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Abstract This work demonstrates how a high through-
put robotic machine vision systems can quantify seedling
development with high spatial and temporal resolution.The
throughput that the system provides is high enough to match
the needs of functional genomics research. Analyzing images
of plant seedlings growing and responding to stimuli is a
proven approach to finding the effects of an affected gene.
However, with 104 genes in a typical plant genome, com-
prehensive studies will require high throughput methodol-
ogies. To increase throughput without sacrificing spatial or
temporal resolution, a 3 axis robotic gantry system utiliz-
ing visual servoing was developed. The gantry consists of
direct drive linear servo motors that can move the cameras
at a speed of 1 m/s with an accuracy of 1 µm, and a repeat-
ability of 0.1 µm. Perpendicular to the optical axis of the
cameras was a 1 m2 sample fixture holds 36 Petri plates in
which 144 Arabidopsis thaliana seedlings (4 per Petri plate)
grew vertically along the surface of an agar gel. A probabi-
listic image analysis algorithm was used to locate the root
of seedlings and a normalized gray scale variance measure
was used to achieve focus by servoing along the optical axis.
Rotation of the sample holder induced a gravitropic bending
response in the roots, which are approximately 45 µm wide
and several millimeter in length. The custom hardware and
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software described here accurately quantified the gravitropic
responses of the seedlings in parallel at approximately 3 min
intervals over an 8-h period. Here we present an overview of
our system and describe some of the necessary capabilities
and challenges to automating plant phenotype studies.
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1 Introduction

A standard approach to determining the function of a gene
is to discover the consequences of its mutation, which con-
stitute the phenotype. For the reference species Arabidop-
sis thaliana, almost all of its approximately 25,000 genes
have been mutated and seeds of most mutant plants are pub-
licly available. However, phenotypes have been detected and
described for perhaps as few as 10 % of those genes. Even in
those relatively few cases, better quantification of the pheno-
types and discovery of additional phenotypes in the mutants
would improve understanding of the affected genes. Add-
ing the time domain to the analysis, allowing the develop-
ment of a phenotype to be captured has proven very useful in
determining details of gene function. Machine vision tech-
nology promises to be effective in the effort to improve plant
phenotype research [7,10,11,15,16,24], where the experi-
ments call for micron level measurements of seedlings on
time scales of minutes or daily measurements of large crop
plants in a greenhouse.

To be effective at the genome scale, the measurement
platform must have the capacity to characterize thousands
of plants in weeks or months. This need for throughput
cannot be at the expense of spatial or temporal resolu-
tion. Parallelizing data acquisition by replicating the imaging
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620 R. Subramanian et al.

Fig. 1 Robot setup

Fig. 2 An example of a seedling imaged under infra red light. Parts of
the seedling are labeled: A cotyledons, B hypocotyl, C root

system can increase throughput while keeping resolution and
sample frequency constant, but the need to frame and focus
each subject manually at the start of an experiment would be
a daunting and highly repetitive task if carried out for a large
number of imaging systems. This limits the scalability and
increases the cost of this solution. As the images are acquired
only at certain time points the imaging systems are idle for
most of the duration of data gathering.

The repetitive tasks associated with collecting time series
of consistently framed and focused images of multiple plants
are well suited for automation by robotics. One robotic
approach is to move the plants repeatedly through a fixed-
camera imaging station [14]. However, moving the plants
can potentially alter their growth and behavior at the fine
scales intended to be captured and analyzed. This draw-
back can be avoided by moving the imaging device across a
fixed grid of samples. For the moving camera solution to be
effective, several machine vision application challenges must
be solved. These include rapid and accurate visual servo-
ing, object recognition, and real-time image-based focusing.
This report describes the construction and performance of a

gantry robot system (Fig. 1) that meets these challenges. The
application presented is the tracking of root growth in seed-
lings of Arabidopsis thaliana (Fig. 2) after reorientation by
90◦ to induce a curvature response known as gravitropism.
The measurement throughput, spatio-temporal resolution,
precision, and amortized cost of the robot system described
here provides a strong rationale for adopting robotic plat-
forms for plant phenotyping studies.

The remainder of this paper is organized as follows, Sect.
2 describes the hardware of the robotic system and the sample
holding fixture. A brief description of a typical data gather-
ing session is provided in Sect. 3. Section 4 provides details
of the image processing used to locate the seedling root and
root tip. Section 5 assesses the performance of the platform
for monitoring a typical root gravitropic experiment. Section
6 provides an outline of future work.

2 System description

The function of the system described here is to locate
numerous seedlings growing along the surface of a ver-
tically oriented gel (agar) substrate using visual servoing
and repeatedly imaging these seedlings in order to create
a highly-resolved time series of images from which growth
and behavior traits can be quantitatively extracted. The sys-
tem consists of, a fixture that holds numerous seedlings ver-
tically within illuminated Petri dishes and a visual servo con-
trolled three degree of freedom gantry robot that locates each
seedling and tracks its growth over a specified time.

2.1 Petri dish containment unit (PDCU)

The Petri dish containment unit holds 36 Petri dishes in a grid,
laid out as a 6 × 6 pattern occupying a 1 m × 1 m area, as
shown in Fig. 3. This unit consists of a removable cassette, a
fixture to hold the cassette in place and a removable backlight
system. The Petri dishes are loaded onto the cassette verti-
cally (six rows by six columns). Each dish contained two or
four seedlings. For the purpose of this article we discuss the
case with two seedlings per Petri dish (for a total of 72 seed-
lings per session), though success has been achieved with 4
and more. Every Petri dish is equipped with its own growth
light and is isolated from the other Petri dishes in the grid to
maintain uniform conditions (Fig. 4). When the whole cas-
sette is secured onto the fixture it is illuminated with a back
light. Ideally, the light used to obtain images of the seedlings
would not affect their phenotypes. Light detection systems in
plants are not appreciably influenced by wavelengths longer
than approximately 750 nm so a backlight panel consisting
of IR LEDs (output maximum at 850 nm). The back light
provides illumination during imaging. The whole Petri dish
containment unit is designed to be modular. The lighting and
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A high throughput robot system for machine vision based plant phenotype studies 621

Fig. 3 Petri dish containment unit (PDCU)

Fig. 4 Schematic and corresponding image of a single Petri dish in the
PDCU. The components labeled are: a LED grow lights, b Petri dish,
c IR backlit region, d Separators that isolate each Petri dish

the environment in each cell (around one Petri dish) can be
changed for various experimental conditions. Each cell in the
unit is equipped with two sets of lights, aligned 90◦ from each
other so that after rotating the holder, the seedlings remain
illuminated from above.

Fig. 5 Three axis gantry robot

Table 1 Gantry specifications

Degrees of freedom 3

Workspace x 1 m

Dimensions z 1 m

y 0.2 m

Accuracy 1 µm

Repeatability 0.1 µm

Speed 1 m/s

Payload 10 pounds

2.2 Gantry robot

The gantry robot has been constructed with 3-axis motion
with a workspace large enough to servo two cameras along
the vertical (X–Z ) plane to all positions of interest in the Petri
dish cassette (Fig. 5). The dimensions, positional accuracy,
and other specifications are listed in Table 1. Each axis is a
direct drive linear servo motors with an individual position
controller. One 4-axis master controller is used for global
control of the gantry. The master controller uses a simple
PID control, connected to the control computer via ethernet.

