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Abstract
Aims/hypothesis  There is increasing evidence for the existence of shared genetic predictors of metabolic traits and neuro-
degenerative disease. We previously observed a U-shaped association between fasting insulin in middle-aged women and 
dementia up to 34 years later. In the present study, we performed genome-wide association (GWA) analyses for fasting serum 
insulin in European children with a focus on variants associated with the tails of the insulin distribution.
Methods  Genotyping was successful in 2825 children aged 2–14 years at the time of insulin measurement. Because insulin 
levels vary during childhood, GWA analyses were based on age- and sex-specific z scores. Five percentile ranks of z-insulin 
were selected and modelled using logistic regression, i.e. the 15th, 25th, 50th, 75th and 85th percentile ranks (P15–P85). 
Additive genetic models were adjusted for age, sex, BMI, survey year, survey country and principal components derived 
from genetic data to account for ethnic heterogeneity. Quantile regression was used to determine whether associations with 
variants identified by GWA analyses differed across quantiles of log-insulin.
Results  A variant in the SLC28A1 gene (rs2122859) was associated with the 85th percentile rank of the insulin z score (P85, 
p value=3×10−8). Two variants associated with low z-insulin (P15, p value <5×10−6) were located on the RBFOX1 and 
SH3RF3 genes. These genes have previously been associated with both metabolic traits and dementia phenotypes. While 
variants associated with P50 showed stable associations across the insulin spectrum, we found that associations with variants 
identified through GWA analyses of P15 and P85 varied across quantiles of log-insulin.
Conclusions/interpretation  The above results support the notion of a shared genetic architecture for dementia and metabolic 
traits. Our approach identified genetic variants that were associated with the tails of the insulin spectrum only. Because tradi-
tional heritability estimates assume that genetic effects are constant throughout the phenotype distribution, the new findings 
may have implications for understanding the discrepancy in heritability estimates from GWA and family studies and for the 
study of U-shaped biomarker–disease associations.

Keywords  Biomarkers · BMI · Dementia · Genetics · Genome-wide association analysis · Insulin · Metabolic traits · 
Obesity · Quantile regression · SNP · Type 2 diabetes

Abbreviations
GWA​	� Genome-wide association
IDEFICS	� Identification and prevention of Dietary- and 

lifestyle-induced health EFfects In Children 
and infantS

Introduction

Fasting serum insulin is an important marker for metabolic 
disorders, including obesity, type 2 diabetes and the meta-
bolic syndrome. Because these conditions run in families 
[1], genome-wide association (GWA) studies have been 
performed to assess fasting insulin, hyperinsulinaemia or 
diabetes [2–8]. These analyses are usually performed in 
adults, even though type 2 diabetes may be observed in 
childhood [9]. Gene/biomarker data for children are par-
ticularly valuable because it may be assumed that chil-
dren’s biomarker values are less influenced by acquired 
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lifestyle than those in adults. While GWA studies on chil-
dren are still rare, this project aimed to identify genetic 
determinants of fasting insulin in a population-based 
sample of children in Europe below the age of 15 years. 
Specifically, we performed GWA analyses for selected 
percentiles of the insulin distribution to test whether the 
association pattern differed towards the low and high ends 
of the insulin spectrum. This was motivated by observa-
tions of a U-shaped relationship between fasting insulin in 
middle age and dementia up to 34 years later [10]. Women 
in the lowest tertile of fasting insulin showed a higher 
prevalence of the APOE-4 allele compared to women with 
higher insulin, which is remarkable as the APOE-4 allele is 
the strongest genetic risk factor for dementia, particularly 
Alzheimer’s disease [11]. Other variants are expected to 
be associated with hyperinsulinaemia, many of which have 
already been identified because of their association with 
type 2 diabetes. Type 2 diabetes per se has often been 
found to be associated with dementia, in particular among 
non-carriers of the APOE-4 allele [10, 12, 13]. Taken 
together, these findings support the idea that genetic vari-
ants differentially associated with the two extremes of the 
insulin spectrum imply the existence of different disease 
mechanisms for cognitive impairment and dementia. The 
demonstration that genetic associations vary across the 

insulin spectrum may have implications for the analysis of 
U-shaped biomarker–disease associations using Mendelian 
randomisation in general.

Methods

Study participants  The European IDEFICS (Identifica-
tion and prevention of Dietary- and lifestyle-induced health 
EFfects In Children and infantS)/I.Family cohort is a multi-
centre population-based children’s study that aimed to iden-
tify risk factors for diet- and lifestyle-related diseases, with a 
focus on childhood overweight and metabolic disorders [14, 
15]. Children were recruited through kindergarten or school 
settings in Belgium, Cyprus, Estonia, Germany, Hungary, 
Italy, Spain and Sweden. In each country, two or more com-
munities with similar sociodemographic profile and infra-
structure were selected, which were typical for their region 
but not for the survey country as a whole. In 2007/2008, 
16,229 children aged between 2 and 9.9 years participated 
in the baseline survey. Follow-up surveys were conducted 
after 2 years (n=11,043, plus 2543 newcomers [recruited 
from different families within the same community]) and 6 
years (n=7117, plus 2512 newly recruited siblings). Children 
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were asked to provide fasting venous samples, morning urine 
samples and saliva samples. If consent for venous blood with-
drawal was not given, capillary blood was taken with the 
consent of the children and parents. The study was conducted 
in agreement with the Declaration of Helsinki; all procedures 
were approved by the local ethics committees, and written 
and oral informed consents were obtained. The IDEFICS/I.
Family cohort study is registered in the ISRCTN clinical trial 
registry (https://​doi.​org/​10.​1186/​ISRCT​N6231​0987).

