the number of t-bit
strings that are within Hamming distance k� to c∗ is at most

2k�

(
t

k�

)
≤ (2t)k� .

As a result, the number of n-bit plaintexts whose ciphertext under pk is within
Hamming distance k� to c∗ is also at most (2t)k�. The plaintext m1 is sampled
uniformly at random from {0, 1}n , and therefore

Pr
[
ExptPRIV1−IND


,A,λ (1) = 1
]

≥ 1 − (2t)k�

2n
. (6.2)

By combining Eqs. (6.1) and (6.2), for all sufficiently large λ ∈ N it holds that

AdvPRIV1−IND

,A,λ =

∣
∣
∣Pr

[
ExptPRIV1−IND


,A,λ
(0) = 1

]
− Pr

[
ExptPRIV1−IND


,A,λ
(1) = 1

]∣∣
∣ > 1 − ε

− (2t)k�

2n .

The PRIV1-IND security of the scheme guarantees that there is a negligible function
ν = ν(λ) such that ν ≥ AdvPRIV1−IND


,A,λ for all sufficiently large λ ∈ N. Therefore, we
obtain

ν ≥ 1 − ε − (2t)k�

2n

≥ 1

2
− (2t)k�

2n
,
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which implies that � ≥ n − 3

k log t
. �
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