Two IR sensitive cameras are mounted on the end effector
of the gantry. They are set up in a side-by-side configura-
tion as shown in Fig. 6. Camera 1 with a low magnifica-
tion lens (14 µm per pixel) is used for determining seed
location and obtaining low magnification images (provid-
ing images of the entire seedling) and camera 2 with a high
magnification lens (5 µm per pixel) is used for servoing
and image gathering (images of a 2–3 mm sections of the
root). The cameras are calibrated using controlled motion
of the gantry arm. The PDCU and the robot are positioned
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Fig. 6 A diagram of the two cameras installed on the end effector.
A Low magnification camera and lens. B High magnification camera
and lens. C Robot end effector

facing each other (approximately parallel). If the PDCU
and robot were perfectly parallel, calibration of the cam-
eras using controlled motion of the gantry arm would allow
precise location of Petri plate regions known to contain a
seedling. However, the following issues prevent a straight-
forward hard-coded solution for object image acquisition.
The optics required to obtain useful images of roots (e.g.
Fig. 3) necessarily produce a depth of field as shallow as
1 mm. Variation in the thickness of agar growth medium
among the Petri plates is enough to cause many samples to
be out of focus if a constant working distance was employed.
The optics required to obtain the desired resolution neces-
sarily produce a narrow field of view. A seedling may not be
located within a predetermined 2 or 3 mm area (the typ-
ical width of a field of view) in each Petri dish because
planting is a manual activity and sometimes seed germi-
nation and growth translates the seedling across the agar
surface. Thus to ensure the sample is within the field of
view, and in focus, we use visual servoing to track the root,
center the tip in the field of view and ensure that is in
focus.

3 An example data gathering session
using our robotic platform

The seeds are grown in Petri dishes (10 cm diameter).
The Petri dishes are filled with agar (a commonly used
growing medium) and (2 seeds per Petri dish) seeds are
spaced far enough apart in a predetermined pattern, to min-
imize the interference of one seedling with another during
growth.

The dishes are kept at 4 ◦C temperature, for about
3–4 days, to promote and synchronize germination. The
Petri dishes with germinated seedlings are stored vertically
and illuminated from above during germination, promoting
straight and vertical growth of the seedlings. Petri dishes are
loaded on to the Petri dish cassette such that the seedlings
will be imaged through the translucent agar. This prevents the
condensation from drastically affecting the image quality.

The cassette is loaded onto the PDCU (described in
Sect. 2) such that seedlings are now horizontal (all samples
are rotated simultaneously as the cassette is loaded) to induce
gravitropism. The task of gathering images of the root, as it
reorients to the change in gravity stimulus, is broken into two
stages. During the first stage (where the robot visits seedlings
for the first time) visual servoing and focusing is performed to
accurately localize the tip of the primary root of each seedling
and ensure that it is in focus (while simultaneously saving the
images). The location of each root tip is recorded for use in
the second stage. The second stage of data collection involves
collecting images of the root tip over a period of 5–8 h. If at
any point the root grows out of the field of view, the robot
will servo again to update the location of the root tip (for
5–8 h sessions most roots stay within the field of view). All
the collected images are organized as time sequence stacks
for offline analysis, The manual or stationary camera system
would require similar preparation of the seeds/seedlings, but
would require one seedling to be placed in each Petri dish.
Each Petri would have to be placed in front of each camera
and manually adjusted for focus and position to ensure that
the root tip was within the field of view. Prior to the start of the
data gathering session, the top cover of the Petri dish would
require wiping to remove condensation from the lid. In the
automated system, we image the seedling through the trans-
parent growing medium to prevent the condensation from
interfering with the imaging, thus the condensation does not
pose a problem to our system.

Data collection is completely autonomous once the cas-
sette has been loaded, resulting in one root per image per time
point. The seedling images shown in Fig. 7 have been manu-
ally cropped to save space in this article. Fig. 7a shows a time
lapse of a single seedling as it responds to gravistimulus.

Figure 8 consists of two plots overlaid on each other. They
correspond to the values obtained from images of the seedling
shown in Fig. 7a over a 5-h period. The color coded 2-D sur-
face plot shows the curvature measured along a 1 mm region
100 µm behind the root tip (along the ordinate) at each time
point (along the abscissa). Typically the region next to the
root tip is of interest (it is the region where the growth occurs
and bending is generated), the plot only shows the region of
interest. The second plot shows the angle (ordinate) of the
root tip with respect to the horizontal at each of the same time
points. These measurements were extracted using techniques
from [15].
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Fig. 7 Seedling responding to gravistimulus. Each image shows the
same root at different time points over a period of 4.5 h. These are the
images obtained after servoing and focusing have been performed

Fig. 8 The color coded plot shows the curvature of the region of the
root close to the tip (within 1 mm). The line plot shows the angle of the
tip (with respect to the horizontal) over the same time period

4 Image processing for visual servoing

To increase the time course density of the gathered data the
servoing is performed once at the start of the data gather-
ing session to locate the seedlings. The servoing process is
repeated only if the seedling’s primary root tip grows out of
the field of view. The servoing loop used is a simple image
based visual servo scheme as described in [3]. In order to
perform visual servoing, features need to be defined in the
scene that can be tracked through the entire servoing pro-
cess [3,4,9]. Typically, these features are image locations of
markers/fiducials placed in the scene and are well defined and
easy to extract from an image of the scene. Often dots with
starkly different color or texture from the background/scene
are used for markers. As the field of view and depth of field
of our camera is as small as 1 mm, respectively, markers
would need to be engineered to be very small and very close

to the seedlings. Placing them would be very tedious and the
markers could interfere with the biology. Primarily, because
there may arise a situation where the markers may interfere
with the biological process being observed (blocking the root
growth, etc). Even if successful, all the required markers may
not be visible in the field of view. Recent work, [21,22] has
shown that image moments can be used as features for servo-
ing, Avoiding the need for markers placed in the scene. We
define the servoing task as bringing the root tip close to the
center of the field of view. This will involve the following
steps:

– Locating the seedling.
– Identifying the root.
– Bringing the root within the depth of field of the lens.
– Determining the location of the root tip.
– Keeping the root within the depth of field of the lens.

For our system we have calibrated the cameras and the
robot motion to the PDCU. Also, in a Petri dish the seeds are
planted one to each quadrant (sometimes only top 2 of the 4
quadrants are used), thus gathering has been tested with 144
or 72 seedlings. Under ideal conditions, if the exact location
of the seed was predetermined in the Petri dish, it would be
enough to perform the above mentioned steps without visual
servoing. But, owing to the small size of the seedling’s root
(approx 7 mm long and 40–45 µm wide) along with the
small field of view and depth of field, small errors in calibra-
tion and/or alignment can cause the predetermined seedling
locations to be inconsistent with the actual locations, a small
motion (approx 2 mm) in any direction can cause the root
to be completely absent in the image. Hence a search will
have to be performed to find and confirm that a seedling/root
tip/root is present and is in focus. The robot moves the low
magnification camera to the center of each quadrant of the
petri dish to attempt a coarse localization of the seedling.
A search is performed within the quadrant to find the
seedling. Once the seedling and root is identified the robot
visually servos along the root to the root tip with the high
magnification camera.

The process of servoing is broken into two parts, rather
than servoing in 3D [5,6]. Servoing is performed separately
along the plane of the PDCU (X–Z directions) and along
the direction normal to the PDCU (Y direction). Partitioning
the motion in our system was straight forward as the robot
is a 3-axis gantry with all motions being pure translations.
Partitioning the servoing allowed us to break down our task
into two tractable problems rather than performing them as
one (which would lead to a situation where we may focus on
an object not knowing if it were the root or tracking a region
of an image although it might not be the root when brought
into focus), but it still required identifying a root when it may
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be out of focus. Hence the critical tasks for servoing were to
design:

(i) A technique to identify the root and its tip in the image,
to provide a reliable target for the visual servoing algo-
rithm even when the root and/or root tip is out of focus.

(ii) A technique to determine if the root/root tip is in focus
and a scheme to arrive at the desired Y -axis location.