Genotyping and biomarker assessment  Children were selected 
for a whole-genome scan based on their participation in the 
individual study modules (children who had participated in 
more examinations within the study were prioritised) [16]. 
Children from Cyprus were not included in the initial geno-
typing. DNA was extracted from saliva or blood samples of 
3515 children. Genotyping was performed on the UK Biobank 
Axiom 196-Array (Affymetrix, USA), which, after quality 
control and imputation, resulted in 3,424,677 variants for 3099 
children [16]. Association results are given for the minor allele 
at each locus (effect allele). Haplotypes of apolipoprotein E 
(APOE) were determined by direct genotyping of rs429358 
and rs7412, and the number of APOE-4 alleles was calculated. 
Genetically determined sex was used as a confounder in regres-
sion analyses. Fasting serum insulin was measured using an 
electrochemiluminescence immunoassay (Roche, Germany). 
Further details on laboratory and genetic analyses have been 
published previously [14–18]. Insulin levels vary considerably 
during childhood and adolescence, with a pronounced rise 
before and during puberty [19]. Using data from the IDEFICS 
cohort, this rise was confirmed by Peplies et al, who computed 
age- and sex-specific percentiles and z scores for children up to 
11 years old [17]. Insulin percentiles and z scores for children 
up to the age of 14 years were added later using data from the 
second follow-up survey [20]. To account for developmental 
differences in insulin values, we selected five values for age- 
and sex-specific insulin percentile ranks as outcome variables 
for our GWA analyses. Specifically, we chose the 15th and 85th 
percentile ranks to describe ‘low and high for age and sex’ insu-
lin values, respectively. These were the most extreme percentile 
ranks that allowed for well-defined logistic models given the 
number of cases in relation to the total number of predictors. 
For comparison, we also performed GWA analyses for the quar-
tiles of z-insulin, i.e. the 25th, 50th (median) and 75th percen-
tile ranks. Measured weight and height were used to calculate 
BMI, as well as age- and sex-specific z scores derived from the 
subsample of children with normal weight status according to 
international references [21].

Definition of the analytical sample  Among the 3099 chil-
dren for whom genetic data was available, 2825 had at least 
one value for fasting serum insulin at baseline, first or sec-
ond follow-up (5416 observations). Restriction to the earliest 

measurement resulted in 2825 unique observations from the 
same number of children aged 2.2–14.8 years (50% female). 
All children had been fasting for at least 8 h before blood 
withdrawal, and none had a diagnosis of diabetes or took 
glucose-lowering medication [17].

Statistical methods  Values for basic characteristics of the 
analytical sample were calculated as means (SD) for con-
tinuous variables and frequencies (%) for discrete variables. 
The distribution for fasting insulin was positively skewed, 
and the logarithm of insulin was calculated to achieve an 
approximately normal distribution. Five age- and sex-
specific percentile ranks (P15, P25, P50, P75, P85) were 
selected as outcomes for logistic GWA analyses. For P15 
and P25, we compared cases with z-insulin values at the 
respective percentile rank or below with all observations of 
higher values of z-insulin. For the median percentile rank 
(P50), as well as P75 and P85, cases with z-insulin values 
higher than or equal to the respective percentile rank were 
compared to all observations with lower values of z-insulin. 
We used additive genetic models adjusting for age, age2, sex, 
survey, country and 32 principal components, using the lat-
ter to account for population stratification in this heterogene-
ous sample of children from seven European countries. We 
further adjusted for BMI as insulin levels are strongly influ-
enced by weight status. BMI was used instead of the BMI 
z score because the respective regression models showed 
higher values for the coefficient of determination (R2).

To examine how associations with individual SNPs iden-
tified through GWA analyses differed across the spectrum 
of log-insulin, we performed quantile regression for quan-
tile levels between 0.05 and 0.95, with a step size of 0.05, 
and tested whether effect estimates for individual variants 
differed across quantile levels (Wald test for heteroscedas-
ticity). Regression parameters were estimated using the 
simplex algorithm, and the sparsity method was used to cal-
culate confidence intervals. Quantile process plots illustrated 
the variation of regression parameters across the spectrum of 
log-insulin. For each quantile level, the adjusted coefficient 
of determination (R2

adj) was calculated using the SAS macro 
quant_gof [22]. We also present effect estimates for variants 
identified in the logistic GWA analyses using linear regres-
sion for log-insulin. Sensitivity analyses addressed the influ-
ence of between-sibling correlations in linear mixed models 
including family as random effect. Although GWA analyses 
identified SNPs associated with age- and sex-specific per-
centile ranks, further evaluation was based on log-insulin to 
facilitate comparison with effect size measures reported in 
previous publications. The sequence of analyses is illustrated 
in electronic supplementary material [ESM] Fig. 1.

For GWA analyses, we used a genome-wide statistical sig-
nificance level of 5×10−8, and 10−5 for suggestive significant 
associations [23]. Because the quantile and linear regression 

https://doi.org/10.1186/ISRCTN62310987
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analyses of log-insulin and individual SNPs consisted of 
25 independent tests, we adopted a Bonferroni-corrected 
significance level of 0.05/25=0.002 when reporting these 
results. GWA analyses were performed using PLINK ver-
sion 1.90b3.42 [24] (https://​www.​cog-​genom​ics.​org/​plink2) 
and R software version 3.4.3 (https://​cran.r-​proje​ct.​org/​bin/​
windo​ws/​base/​old/). All other analyses were performed using 
SAS version 9.4 (https://​suppo​rt.​sas.​com/​softw​are/​94/).

Results

Table 1 provides the basic characteristics of the analytical sam-
ple. The mean age of the children was 7 years, with an age 
range from 2.2 to 14.8 years, and 50% were girls. The propor-
tions of girls did not vary across the age range. A mean BMI z 
score larger than zero shows that the genetic sample included 
children with overweight and obesity, who had not been part of 
the reference population of normal weight children [25]. This 
is also the reason why the mean values for percentile rank and 
z-insulin exceed 50% and 0.0, respectively. The distribution 
of fasting insulin was skewed to the right, with skewness = 
4.3 and a maximum insulin value of 451 pmol/l (65 mIU/l). 
The 33 children with fasting insulin >138 pmol/l (20 mIU/l) 
had higher mean values for age, plasma glucose and BMI than 

those with lower insulin values, and 26 of them had extreme 
obesity (BMI z score=5), but there were no differences by sex. 
Because none of these children were diagnosed with diabetes 
at the time of blood sampling, and their insulin values were not 
outliers on logarithmic scale, their observations were included 
in the analytical sample. Fasting serum insulin was positively 
correlated with age and BMI (r values=0.38 and 0.54, respec-
tively). For children participating in more than one examina-
tion, the first valid insulin measurement was selected, i.e. at the 
youngest age. Overall, most of the measurements included in 
this study were taken at baseline, and 31% were obtained at 
follow-up examinations.

GWA analysis results for selected percentiles of the insulin 
distribution  Table 2 shows the results for SNPs identified in 
logistic GWA analyses of the selected insulin percentile ranks 
(p<10−5). Genetic associations were determined with all five 
percentile ranks, with a comparable effect size but higher 
statistical significance at the high end of the insulin spec-
trum. For instance, the association between a variant on the 
SLC28A1 gene and the 85th percentile rank reached genome-
wide significance. A variant on the RAPGEF4 gene was 
associated with the 75th percentile rank at p=5.1×10−8. The 
majority of SNPs were located on genes with known func-
tion in insulin secretion, metabolism or clearance. The effect 
allele frequencies agreed well with frequencies reported for 
participants of European descent (using dbSNP, www.​ncbi.​
nlm.​nih.​gov/​snp/). Manhattan plots illustrate GWA analysis 
results for the 85th percentile rank (Fig. 1) and the 15th–75th 
percentile ranks (ESM Fig. 2). A posteriori logistic regres-
sion models showed that the associations between specific 
SNPs and percentiles of the insulin distribution shown in 
Table 2 did not differ by sex (data not shown).

Quantile regression to test the variability of associations with 
selected SNPs across the insulin spectrum  Table 2 also shows 
the p value for tests of heteroscedasticity, which indicates to 
what extent the association with a certain variant varies across 
quantiles of log-insulin. After adjustment for multiple testing, 
only SNPs associated with low percentile ranks (P15 and P25) 
showed significant variation across quantiles. The variation 
of allele-specific associations across the insulin spectrum is 
further illustrated by quantile process plots, which are shown 
in Fig. 2 for selected SNPs associated with the five percen-
tile ranks of z-insulin. Quantile process plots for all SNPs are 
given in the ESM Fig. 3. Variants associated with P15 and P25 
showed non-zero effect sizes below the median quantile, and 
reduced or zero effect sizes at the high end of the spectrum, 
while those associated with the 85th percentile showed larger 
absolute effect sizes for higher quantile levels. In contrast, vari-
ants associated with P50 and P75 showed stable associations 
across insulin quantiles (i.e. these were not significant at the 
Bonferroni-adjusted significance level of 0.002). The furthest 

Table 1   Basic characteristics of the insulin sample used for GWA 
analyses (n=2825)

Values for continuous variables are presented as means (SD) as well 
as range (min, max); values for categorical variables are presented 
as n (%)

Variable Value  Range

Age (years) 7.2 (2.3) 2.2, 14.8
BMI (kg/m2) 16.9 (3.1) 10.2, 35.8
BMI z score  0.6 (2.9) −5.0, 5.0
Insulin (pmol/l) 35.0 (29.7) 0.2, 451.5
Insulin z score [17] 0.14 (1.09) −3.1, 4.1
Percentile rank (%) 53.7 (30.2) 0.11, 99.9
Female, n (%) 1411 (50)
Survey country, n (%)
Belgium 194 (7)
Estonia 277 (10)
Germany 573 (20)
Hungary 426 (15)
Italy 598 (21)
Spain 359 (13)
Sweden 398 (14)
Survey, n (%)
Baseline examination (2007/2008) 1958 (69)
1st follow-up (2009/2010) 611 (22)
2nd follow-up (2013/2014) 256 (9)

https://www.cog-genomics.org/plink2
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/bin/windows/base/old/
https://support.sas.com/software/94/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
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right column of Table 2 shows that several variants identified 
in GWA analyses for insulin percentiles were also significantly 
associated with log-insulin in linear regression analyses.