4.1 Root and root tip segmentation

The primary challenge that had to be addressed was reli-
ably locating the seedlings in the Petri dish. In previous
work related to image based phenotype analysis, segmenta-
tion operations and measurement extraction have made two
fundamental assumptions:

(a) The feature of interest is always in the field of view.
(b) The feature of interest is in focus.

In the static setup described in [1], for example, the exper-
iment involved determining the location of the root tip and
manually focusing on it so the above assumptions were valid.
In [15,23] the authors reduce manual effort by bringing more
seedlings within the field of view. This is done by either
reducing the spatial resolution or bringing many seedlings
very close together, introducing a new set of complications
caused by seedlings crossing over one another. In our case,
we needed to locate the seedling when it was not within the
field of view and autonomously adjust the camera position
and focus accordingly.

Our solution utilizes two cameras. One camera with low
magnification capable of obtaining a large field of view (most
of one quarter of the Petri dish). Although this makes the
task of finding the seedling more tractable it introduces a
set of problems. The quality of these images was often low
enough to create challenges. Condensation on the lid of the
Petri dish could cause dark regions that a threshold operation
would convert into potential objects of interest, or reduce
the contrast on which any segmentation process operates.
Artifacts such as scratches on the agar surface or Petri dish
could appear similar to roots. The illumination would not be
uniform over the entire image. Figure 10 presents some typi-
cal images that the vision system encounters. Once the robot
has completed the servoing task and performs a focusing step
most seedling images resemble Fig. 9. Initial attempts were
made to search for the seedling in and around the expected
location in the vicinity of the seeds. This approach worked
well to locate the seedling using only the high magnification
camera. But it proved to be time consuming and significantly
impacted the throughput of the system. Thus this technique
was replaced by the two camera technique.

Fig. 9 An image of a seedling root responding to a change in gravity
stimulus (after servoing and focusing)

The seeds are known to be in each quadrant of the Petri
dish. The robot moves the low magnification camera in front
of each quadrant of the Petri dish and the seedlings are
initially identified in the low magnification image. The higher
magnification camera is moved to the identify location and
subsequently visually servo along the root to the root tip (the
same image analysis routine was used for identification and
segmentation for all images and both cameras).

The following section provides a detailed description of
root segmentation procedure, which can identify the region
of the image that is most likely to contain the the root even
when it is not in focus (steps shown in Fig. 11). The seg-
mentation task has been split into two operations. The first
operation identifies regions of the image that can contain the
root. The second operation uses heuristics and probabilities
to identify the region with the highest amount of rootness.
This segmentation procedure is used to identify the feature
for the servoing task.

4.1.1 Per pixel probability assignments

Each pixel in the image is assigned a probability using a
Bayesian framework. The probability assignments make two
assumptions:

(a) The root is darker than the background.
(b) The root occupies at most 3 % of the entire image.

The first assumption is because of the imaging modality.
The root is opaque IR light. The root region contains darker
gray levels than non-root regions. The second assumption is
based on the magnification of the lens being used, the field
of view available, and, the typical size of the Arabidopsis
seedlings. The value 3 % is obtained in cases where the root
stretches across the entire image.

These two assumptions help define the likelihood and
prior terms in the Bayes equation. We define these terms and
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Fig. 10 These images depict some of the worst case scenarios observed
when performing the task of visual servoing, (i.e. when the robot moves
to a Petri dish location to find the seedling and root tip). The cause can be
attributed to scratched on the Petri plate, condensation build up within

the plate, or a scratch an non smooth surface on the growing medium.
In contrast with the “ideal” image that we usually expect as shown in
Fig. 9, these images represent the potential challenges in identifying the
root

the probability assignments in formal terms below. We use a
single channel image I , of size m × n, with pixel intensities
at pixel location x, y

I (x, y) = g (1)

where

x ∈ [0, m − 1], y ∈ [0, n − 1], and g ∈ [0, 255].
We can estimate the probability of the occurrence g (p(g))
as the expected value of g (where E is the expected) from
the histogram of I .

p(g) = E[g|I ]. (2)

The probability of finding a root in an image based on
its relative size in the image, p(r) is 0.03. This value was
estimated empirically from a collection of images of the root
acquired a priori. This value is required to help bias our prob-
ability estimate. The final probability assignments are not
very sensitive to this value, Sect. 5 discusses the sensitivity
of final segmentation to p(r).

Finally we describe the likelihood function, that will esti-
mate the probability of a pixel belonging to the root having a
gray level g, based on our first assumption can be written as

p(g|r) =
{

1 − g
gavg

: g ≤ gavg

0 : g > gavg
(3)

where gavg = E[g], and if g = 0 then p(g|r) = 0. We dis-
cuss the reasons for our choice of linear model for p(g|r) in
Sect. 5.2.2. Using the terms defined above for the priors and
the likelihood we can compute the conditional probability
p(r |g), probability of a pixel, I (x, y), belonging to the root
given it has a gray scale value g

p(r |g) = p(g|r) p(r)

p(g)
. (4)

Once the probabilities are assigned for every pixel we
construct a probability matrix with each entry containing
the probability of the pixel in the corresponding location
in the image. This matrix is used in the next stage to identify
the root (Fig. 11).
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Fig. 11 The images show the output of the different steps in the segmentation process. a Original image, b pixel probability image, c binarized
image and d segmented image

4.1.2 Heuristic root selection

From the previous step we obtain a probability matrix. From
the original image we remove all pixels with p(r |g) = 0.
The remaining pixels cluster together forming patches in the
image. In most cases, images with good contrast, the pix-
els form just one patch. This patch is considered to be the
region which best represents the root. In cases with poor
image quality many patches are formed. Poor image qual-
ity is a result of factors highlighted above. At this stage
numerous techniques to exclude unwanted pixels can be
used. From analysis performed we note that any adaptive
threshold technique will work to isolate the high probability
regions. A fixed thresholding technique works only in some
ideal cases. For our purposes we choose to remove pixels
that have p(g) · p(r |g) > p(r). This follows from the fact
that background pixels will be present in large numbers. This
threshold helps in removing low probability pixels from gray
levels that occur in large numbers in the image. The removal
of these pixels produces isolated regions in the image from
which the region containing the root needs to be identified.
Section 5 provides a brief discussion of algorithm’s sensitiv-
ity to the value of p(r).

Each patch is assigned a probability equal to the average
of all its pixel probabilities. Heuristic driven weight assign-
ments are made for each patch. The heuristics use informa-
tion from basic moment analysis (area, major, minor axis)
on the patches. The larger, longer and thinner patches that
are more horizontal are assigned higher weights. We term
this weighted probability the rootness of the patch. Finally,
the patch with the highest rootness, weighted probability is
chosen as the most likely root patch. If there are n patches in
the image we can formally define the rootness as

wi
1 = 1 − minor axisi

major axisi

wi
2 = 1 − Orientationi

90

w2 is set up to look for a horizontal root as the roots
will be horizontal when the cassette is rotated and placed

in the PDCU. Also the root identification needs to be carried
out during the first pass. All angles are computed as the val-
ues in the first and fourth quadrant and thus the orientation
is always between 0◦ and 90◦.

wi
3 = areai∑n

i=0 areai
where i = 1 . . . n

For every patch i , we average the probability over all m
pixels

pi
avg =

∑m
j=0 p(r |g j )

i

m
where j = 1 . . . m

pi
root = wi

1 · wi
2 · wi

3 · pi
avg (5)

rootness = max(pi
root). (6)

The patch designated as having the maximum rootness is
labeled as the root (the most likely root patch) used for the
servoing algorithm. The robot servos to the tip of the patch
(bringing it to the center of the field of view). If the root does
extend beyond the field of view, the robot servos until a tip is
reached and positions the near the center of the field of view.