To compare the prediction of log-insulin by the five sets 
of genetic variants, we computed the adjusted coefficient of 
determination (R2) generalised to quantile regression [22]. 

Figure 3 shows the model improvement compared to regres-
sion models without genetic predictors (ΔR2) for quantile 
levels between 0.05 and 0.95. The largest improvement was 
obtained by adding variants that predicted the lowest per-
centile rank of fasting serum insulin (P15). Those variants 
explained up to 10% of the variation at the 0.05 quantile 

-log10 (p) rs13091569

rs35441059

rs9392530  rs184641397

rs2122859

Fig. 1   Manhattan plot illustrating GWA analysis results for the 85th percentile rank of the age- and sex-specific insulin distribution, indicating 
rs-numbers for SNPs with associations with p<10−5 (blue line) or p<5×10−8 (red line)
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Fig. 2   Quantile regression plots for selected SNPs identified by GWA 
analyses of insulin percentile ranks P15 (a), P25 (b), P50 (c), P75 (d) 
and P85 (e) (Table 2) as well as for the APOE-4 genotype (f), includ-
ing a test for heteroscedasticity across quantile levels (phs value). 

Quantile regression of log-insulin was performed for selected SNPs 
and adjusted for age, age2, sex, BMI, survey, country and principal 
components (regression parameters with 95% confidence bands). 
Regression models for APOE-4 were not further adjusted for BMI
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level of log-insulin and 8.5% at the 0.95 quantile level. ΔR2 
increased with higher quantile levels when variants associ-
ated with P75 and P85 were included in the model, while 
ΔR2 was approximately constant for variants associated with 
P50. The approximately U-shaped variation of R2 across 
quintiles of log-insulin was also displayed by regression 
models without genetic predictors, and the improvement in 
R2 by adding all genetic predictors decreased from 28.8% 
at quantile 0.05 to 27.3% at quantile 0.95 (ESM Table 1).

Furthermore, quantile regression of APOE-4 showed a 
positive per-allele effect on log-insulin in quantile models 
not adjusted for BMI (Fig. 2), but this association was no 
longer observed upon adjustment for BMI (ESM Fig. 3). 
We also attempted to replicate previously published genetic 
associations with log-insulin (ESM Table 2). Five variants 
showed linear associations with log-insulin, but hardly any 
variation across quantile levels (ESM Fig. 4). Only 9% of 
the children in this study were siblings. Linear mixed mod-
els including family as a random effect did not reduce the 
associations reported in Table 2 (data not shown).

Discussion

We performed GWA analyses for fasting serum insulin in 
children from seven European countries, with a special focus 
on the identification of variants associated with the tails of 
the fasting serum insulin distribution. Separate regression 
models for insulin values that were low or high for age and 

sex (insulin z scores) yielded different sets of SNPs that 
showed characteristic variation of effect size across quantile 
levels of log-insulin. Variants associated with the highest 
values of age- and sex-specific insulin showed associations 
with above-median values of log-insulin but not with values 
below the median, and were often located in genes that had 
been found to be related to type 2 diabetes in previous studies. 
For instance, a variant associated with the 85th percentile of 
z-insulin was located on the SLC28A1 (or CNT1) gene that has 
been linked to type 2 diabetes [26]. Two variants associated 
with the 15th percentile of z-insulin were located on genes 
previously linked with insulin secretion and beta cell function 
(RBFOX1) [27] and measures of insulin resistance (SH3RF3) 
[28]. While most associations with individual variants were 
quantile-specific, we found that the total genetically explained 
variance of fasting insulin varied between 28.8% at the 0.05 
quantile and 27.3% at the 0.95 quantile level of log-insulin.

The use of a population-based sample of children up to 
the age of 14 years is a strength of the study that allows 
investigation of genetic associations with insulin at a time 
when lifestyle factors such as smoking do not yet play a 
major role. The limited sample size is the main limitation of 
this study. While the aim of this work was mainly as proof 
of concept, it may stimulate replication studies in larger 
cohorts, not least genotyping of the entire IDEFICS/I.Fam-
ily cohort comprising stored blood samples for up to 20,000 
children. The large ethnic variety of participants may be 
both a strength and a limitation. On the one hand, it offers a 
wide range of potential risk variants; on the other hand, the 
heterogeneity reduces the statistical power. In view of the 
pulsative nature of insulin secretion, the lack of a second 
insulin measurement is also a major limitation. A second 
measurement would also have been preferable for children 
with high insulin values, although hyperinsulinaemia is 
common among children with obesity [29, 30]. Furthermore, 
childhood and adolescence are characterised by large hor-
monal changes, including rising insulin values and insulin 
resistance during puberty. Due to incomplete information, 
it was not possible to adjust for pubertal status; however, 
research showing that age is a better predictor of juvenile 
insulin resistance than direct measures of pubertal status 
[19] suggests that the age-adjustment used here may have 
been sufficient. The inclusion of insulin measurements from 
various survey examinations may cause bias due to meth-
odological differences that are not accounted for by adjust-
ment for year of examination. However, methods were care-
fully harmonised across survey examinations and countries, 
and no effect modification by survey was observed (data not 
shown). Finally, it is known that physical activity reduces 
insulin levels and risk of insulin resistance independently 
of weight status. Due to the lack of consistent measures of 
physical activity across surveys, we did not adjust for physi-
cal activity other than indirectly via BMI.