4.2 Focusing

Focusing needs to be performed to ensure that the root tip
images, are as clear and crisp with minimal amount of blur
as possible. Ideally, if no alignment errors exist between the
gantry and the PDCU and the the PDCU is perfectly flat
without any flexure and the agar growing medium in each
Petri dish around the seedling is the same thickness, focus-
ing would not be necessary. But, if the PDCU is misaligned
by more than 0.2◦ more than half of the seedlings will be
out of the depth of field of the lens. Thus a system for auto
focusing is required. Auto focusing techniques fall broadly
into two categories, active and passive. Active focusing tech-
niques rely on additional sensors like, lasers, SONAR, etc., to
provide additional range information. While, passive focus-
ing techniques employ software based techniques to obtain
the same range information directly from the image. Typi-
cally, multiple images are obtained and a quantitative mea-
sure (focus measure) of the extent of focus (or defocus) is
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computed from the image. In both cases a search will need
to be performed to determine the location of the best focused
image. In our case, we chose to use a passive focusing tech-
nique, to avoid using any additional sensors or equipment
being added to the gantry.

In the description of the segmentation algorithm (Sect. 4.1)
we have shown that the servoing can be performed with
images of the root that may be out of focus. This section
describes the technique used for searching (along the Y -axis
of the gantry) for a focused image of the root tip. Unlike
the search of the root tip (described in Sect. 4.1), where the
search is performed in image space (along the X–Z plane of
the gantry), here the search is performed in the space of the
focus measure. Instead of using the entire image, the image
patch with the highest rootness measure is used. The pro-
cess involves determining the value of the focus measures at
a few different positions (along the Y -axis) and estimating
the position that would provide a maximum focus score. The
description of the focus measure and the search technique
used are presented below.

4.2.1 Focus measure

From the work in [8,13,17,20,25], it is shown that most
focus measures try to measure image properties like gray
level image gradients, image contrast or frequency content.
In essence they are a measure of the extent of the blur in
the image. From a review of previous work on image based
focusing, the most commonly used focus measures were
identified and are listed below. If we have an image i with
height H and width W with i(x, y) representing the gray
scale value of a pixel in i located at row y and column x , µ is
defined as the mean gray level of the image i , we can define
the following focus measures as:

a. Tenenbaum Measure (Tenengrad)—the image is con-
volved with a Sobel operator and the sum of the square
of the gradients in the x and y directions is computed.

Ftenengrad =
∑

H

∑
W

Sx (x, y)2 + Sy(x, y)2

where Sx (x, y) and Sy(x, y) are the results of convolv-
ing a window around i(x, y) with the Sobel operators in
the x and y direction.

b. Variance—computes the variations in gray levels in the
image.

Fvariance = 1

H · W

∑
height

∑
width

(i(x, y) − µ)2

c. Normalized variance—similar to the variance measure
except the value is normalized with µ.

Fnormvariance = 1

H · W · µ

∑
height

∑
width

(i(x, y) − µ)2

d. FFT Magnitude—FFT based methods use the log mag-
nitude values of the image in frequency space. The
strength of the low frequencies and high frequencies
are computed.

FFFT = 1

h · w

h∑ w∑
log

(
|�e I(x, y)|

)

where I = FFT
[
i
]
. h and w determine the region in

frequency space (cut off frequencies) within which the
frequency strengths are averaged.

Focus measures mentioned above, when evaluated on
images of roots, performed in a similar fashion. Figure 12
shows sample plots of the focus measures, it can be seen that
the focus measures produce higher values as Y position that
is closer to the best focus position (indicated by the vertical
line). The FFFT measure was found to be very consistent but
always slightly shifted than the others. On further analysis
it was found that this was due to the presence of root hairs
which are very small compared to the root and thus contrib-
ute heavily to the higher frequency response. But this mea-
sure is computationally intensive, thus negatively affecting
throughput. Owing to ease of computation and simplicity the
normalized variance measure was adopted. This focus mea-
sure was subsequently used to search for the gantry position
with the best focus.

4.2.2 Searching technique for focusing

Using the focus measures chosen in the previous section a
search needs to be performed to determine the location at
which the best focused image of the root can be obtained.
The techniques used to search for the best focused position
work under the assumption that the scene contains only one
object of interest and, within the search range there exists
a single position where the object is in focus (i.e. the focus
measure will produce one maxima within the search range).
Thus, in theory, the focus measure values can be modeled
as a quadratic function (as used in [8,13]) and hence the
maxima can be determined by obtaining the focus measure
at three different gantry positions and the location of the
maxima can be directly estimated (shown in Fig. 14). The
estimated location of the maxima is indicated by maxq . This
technique of using a quadratic function as a model and deter-
mining the maxima has been the most common approach,
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Fig. 12 Plot showing the four focus measures. a Tenengrad, b nor-
malized variance, c variance and d FFT measure. Each measure has
been individually scaled to range between 0 and 1. The abscissa shows
the number of steps taken from a starting depth at step 0. The ordinate
shows the scaled values of the frequency measure

a

c

ds

s sr f

Fig. 13 Thin lens system with focal length (f), aperture (a), object to
lens distance (s), image to lens distance (d), depth of field in front and
rear of the object (s f and sr )

[8,12,13,17,19,20,25]. From optics literature, given the
properties of the lens we can compute the depth of field for
varying lens to object distances, using the relation in Eq. (7)
obtained from Fig. 13.

1

s
+ 1

d
= 1

f
(7)

where f is the focal length, a is the diameter of the lens, s
is the distance of the object from the lens and d is the dis-
tance away from the lens at which the image is formed. c is
the circle of confusion, it is a value based on the perception
of the human eye. The typical value use by photographers is
0.033 mm. The value indicates the maximum size of a blurred
image of a point object at which the human eye no longer per-
ceives the image as a point (i.e. perceives it as blurred). The
values s f and sr are distances in front of the object and behind
the object up to which the circle of confusion is smaller than c.

Using Eq. (7) and the Fig. 13 we can write the following rela-
tions.

1

s + s f
+ 1

d
[
1 + c

a−c

] = 1

f
(8)

1

s + sr
+ 1

d
[
1 − c

a+c

] = 1

f
(9)

on re-arranging, we have

s f = sc(s − f )

f a + c(s − f )
, sr = sc(s − f )

f a − c(s − f )
(10)

From Eq. (10) it can be seen that the value of sr will be greater
than s f . This produces an asymmetry, the depth of field in
front of the object will be always less than the depth of field
behind the object. Thus the values obtained from a focus
measure cannot be modeled accurately as a simple quadratic
curve.

In the current application, the peak of the focus measure
may not occurs at the center of the search space. In most situ-
ations one set of sampled (either the first two or the last two)
points tend to be closer to the peak than the other. To indi-
cate the problems that arise, we choose a dataset where we
have acquired images through a full range of focus. For the
purpose of our discussion we simulate a few different cases
that will be encountered, by varying the choice of sampled
points and showing to the reader the variations that occur to
the fit and the estimate of the location peak focus.

When comparing Figs. 14 and 15 it can be noted that
the curve q changes drastically when the choice of sampled
locations change from p2, p3, p4, in Fig. 14 to p1, p2, p3, in
Fig. 15. Making the quadratic estimation of the focus mea-
sure maxima unstable and sensitive to noise (in the computed
focus measure). In addition quadratic model is not an accu-
rate representation of the occurring phenomenon.