Fig. 3   Improvement in coefficient of determination for quantile mod-
els of log-insulin adjusted for SNPs identified in GWA analyses for 
insulin percentiles P15, P25, P50, P75 and P85 relative to a model 
without genetic predictors. Quantile regression of log-insulin was 
performed for groups of SNPs and adjusted for age, sex, BMI, survey, 
country and principal components. Adjusted R2 (R2

adj) calculated as 
described by Koenker and Machado [22]
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In 2012, Williams coined the term ‘quantile-specific expres-
sivity’ to describe the dependence of genetic effects on the 
level of a phenotype, and proposed that this may be due to 
genes affecting concentration-dependent enzymatic reactions 
[31]. He used family data to show that heritability varied 
across quantiles for a number of biomarkers, including meta-
bolic traits and insulin [32]. To our knowledge, this is the first 
study assessing quantile-specific gene–biomarker associations 
based on genetic variants themselves. However, there is an 
important difference in results between the two approaches, 
as Williams reports an increasing heritability across the spec-
trum of fasting insulin, which is not replicated in this study. 
One explanation may be that we focused on single variants 
associated with selected percentiles of the insulin distribution, 
while the family-based heritability estimates include the entire 
set of genetic determinants. Second, we observed that vari-
ants associated with the 15th percentile rank explained a larger 
proportion of variability of log-insulin than those associated 
with higher percentiles, but the latter showed higher statistical 
significance and less variation across the spectrum, suggesting 
that their combined effect on insulin may be larger. It is also 
possible that environmental factors such as cigarette smoking 
and the low body weight associated with it confound the herit-
ability results at low insulin levels obtained in the Framingham 
Heart study [32], which includes individuals of age 16 or older, 
but the question requires further investigation. A family-based 
study of Finnish twins showed that additive genetic effects 
on BMI decreased across trait values [33]. These results give 
some support to the results presented here, given the positive 
correlation between BMI and fasting serum insulin.

Our study is one of the first and largest GWA studies 
of fasting insulin in children, with the youngest partici-
pants. A previous study on 679 Chilean adolescents aged 
16–17 years [34] identified a novel variant in the CSMD1 
gene (rs77465890, chromosome 8) with genome-wide sig-
nificance, and several suggestive associations. The variant 
rs77465890 was not available in the IDEFICS/I.Family 
cohort; however, it has been shown to be in linkage disequi-
librium with a variant associated with the median percentile 
(P50, rs62511932;, r2=0.07, Dʹ=0.999, using dbSNP). More 
than 70 loci have been identified by previous GWA studies of 
fasting insulin in adults [2–5]. The associations for five loci 
were reproduced in the present children’s study. These SNPs 
showed hardly any variation across quantiles, as expected for 
variants identified in GWA studies using linear regression.

The main motivation for this study came from the observa-
tion of a U-shaped risk curve for fasting serum insulin and 
incident dementia in adults, which suggested that different 
genetic variants may be associated with the tails of the insulin 
spectrum and the various phenotypes of dementia [10]. Con-
sistent findings of an association between diabetes and demen-
tia prompted researchers to investigate the shared genetic 
architecture between metabolic traits and Alzheimer’s disease 

[35] and other neuropsychiatric disorders [36]. The present 
study showed that a variant associated with the high end of the 
z-insulin spectrum (rs2122859) was located on the SLC28A1 
gene, which has been shown to be associated with both diabe-
tes [26] and late-onset Alzheimer’s disease [37]. Interestingly, 
two variants associated with low z-insulin in the present study 
were located on RBFOX1 and SH3RF3, genes that have previ-
ously been shown to be related to brain amyloidosis in preclini-
cal Alzheimer’s disease [38] and to late-onset Alzheimer’s dis-
ease [39], respectively. The lack of sex-specific genetic effects 
is of interest in this connection. Because most of the children in 
this sample were pre-pubertal, it may be suggested that the sex 
differences in risk for dementia in adults are strongly related 
to female sex hormones, particularly oestrogen. Regarding the 
previous observation of higher APOE-4 allele prevalence in 
non-diabetic women with low insulin levels compared to those 
with medium or high insulin levels [10], we confirmed that the 
e4 allele was exclusively associated with the low end of the 
insulin spectrum in the children’s study; however, the effect 
size was small and was further reduced upon adjustment for 
BMI. Future studies may wish to test associations between 
dementia and genetic variants associated with the low end of 
the insulin spectrum to establish whether the extremes of the 
insulin spectrum are indeed related to different pathways and 
phenotypes of dementia as suggested by the U-shaped risk 
curve reported previously [10].

In summary, this study presents evidence for the notion 
of quantile-specific heritability based on individual genetic 
variants. The use of children’s data reduces the impact of 
environmental factors that may suggest an alternative expla-
nation on the basis of gene–environment interaction. Our 
findings may help to explain the fact that heritability esti-
mates from GWA studies are smaller than expected from 
family studies. Quantile-specific genetic associations may 
also prove important for Mendelian randomisation stud-
ies that aim to model non-linear phenotype-disease asso-
ciations [40]. Inclusion of variants with quantile-specific 
associations may allow modelling of different parts of the 
biomarker spectrum independently, something that is harder 
to achieve using variants with a constant association across 
the biomarker spectrum in question.

Supplementary Information  The online version contains peer-reviewed 
but unedited supplementary material available at https://​doi.​org/​10.​
1007/​s00125-​023-​05957-w.

Data availability  Due to the fact that the dataset comprises highly sen-
sitive data collected in children, ethical restrictions prohibit the authors 
from making the dataset publicly available. However, data are available 
from the authors upon reasonable request and with permission of the 
steering committee on a case-by-case basis.

Funding  Open access funding provided by University of Gothenburg. 
We gratefully acknowledge the financial support of the European 
Commission within the Sixth and Seventh Framework Programmes 
for Research and Technological Development (01681, 266044). Addi-

https://doi.org/10.1007/s00125-023-05957-w
https://doi.org/10.1007/s00125-023-05957-w


1922	 Diabetologia (2023) 66:1914–1924

1 3

tional support was provided by the Swedish Research Councils Forte 
(2007–1506) and Formas (2012–00038), as well as the ALF agreement 
in western Sweden (30411). KM gratefully acknowledges the hospi-
tality extended to her during a one-week visit to Bremen to initiate 
the project, as well as financial support by the Erasmus+ programme 
(E2017/395). The study funders were not involved in the design of 
the study, the collection, analysis or interpretation of data, or writing 
the report, and did not impose any restrictions regarding publication 
of the report.

Authors’ relationships and activities  The authors declare that there are 
no relationships or activities that might bias, or be perceived to bias, 
their work.

Contribution statement  All authors made substantial contributions 
to the conception and design of the study (KM, RF, MW, JK, IP), 
acquisition of data (RF, SDH, DM, LAM, PR, MT, TV, LL, IP), or 
analysis and interpretation of data (KM, RF, RN, MW, JK, IP). KM 
drafted the manuscript, and all authors revised it critically for impor-
tant intellectual content. All authors approved the final version to be 
published. KM is responsible for the integrity of the work as a whole.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory egulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner 
JS, Kahn CR (1992) Role of glucose and insulin resistance in 
development of type 2 diabetes mellitus: results of a 25-year 
follow-up study. Lancet 340(8825):925–929. https://​doi.​org/​10.​
1016/​0140-​6736(92)​92814-v

	 2.	 Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci 
implicated in fasting glucose homeostasis and their impact on type 2 
diabetes risk. Nat Genet 42(2):105–116. https://​doi.​org/​10.​1038/​ng.​520

	 3.	 Manning AK, Hivert MF, Scott RA et al (2012) A genome-wide 
approach accounting for body mass index identifies genetic vari-
ants influencing fasting glycemic traits and insulin resistance. Nat 
Genet 44(6):659–669. https://​doi.​org/​10.​1038/​ng.​2274

	 4.	 Scott RA, Lagou V, Welch RP et al (2012) Large-scale associa-
tion analyses identify new loci influencing glycemic traits and 
provide insight into the underlying biological pathways. Nat Genet 
44(9):991–1005. https://​doi.​org/​10.​1038/​ng.​2385

	 5.	 Lundback V, Kulyte A, Strawbridge RJ et al (2018) FAM13A 
and POM121C are candidate genes for fasting insulin: functional 
follow-up analysis of a genome-wide association study. Diabetolo-
gia 61(5):1112–1123. https://​doi.​org/​10.​1007/​s00125-​018-​4572-8

	 6.	 Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping type 2 
diabetes loci to single-variant resolution using high-density impu-
tation and islet-specific epigenome maps. Nat Genet 50(11):1505–
1513. https://​doi.​org/​10.​1038/​s41588-​018-​0241-6

	 7.	 Chen J, Spracklen CN, Marenne G et al (2021) The trans-ancestral 
genomic architecture of glycemic traits. Nat Genet 53(6):840–860. 
https://​doi.​org/​10.​1038/​s41588-​021-​00852-9

	 8.	 Wood AR, Jonsson A, Jackson AU et al (2017) A genome-wide 
association study of IVGTT-based measures of first-phase insulin 
secretion refines the underlying physiology of type 2 diabetes vari-
ants. Diabetes 66(8):2296–2309. https://​doi.​org/​10.​2337/​db16-​1452

	 9.	 Pinhas-Hamiel O, Zeitler P (2005) The global spread of type 2 dia-
betes mellitus in children and adolescents. J Pediatr 146(5):693–
700. https://​doi.​org/​10.​1016/j.​jpeds.​2004.​12.​042