From previous work [13,17,19], the two most preferred
techniques, are (a) Global Search, (b) Fibonacci Search. The
global search technique searches the entire depth range with
fixed step size to determine the location of the maxima in
the focus measure. This is very time consuming and the least
preferred option in our case as it will affect throughput sig-
nificantly. The Fibonacci search has been shown to be opti-
mal, as mentioned in [13], but even this scheme requires at
least 10–15 images to be captured to determine a stable max-
imum. The search speed can be increased by using larger
step sizes, at the expense of accuracy. In some cases, as dis-
cussed in [17,19], the search is started with a large step size
and repeated in a chosen region with smaller step sizes. All
of these techniques adversely affect the throughput of our
entire system. This is because, if more images are need to
determine the focus, more time is spent focusing thus fewer
seedlings can be observed in a fixed amount of time.
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Fig. 14 Plots comparing two search techniques. The raw data (r ), the
quadratic fit (q) and the linear fit (L1 and L2), when using locations
p2, p3 and p4 are shown. The estimated location of the focus measure
maxima is at maxL , maxq and max, for the linear fit, quadratic fit, and
manual focusing. The depth of field is about 5 steps and step size is
about 50 µm
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Fig. 15 Second plot comparing two search techniques with a different
set of sample points. The raw data (r ), the quadratic fit (q) and the linear
fit (L1 and L2), when using locations p1, p2, and p3 are shown. The
estimated location of the focus measure maxima is at maxL , maxq and
max, for the linear fit, quadratic fit, and manual focusing. The depth of
field is about 5 steps and step size is about 50 µm

Based on the discussion in the preceding paragraph we
chose to model the focus measure function as two lines whose
slopes correspond to the increasing and decreasing trends
in the focus measure. This model will better represent the
asymmetric nature of the depth of field. We also show (in
Figs. 14, 15, 16) that this model is more resistant to noise in
the focus measure and is less sensitive to the sampled posi-
tions. The intersection point of the two lines will correspond
to the peak value, from which the required position can be
estimated. To construct the model, the focus measure needs
to be obtained from four images obtained at four different
locations. The gantry can be moved to these locations and
the focus measure is computed from the obtained images.
The first two images and the last two images are captured

0 10 20 30 40 50 60
0.045

0.05

0.055

0.06

0.065

0.07

Number of steps from start position

F
oc

us
 m

ea
su

re
 v

al
ue

p1 max
L

max
qmax

p2

Quadratic Fit (q)

p3
p4

Raw Data (r)

line 1 (L
1
)

line 2 (L
2
)

Fig. 16 Plots comparing the quadratic fit and linear fit. Shows the raw
data, the estimate when using a quadratic fit and the line fit. When the
sampled locations are changed the linear fit estimate of the peak location
is more stable than the quadratic fit estimate

with the small change in the Y position of the gantry. The Y
position change between the second and third image is com-
paratively large. Two straight lines are fit, one to the first two
points and another to last two points. The intersection of the
two straight lines are computed. This intersection point will
estimate the location the gantry needs to move to to obtain a
focused image of the root. This process is shown in Figs. 14
and 15. The lines L1 and L2 are fit using the focus measure
values obtained from locations p1, p2, p3, p4. When com-
paring Figs. 15 and 16, it can be seen that unlike the quadratic
fit estimate the line fit estimate is more stable when the cho-
sen sample locations are changed (p3 is shifted) and is less
sensitive to noise in the focus measure values. This technique
has been successfully used to acquire data from more than
4000 seedlings so far.

This method will not guarantee optimal position estima-
tion, as seen by the discrepancy between maxL and max, but
will bring the gantry to a location such that the root is located
within two depth of field of the lens. The advantage over other
search techniques is that it requires far fewer images, hence
less time to focus.

Using the above described servoing and focusing tech-
nique we have been able to successfully gather image data
concurrently for up to 144 seedlings in one session.

5 System performance evaluation

In this section the performance (throughput) of the system is
analyzed from two different view points, (i) The user (plant
biologists) and (ii) The system design. In order to discuss
each of these two points in detail we start by briefly describing
the process of data gathering, which is broken into two stages.
Stage 1, is the determination of the locations of the root tips

123



630 R. Subramanian et al.

for all the seedlings. The gantry visually servos to the tip of
the root and records the locations. Stage 2 involves repeated
visits to the recorded locations to capture the changes occur-
ring at the root tip. Stage 1 is performed once per data gather-
ing session and is time consuming, currently requires about
20 min to complete Stage 2 consists of multiple passes over
the cassette to the recorded locations, with each pass taking
3.5 min. The following equations provide a detailed break
down of the time, for which the data gathering is performed.
This will help discuss and better understand the performance
and bottlenecks of the system.

tgath = tpos + tsettle + tcap (11)

tgatherall = N ∗ tgath (12)

tloc = tfocus + tfind + tservo (13)

tfp = tloc ∗ N (14)

ttot = tfp + n ∗ tgatherall (15)

N Number of seedlings
n Number of time steps to be captured
tpos Time to move robot to a given position
tfind Time to segment the root
tsettle Settling time provided to prevent motion

vibrations from causing image blur
tservo Time to servo to region of interest

(root tip)
tfocus Time to determine proper focus
tcap Time to capture and store image data of

region of interest
ttot Total time for data acquisition
tloc Time to locate seedling
tfp Time to locate all seedlings on

the first pass
tgath Time to gather one image from one

location
tgatherall Time to gather one image from all

location in the cassette
tonset Estimate of the time lapsed between the

change in stimulus and the seedlings
first response

tcomplete Estimate of the time lapsed between the
change in stimulus and the seedling
reaches a steady state

A few points to note on the variables mentioned above.
tpos depends on size and speed of the system and is fixed
by design. The gantry robot with its high speed, large size
and high accuracy, allows all motions to be less than 1 sec-
ond, thus keeping tsettle to be about 1 second. Considering the
speed of camera and computer, tcap and tfind each are much
less than 1 s, thus are not very critical for the analysis of the
system performance.

5.1 Performance analysis: user perspective

From the user perspective (plant biologists), who define the
biology to be observed and the length of the data gathering
session, there are two primary concerns:

(a) In terms of timing—amount of time required to locate
and image all the seedlings in the Petri dish cassette.

(b) In terms of yield—number of useful seedling data gath-
ered per session (as described in Sect. 3).

The system is designed such that during the first pass
over the cassette, time is spent locating and focusing on each
seedling (Eq. 14) (in addition to the time spent collecting the
image data, Eq. 12), as described above. This makes the first
pass through the cassette longer than each of the other passes.
For the subsequent passes the system requires a shorter, albeit
finite, period of time. These two parameters tfp and tgatherall

implicitly effect the system performance for the user.
Equation 14 computes the amount time taken for the first

pass, this specifies the lower limit of the biological process
that can be observed. From Eq. 12, we can determine the total
amount of time required gathering data for one full pass over
the cassette. This will determine upper limit of the speed
of the biological process. Any biological process that has
an onset time (tonset) greater than tfp, but a completion time
(tcomplete) smaller than tgatherall will be under sampled. Thus
N , will have to be scaled based on the speed of the biological
process. Currently, even with 72 seedlings planted in the cas-
sette, tgatherall is approximately 3.5 min (the time gap between
two successive images of a given seedling). This time reso-
lution is much faster than a typical biological process, which
are in terms of hours. Hence is not of critical concern to the
throughput. This can be seen from the following equation.

For determining the number of seedlings, N , that can be
observed in a session, we have the following constraints from
the above discussion

tfp < tonset tgatherall < tcomplete (16)

N <
tonset

tloc
N <

tcomplete

tgath
(17)

Using Eqs. 14 and 12 and rearranging we have Eqs. 17. As
mentioned above, tcomplete � tgath, thus the value of N is
determined by Eq. 18, but for a generic gathering session we
would pick the lower N value.

N <
tonset

tloc
(18)

Having derived an equation for the upper limit on the num-
ber of seedlings that can be imaged during a given session,
the user will be interested in overall yield in the data gathered.
This is described as the percentage of seedlings on the cas-
sette that provided image data from which measurements are
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Table 2 Robotic system performance

Test # 1 2 3

Seedlings planted 144 144 72

Bad data/servo or focus error 18 26 5

Bad data/scratch on agar,

improper germination, growth 9 11 6

outside depth of field

Good data potentially available 135 133 66

Effective yield (%) 86 80.5 92.4

reliably extracted and used. The effective yield takes into con-
sideration that some seeds in the cassette may not have germi-
nated or other external non system related issues. The effec-
tive yields for three sample gathering sessions are reported
in Table 2.