	10.	 Mehlig K, Lapidus L, Thelle DS et al (2018) Low fasting serum 
insulin and dementia in nondiabetic women followed for 34 years. 
Neurology 91(5):e427–e435. https://​doi.​org/​10.​1212/​WNL.​00000​
00000​005911

	11.	 Raber J, Huang Y, Ashford JW (2004) ApoE genotype accounts 
for the vast majority of AD risk and AD pathology. Neurobiol 
Aging 25(5):641–650. https://​doi.​org/​10.​1016/j.​neuro​biola​ging.​
2003.​12.​023

	12.	 Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal 
PJ, Breteler MM (2010) Insulin metabolism and the risk of Alz-
heimer disease: the Rotterdam Study. Neurology 75(22):1982–
1987. https://​doi.​org/​10.​1212/​WNL.​0b013​e3181​ffe4f6

	13.	 Shinohara M, Tashiro Y, Suzuki K, Fukumori A, Bu G, Sato N 
(2020) Interaction between APOE genotype and diabetes in cog-
nitive decline. Alzheimers Dement (Amst) 12(1):e12006. https://​
doi.​org/​10.​1002/​dad2.​12006

	14.	 Ahrens W, Siani A, Adan R et al (2017) Cohort Profile: The 
transition from childhood to adolescence in European children-
how I.Family extends the IDEFICS cohort. Int J Epidemiol 
46(5):1394–1395j. https://​doi.​org/​10.​1093/​ije/​dyw317

	15.	 Ahrens W, Bammann K, Siani A et al (2011) The IDEFICS cohort: 
design, characteristics and participation in the baseline survey. Int J 
Obesity 35:S3–S15. https://​doi.​org/​10.​1038/​ijo.​2011.​30

	16.	 Hüls A, Wright MN, Bogl LH et al (2021) Polygenic risk for 
obesity and its interaction with lifestyle and sociodemographic 
factors in European children and adolescents. Int J Obes (Lond) 
45(6):1321–1330. https://​doi.​org/​10.​1038/​s41366-​021-​00795-5

	17.	 Peplies J, Jimenez-Pavon D, Savva SC et al (2014) Percentiles 
of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-
pubertal normal weight European children from the IDEFICS 
cohort. Int J Obes (Lond) 38(Suppl 2):S39-47. https://​doi.​org/​10.​
1038/​ijo.​2014.​134

	18.	 Nagrani R, Foraita R, Gianfagna F et al (2020) Common genetic 
variation in obesity, lipid transfer genes and risk of Metabolic Syn-
drome: Results from IDEFICS/I.Family study and meta-analysis. 
Sci Rep 10(1):7189. https://​doi.​org/​10.​1038/​s41598-​020-​64031-2

	19.	 Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin 
TJ (2012) Age Before stage: insulin resistance rises before the 
onset of puberty—a 9-year longitudinal study (Early Bird 26). 
Diabetes Care 35(3):536–541. https://​doi.​org/​10.​2337/​dc11-​1281

	20.	 Börnhorst C, Russo P, Veidebaum T et al (2019) Metabolic status 
in children and its transitions during childhood and adolescence-
the IDEFICS/I.Family study. Int J Epidemiol 48(5):1673–1683. 
https://​doi.​org/​10.​1093/​ije/​dyz097

	21.	 Cole TJ, Lobstein T (2012) Extended international (IOTF) body 
mass index cut-offs for thinness, overweight and obesity. Pediatr 
Obes 7(4):284–294. https://​doi.​org/​10.​1111/j.​2047-​6310.​2012.​
00064.x

	22.	 Koenker R, Machado JAF (1999) Goodness of fit and related 
inference processes for quantile regression. J Am Stat Assoc 
94(448):1296–1310. https://​doi.​org/​10.​2307/​26699​43

	23.	 Schmid AB, Adhikari K, Ramirez-Aristeguieta LM et al (2019) 
Genetic components of human pain sensitivity: a protocol for a 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0140-6736(92)92814-v
https://doi.org/10.1016/0140-6736(92)92814-v
https://doi.org/10.1038/ng.520
https://doi.org/10.1038/ng.2274
https://doi.org/10.1038/ng.2385
https://doi.org/10.1007/s00125-018-4572-8
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1038/s41588-021-00852-9
https://doi.org/10.2337/db16-1452
https://doi.org/10.1016/j.jpeds.2004.12.042
https://doi.org/10.1212/WNL.0000000000005911
https://doi.org/10.1212/WNL.0000000000005911
https://doi.org/10.1016/j.neurobiolaging.2003.12.023
https://doi.org/10.1016/j.neurobiolaging.2003.12.023
https://doi.org/10.1212/WNL.0b013e3181ffe4f6
https://doi.org/10.1002/dad2.12006
https://doi.org/10.1002/dad2.12006
https://doi.org/10.1093/ije/dyw317
https://doi.org/10.1038/ijo.2011.30
https://doi.org/10.1038/s41366-021-00795-5
https://doi.org/10.1038/ijo.2014.134
https://doi.org/10.1038/ijo.2014.134
https://doi.org/10.1038/s41598-020-64031-2
https://doi.org/10.2337/dc11-1281
https://doi.org/10.1093/ije/dyz097
https://doi.org/10.1111/j.2047-6310.2012.00064.x
https://doi.org/10.1111/j.2047-6310.2012.00064.x
https://doi.org/10.2307/2669943