5.2 Performance analysis: system design perspective

The previous section provided an analysis of the system
from the user point of view and identified the operating lim-
itation with respect to throughput of data gathered. In this
section three other aspects of the system are discussed in
detail namely effective yield, root segmentation and focusing.
These effectively determine how well the system is working
and have a significant effect on the throughput of the entire
system.

5.2.1 Effective yield

The effective yield of a data gathering session is measured
in terms of the useful data obtained from a data collection
session, i.e. the cost of failure to collect useful data from
a seedling in the PDCU. This is simply the performance
adjusted, taking into account that some seedling locations
had seedling deemed not “useful” or not “good”. Data from
a seedling is deemed “useful” or “good” if the root & root tip
can be identified and measurements can be reliably extracted.
Thus providing information about the number of “good”
seedlings for which data was not acquired. Table 2 lists three
examples of a typical data gathering session and identifies the
number of seedlings that were identified as “good” and num-
ber of seedlings the system failed to acquire. The seedling
data that were not acquired fall into two categories, (a) Data
unavailable due to external factors (not related to the robotic
system) and (b) Data unavailable due to systemic failures
(related to limitation of the hardware or software). These are
itemized below.

Data losses due to external factors Some of the situations
where failure to collect data is due to factors not related to the

Fig. 17 a Scratches. b Peeling of agar

Fig. 18 a Growth out of focus plane. b Non-germinating seed

robotic platform are itemized below with examples shown
in the figures. These are typically due to anomalies in the
medium, scratches on the Petri dishes, seeds failing to ger-
minate or seedling not adhering to the growing medium, etc.

(a) Scratch on agar medium—a scratch in the agar imaged
in infrared light contains many features similar to a
young seedling (about 2 days old). These are some-
times erroneously marked as seedlings (see Fig. 17a).

(b) Peeling of the agar medium—in some cases the agar
peels away from the plate and thus produces a long
root-like artifact, which the servoing system errone-
ously identifies as a root (see Fig. 17b).

(c) Root growth out of the depth of field—this phenome-
non occurs in two forms, both of which cause focus-
ing problems. The first, the root during the first day or
two of the germination process has grown into the agar
medium rendering one part of the root at one depth and
the other at another (Fig. 18a). The second case, occurs
when the root grows into the agar during data collec-
tion. Both cause the data gathered to be out of focus,
in some cases almost impossible to use.

(d) Non or late germination—some seedlings do not ger-
minate or germinate much later than the majority of
the other seedlings (see Fig. 18b). This can result in
no significant root-like feature being present and can
cause the segmentation routine to identify a scratch as
a the most likely root region.

(e) Thin roots—these are seen in a few cases and tend to
be half or quarter the thickness of healthy regular roots
and are generally rejected as bad data (Fig. 19).

(f) Random growth of roots—there are cases where the
root or the hypocotyl curl around, which makes any

123



632 R. Subramanian et al.

Fig. 19 Seedling with thin roots

Fig. 20 Whole seedling rotates during data capture

curvature or angle measurements a challenge and so
these seedlings are rejected as outliers. In some cases
this causes errors in identifying the root tip and results
in servoing errors. It may lead to the servoing stopping
prematurely or straying resulting in a blank image, etc.

(g) Seedling shifting/rotation—the seedlings, due to the
force generated by the turning of the root tip and the
hypocotyl simultaneously cause the seedlings to rotate
(see Fig. 20), this may cause erroneous angle measure-
ments. In addition, the germinating seedling may shift
from the original planted location of the seed. In most
cases the system can still identify the root and root tip.

(h) Condensation effects—during an experiment conden-
sation builds up on the inside of the Petri dish lid (on
the face devoid of the agar growing medium). This
condensation build up negatively affects the image
intensity and contrast and therefore the performance of
many automated thresholding techniques. This makes
automated thresholding schemes to predict erroneous
thresholds.

The “error conditions” listed above impact overall perfor-
mance. Averaging over many data gathering sessions these
data losses are approximately 5–10 %.

Data losses due to internal factors (system errors) In eval-
uating the robot system performance, we exclude the above
cases, and assess only the drop in effective yield due to draw-
backs in the system. The following situations arise from
errors in the robot focus/servo techniques and hence are
potential avenues for improved yield.

Fig. 21 Motion blur induced when operating robot at high speeds

(i) Out of focus roots—the errors in focusing are primar-
ily due to the fact that the Petri dish and growing media
are all transparent. Thus during the focus searching
process the focus measure (measuring image contrast)
can be affected by scratches, dust, bubbles in growing
media and condensation, all effect the image contrast.

(j) Vibration blur—blur is seen when the robot speeds
are set very high as the jerk generated is large during
starting and stopping (shown in Fig. 21), making it
necessary to have a settling time. Currently to avoid
having very large settling times the gantry robot is
operated at about 30 % of the maximum speed.

(k) Blank images—these images result from (1) non ger-
mination of the seed causing the servoing to stray (as
it cannot find the root tip) and (2) Erroneous identifi-
cation of a seedling.

The effective yield is determined as the percentage of seed-
lings (with useful data collected) versus the available “good”
(discounting those seedlings that fall into categories (a) to
(h)) seedling in the cassette. This measure, only considers
the mistakes performed by the system (categories (i) to (k)).
As the effective yield is an adjusted measure (discounting the
non system loss in data collection) it is possible to achieve
100 % under ideal system performance. From the data collec-
tion sessions so far the effective yield has varied from 85 %
to about 95 %. With further improvements to the servoing
and focusing system the effective yield can potentially be
increased by about 5 %.

5.2.2 Assessment of the root segmentation technique

The performance of the root segmentation technique was
measured by the number of successful root and root tip detec-
tions, while handling all the constraints mentioned in Sect. 4
as effectively as possible. A seedling was deemed success-
fully detected if the root was correctly found and the servoing
positioned the root tip at the image center of the image (within
a 100×100 pixel window). Table 3 provides the information
on the success rate. From the table we note that the system
detects the root and is successful 87.4 % when a root exists.
It is harder to determine the false positive, this is because
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Table 3 Overall performance in terms of effective number of seedlings
found, i.e., number of useful image stacks of seedlings acquired from
which phenotypic information can be extracted

Seedlings planted (Image stacks) 3024

Total failure 633

Number of seedlings for which

useful data could not be acquired 289

due to factors not related to the

segmentation technique

Good data potentially available 2735

Effective errors 344

Effective yield (%) 87.4

If the system found a seedling and servo to the root tip (bringing it
within the field of view) it was deemed a success

with the current frame work the region with the most root-
ness will be detected and in the case when no root is present,
the region with the highest rootness will be used. We allow
this to happen as we are not enforcing a hard threshold on
the minimum rootness value that we expect for a root region.

The failures were of two kinds: (a) errors in segmentation
or tracking or (b) missing seedlings. The segmentation errors
were caused by incorrect identification of the root. Errors of
type (b) are due to external factors, such as seeds that do not
germinate, roots that grow out of the plane of the Petri dish,
etc. These seedlings are excluded from the success calcula-
tions. Errors of type (a) are caused because the image quality
is poor. Other reasons are a result of factors mentioned in
Sect. 5.2.1.

We performed a comparison of the output of probability
based segmentation technique with a standard implementa-
tion of Otsu [18] to determine the threshold. Some of the
results are shown in Fig. 23. From the images in Fig. 23a
we see that histogram is unimodal and thus do not expect
Otsu to perform very well (as the primary assumption in the
Otsu algorithm is that the image is bimodal, as with many
other automated thresholding techniques). But, we see that as
image quality improves Otsu performs well (e.g., row three
in Fig. 23). We notice a similar scenario for the case of the
Canny [2] edge detector. In the case of Canny edge detector
when used on cleaner images (better quality) it is possible to
obtain usable results, but the parameters will need to tuned for
each image. Figures 9c and 22 shows the output of the edge
detection, using Canny, with hand tuned input parameters
(sigma of the smoothing kernel and threshold). The output
degrades when using fixed values for all images and as the
image quality degrades.

Section 4 introduced the use of the prior term p(r).
This term was obtained empirically from 300 clean images.
Because this value is used as a threshold (of sorts) we tested
the sensitivity of the output to it by varying the value of
p(r) from 0.02 → 0.10 with no significant change in the

Fig. 22 Output of Canny edge detector when manually tuned for each
image

segmented image, when image quality was good. But, when
the image quality was very poor (i.e. completely out of focus
or containing scratches, condensation etc.) the value of p(r)

had to kept within the range [0.027, 0.05]. The increase in
sensitivity to the value of the prior was due the shifting of the
histogram towards the lower gray values, as the poor images
had lower gavg = E[g]. In addition the histograms of the
poor quality images were spread out over larger ranges of
gray levels especially when images were completely out of
focus. The likelihood function p(g|r), we assumed a linear
model, which is represented in Eq. (3). From the equation
it can be noted that highest probabilities are assigned to the
darkest gray levels and the value decreases monotonically
until the mean gray level of the image. All other gray lev-
els are assigned a zero value. Ideally, a model based on the
histogram information of numerous sample images of the
root can be built. Other models with exponentially decaying
trends were tested, but the model in Eq. (3) is simple and
works equivalently well.

5.3 Throughput comparison

In order to demonstrate the throughput advantage that the
system has over other methods of data acquisition another
test was performed where 1700 seedling were imaged. The
time required was 28 data gathering sessions, accounting for
a yield of about 82 %. The data gathering session is dependent
on the biology being observed, for gravitropic experiments
it typically lasts for about 8 h and will have to be the same
irrespective of the technique used for data gathering. If the
same task were performed with a bank of 10 static cameras
with one camera observing one seedling in one Petri dish as
used in [15] it would have taken about 180 gathering sessions,
even if we assume 100 % yield. We assume 100 % yield as

123



634 R. Subramanian et al.

Fig. 23 The images show the difference in output between the prob-
abilistic approach and a standard implementation of a thresholding
algorithm, e.g. Otsu. a Original image captured, b output of threshold-
ing when using Otsu algorithm to automatically estimate the threshold

value, c output of Canny edge detector when manually tuned for each
image (images do not have the same parameter values), and d output
from the probabilistic segmentation technique

no extensive studies on stationary camera systems have been
performed or reported in the literature. If we assume a similar
yield as we have seen in the robotic system the number of
sessions required to collect the same dataset would be about
200. Further optimization of the robotic system can lead to an
order of magnitude advantage with respect to data gathering
time.

The number of sessions required for the stationary cam-
era system would vary with the number of stationary cam-
era units. But with the increase in number of camera units,
cost (as can be seen from Table 4) and logistic issues arise
(e.g. maintaining consistent environmental conditions over
long periods of time, many months, will be a more difficult
task). Additionally, the throughput of the robotic system can
be further increased (potentially doubled) by planting more
than one seedling close to each other such that they are within
the field of view of the high magnification camera. There are

complications that will arise and further work is currently
required to make this scenario work well.

5.4 Setup analysis

In addition to the way the system operates and performs, we
carried out an analysis of the cost to setup the system and
how these costs would change with as the acquisition sys-
tem scaled. The costs are representative and were only used
to determine if the setup cost would be high or low in each
case. Table 4 shows the cost per seedling for the entire imag-
ing equipment along with some of the pros and cons of each
type.

The single camera system referred to here is similar to
those used in [15]. Table 4 gives an approximate (order
of magnitude) setup comparison for the high throughput
options. When scaling the size of the study the robotic system
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Table 4 Robotic system versus manual and semi-automated systems

System Advantage Disadvantage

Manual Can provide high Very low

(1 camera, image and time throughput.

1 seedling) resolution. Cost of setting up

With 1 to 5 up scales linearly

cameras, it is easy with increase in

to mange planting number of cameras.

and scheduling. Complex logistics

with many cameras.

Dataset collection

is very long drawn

(many months).

Semi Higher throughput Lower image

Automated than single camera resolution.

(1 camera, system. Long dataset

many Lower setting up collection time.

seedlings) cost per seedling. Prone to logistical

High time problems similar

resolution. to Manual

collection.

Semi Relatively higher Suffers from all

Automated throughput than the disadvantages

(10 cameras, Manual. as the single

10 seedlings) High image and camera manual

time resolution. collection.

Robotic Very high Although costs

throughput and amortize very

image resolution. quickly, initial

Much shorter over all cost

collection time is high.

Lowest, per Most suited for

seedling set up large scale data

cost and space collection.

occupied.

Organizing and

scheduling is

automated.

Easier to maintain

experimental

consistency.

Easily adaptable

for various seed

types and

experimental

conditions.

has a much lower amortized setup cost. In addition, these
costs amortize much faster for the robotic system due to the
high throughput in data collection.

5.5 System bottlenecks

From the analysis of the system in the earlier part of this sec-
tion we can identify the most critical parameters of the system
that can effect the throughput. The bottleneck can be identi-
fied by analyzing the temporal sampling ability. This is the
shortest time between two observations of a seedling. This is
determined by the term tgatherall given by Eq. (12). Typically,
this can range from a few hours to about 5 min depending on
the nature of the phenotype. In the case of a manual data gath-
ering process a few (typically 5–10) seedlings are imaged
every hour or two. With the semi-automated scenario one
camera focused on one seedling can gather image data of the
region of interest at a resolution of about 2 min or less. With
the robotic system at present, with the cassette loaded with
72 seedlings, the finest resolution is about 3.5 min (with the
exception of tfp, first pass time). The major factors that affect
the temporal resolution are: (a) Size and speed of system and
(b) Number of seedlings.

From Eq. (12) it can be seen that tgath increases linearly
with increase in N , number of seedlings. Also, owing to the
accuracy and speed of the system all values in tgath are small,
which when improved will lead to a total reduction of tgatherall

by 5 %. Thus, this is not a critical bottleneck.
In the case of tfp, as discussed in Sect. 5.1, tservo and tfocus

constitutes the largest share of the time. Using Eqs. (14)
through 15 it can be seen that maximum gain in tfp can be
obtained by reducing tservo and tfocus. This will allow for
an increase in throughput when collecting data for biolog-
ical processes with earlier onset times (tonset, discussed in
Sect. 5.1). tservo, time taken to servo to the root tip, is depen-
dent on the length of the seedling and varies between 1 and
5 s, while tfocus, time to focus on a given root is typically
between 5 and 16 seconds. Thus reducing focusing time by 5
seconds can reduce tfp by about 25 %. Thus establishing that
the critical bottleneck for tfp is currently the focusing pro-
cess and further research is required to provide faster on-line
focusing technique.

6 Discussions and future work

A system for high throughput phenotyping has been
described in detail and tested with the specific model plant,
Arabidopsis thaliana, for root gravitropic experiments. The
performance of the system was analyzed and its capabilities,
advantages and shortcomings have been presented.

Currently, the system is used to track the properties of the
root (growth, curvature and tip angle) of Arabidopsis seed-
lings. Our future work would be to extend the capabilities of
the system to monitor the whole seedling, enabling pheno-
typic quantification of other structures and processes, such as
shoot development. This will also open up the possibility of
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correlating all the properties and measurements. In addition,
we would like to explore ways to adapt the system to monitor
other plant species (like maize, rice etc.)

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Basu, P., Pal, J., Lynch, J., Brown, K.: A novel image-analy-
sis technique for kinematic study of growth and curvature. Plant
Physiol. 145, 305–316 (2007)

2. Canny, J.F.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

3. Chaumette, F., Hutchinson, S.: Visual servo control. Part I: basic
approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

4. Chaumette, F., Hutchinson, S.: Visual servo control. Part II:
advanced approaches. IEEE Robot. Autom. Mag. 14(1), 109–
118 (2007)

5. Corke, P., Hutchinson, S.: A new hybrid image-based visual servo
control scheme. In: Proceedings of the 39th IEEE Conference on
Decision and control (2000)

6. Corke, P., Hutchinson, S.: A new partitioned approach to image-
based visual servo control. IEEE Trans. Robot. Autom. 17(4), 507–
515 (2001)

7. French, A., Ubeda-Tomas, S., Holman, T., Bennett, M., Pridmore,
T.: High-throughput quantification of root growth using a novel
image-analysis tool. Plant Physiol. 150, 1784–1795 (2009)

8. Groen, F.C., Young, I.T., Ligthart, G.: A comparison of differ-
ent focus functions for use in autofocus algorithms. Cytometry,
pp. 623–691 (1985)

9. Hutchinson, S.A., Hager, G.D., Corke, P.I.: A tutorial on visual
servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996).
http://citeseer.ist.psu.edu/hutchinson96tutorial.html

10. Ishikawa, H., Evans, M.: Novel software for analysis of gravitro-
pism: comparative response patters of Arabidopsis wide-type and
axr1 seedlings. Plant Cell Environ. 20, 919–928 (1997)

11. Jaffe, M., Wakwfield, A., Telewski, F., Gulley, E., Biro, R.: Com-
puter-assisted image analysis of plant growth, thigmomorphogen-
esis and gravitropism. Plant Physiol. 77, 722–730 (1985)

12. Kristan, M., Pers, J., Perse, M., Kovacic, S.: A bayes spectral
entropy based measure of camera focus using a discrete cosine
transform. Pattern Recognit. Lett. 27, 1431–1439 (2006)

13. Krotkov, E.: Focusing. IJCV 1, 223–237 (1987)
14. LemnaTec: http://www.lemnatec.com (1998)
15. Miller, N., Parks, B., Spalding, E.: Computer-vision analysis of

seedling responses to light and gravity. Plant J. 52(2), 374–
381 (2007)

16. Mullen, J., Wolverton, C., Ishikawa, H., Evans, M.: Kinetics of
constant gravitropic stimulus responses in Arabidopsis roots using
a feedback system. Plant Physiol. 123, 665–670 (2000)

17. Nathaniel, N.K.C., Neow, P.A., M.H.A. Jr.: Practical issues in pixel-
based autofocusing for machine vision. In: ICRA, p. 2791 (2001)

18. Otsu, N.: A threshold selection method from gray-level histo-
grams. IEEE Trans. Syst. Man. Cyber. 9, 6266 (1979)

19. Song, Y., Sun, L.: A new auto focusing algorithm for optical mi-
croscopebased automated system. In: ICARCV (2006)

20. Sun, Y., Duthaler, S., Nelson, B.: Autofocusing algorithm selection
in computer microscopy. In: Proceedings of the IEEE Conference
on IROS (2005)

21. Tahri, O., Chaumette, F.: Image moments: generic descriptors for
decoupled image-based visual servoing. In: Proceedings of the
IEEE Conference on Robotics and Automation, pp. 1861–1867
(2004)

22. Tahri, O., Chaumette, F.: Complex objects pose estimation based on
image moment invariants. In: Proceedings of the IEEE Conference
on Robots and Automation, pp. 436–441 (2005)

23. Walter, A., Spies, H., Terjung, S., Kusters, R., Kirchgebner, N.,
Schurr, U.: Spatio-temporal dynamics of expansion growth in
roots: automatic quantification of diurnal course and temper-
ature response by digital image sequence processing. J. Exp.
Biol. 53, 689–698 (2002)

24. Wang, L., Uilecan, I., Assadi, A., Kozmik, C., Spalding, E.: Hypo-
trace image analysis software for measuring hypocotyl growth and
shape demonstrated on Arabidopsis seedlings undergoing photo-
morphogenesis. Plant Physiol. 149, 1632–1637 (2009)

25. Yap, P., Raveendran, P.: Image focus measure based on Chebyshev
moments. IEE Proc.-Vis. Image Signal Process. 151(2), 128 (2004)

Author Biographies

Ram Subramanian received his Ph.D. degree from the Department
of Mechanical Engineering at the University of Wisconsin-Madison in
2012 where he worked in the robotics and intelligent systems laboratory.
Dr. Subramanian received his bachelors’ degree in electrical engineer-
ing from the University of Madras in 2001 and his master’s degrees in
biomedical engineering and mechanical engineering at the University
of Wisconsin-Madison. Dr. Subramanian’s research interests include
image-based robot control and image-based metrology with applica-
tions ranging from medical imaging to plant phenotyping.

Edgar P. Spalding received his Ph.D. degree from the Department of
Biology at Pennsylvania State University in 1990 under the supervision
of Daniel Cosgrove. He was a postdoctoral fellow at Yale University
from 1990 to 1994. He joined the University of Wisconsin’s Depart-
ment of Botany faculty in 1994. Professor Spalding’s research interests
are in the transport of ions including auxin, photomorphogenesis and
phenotype frameworks. He was awarded the NSF early Faculty Career
Development Award from 1998 to 2002, Vilas Research Associate 2005
to 2007 and Hamel Family Faculty Fellow 2008–2013. Professor Spald-
ing is a fellow of the American Society of Plant Biologists and has
served the society in various capacities including Secretary and Board
of Trustees.

Nicola J. Ferrier (IEEE Member since 1991) received her Ph.D. degree
from the Division of Applied Sciences at Harvard University in 1992
where she worked in the Laboratory for Robotics, Decision and Con-
trol. She was a Junior Research Fellow at the University of Oxford
from 1992 to 1994 in the Robotics Research Group and a post-doctoral
fellow at Harvard University in 1995. She joined the University of Wis-
consin’s Mechanical Engineering faculty in 1996. Professor Ferrier’s
research interests are in the use of computer vision/imagery to control
robots, machinery, and devices, with applications as diverse as med-
ical systems, manufacturing, and navigation. The use of visual feed-
back in the control of a robot end-effector position is advantageous
when precise fixturing is impractical or impossible. Her work has been
applied to visual monitoring of polymer processing, visual control of
crystal formation processes, and visual monitoring of nano-scale assem-
bly processes. Professor Ferrier received the University of Wisconsin
Vilas Associate Award for research in 1999 and the National Science
Foundation CAREER Award in 1997.

123

http://citeseer.ist.psu.edu/hutchinson96tutorial.html
http://www.lemnatec.com

	A high throughput robot system for machine vision based plant phenotype studies
	Abstract
	1 Introduction
	2 System description
	2.1 Petri dish containment unit (PDCU)
	2.2 Gantry robot

	3 An example data gathering session  using our robotic platform
	4 Image processing for visual servoing
	4.1 Root and root tip segmentation
	4.1.1 Per pixel probability assignments
	4.1.2 Heuristic root selection

	4.2 Focusing
	4.2.1 Focus measure
	4.2.2 Searching technique for focusing


	5 System performance evaluation
	5.1 Performance analysis: user perspective
	5.2 Performance analysis: system design perspective
	5.2.1 Effective yield
	5.2.2 Assessment of the root segmentation technique

	5.3 Throughput comparison
	5.4 Setup analysis
	5.5 System bottlenecks

	6 Discussions and future work
	References