1923Diabetologia (2023) 66:1914–1924	

1 3

genome-wide association study of experimental pain in healthy 
volunteers. BMJ Open 9(4):e025530. https://​doi.​org/​10.​1136/​
bmjop​en-​2018-​025530

	24.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee 
JJ (2015) Second-generation PLINK: rising to the challenge of 
larger and richer datasets. Gigascience 4:7. https://​doi.​org/​10.​
1186/​s13742-​015-​0047-8

	25.	 Nagy P, Kovacs E, Moreno LA et al (2014) Percentile reference 
values for anthropometric body composition indices in European 
children from the IDEFICS study. Int J Obes 38(Suppl 2):S15–
S25. https://​doi.​org/​10.​1038/​ijo.​2014.​131

	26.	 Gonzalez-Covarrubias V, Sanchez-Ibarra H, Lozano-Gonzalez 
K et al (2021) Transporters, TBC1D4, and ARID5B variants to 
explain glycated hemoglobin variability in patients with type 2 
diabetes. Pharmacology 106(11–12):588–596. https://​doi.​org/​10.​
1159/​00051​7462

	27.	 Juan-Mateu J, Rech TH, Villate O et al (2017) Neuron-enriched 
RNA-binding proteins regulate pancreatic beta cell function and 
survival. J Biol Chem 292(8):3466–3480. https://​doi.​org/​10.​1074/​
jbc.​M116.​748335

	28.	 Arpon A, Milagro FI, Ramos-Lopez O et al (2019) Epigenome-
wide association study in peripheral white blood cells involving 
insulin resistance. Sci Rep 9(1):2445. https://​doi.​org/​10.​1038/​
s41598-​019-​38980-2

	29.	 Caprio S, Bronson M, Sherwin RS, Rife F, Tamborlane WV 
(1996) Co-existence of severe insulin resistance and hyper-
insulinaemia in pre-adolescent obese children. Diabetologia 
39(12):1489–1497. https://​doi.​org/​10.​1007/​s0012​50050​603

	30.	 Sudi K, Gallistl S, Trobinger M et al (2000) Insulin and insulin 
resistance index are not independent determinants for the variation 
in leptin in obese children and adolescents. J Pediatr Endocrinol 
Metab 13(7):923–932. https://​doi.​org/​10.​1515/​JPEM.​2000.​13.7.​923

	31.	 Williams PT (2012) Quantile-specific penetrance of genes affect-
ing lipoproteins, adiposity and height. PLoS One 7(1):e28764. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00287​64

	32.	 Williams PT (2022) Quantile-dependent heritability of glucose, 
insulin, proinsulin, insulin resistance, and glycated hemoglobin. 
Lifestyle Genom 15(1):10–34. https://​doi.​org/​10.​1159/​00051​9382

	33.	 Azzolini F, Berentsen GD, Skaug HJ, Hjelmborg JVB, Kaprio JA 
(2022) The heritability of BMI varies across the range of BMI-a 
heritability curve analysis in a twin cohort. Int J Obes (Lond). 
https://​doi.​org/​10.​1038/​s41366-​022-​01172-6

	34.	 Buchanan VL, Wang Y, Blanco E et al (2021) Genome-wide 
association study identifying novel variant for fasting insulin 
and allelic heterogeneity in known glycemic loci in Chilean 
adolescents: The Santiago Longitudinal Study. Pediatr Obes 
16(7):e12765. https://​doi.​org/​10.​1111/​ijpo.​12765

	35.	 Zhu Z, Lin Y, Li X, Driver JA, Liang L (2019) Shared genetic 
architecture between metabolic traits and Alzheimer’s disease: 
a large-scale genome-wide cross-trait analysis. Hum Genet 
138(3):271–285. https://​doi.​org/​10.​1007/​s00439-​019-​01988-9

	36.	 Fanelli G, Franke B, De Witte W et al (2022) Insulinopathies of 
the brain? Genetic overlap between somatic insulin-related and 
neuropsychiatric disorders. Transl Psychiatry 12(1):59. https://​
doi.​org/​10.​1038/​s41398-​022-​01817-0

	37.	 Rosenthal SL, Barmada MM, Wang X, Demirci FY, Kamboh MI 
(2014) Connecting the dots: potential of data integration to iden-
tify regulatory SNPs in late-onset Alzheimer’s disease GWAS 

findings. PLoS One 9(4):e95152. https://​doi.​org/​10.​1371/​journ​al.​
pone.​00951​52

	38.	 Raghavan NS, Dumitrescu L, Mormino E et al (2020) Association 
between common variants in RBFOX1, an RNA-binding protein, 
and brain amyloidosis in early and preclinical Alzheimer disease. 
JAMA Neurol 77(10):1288–1298. https://​doi.​org/​10.​1001/​jaman​
eurol.​2020.​1760

	39.	 Lee JH, Cheng R, Vardarajan B et al (2015) Genetic modifiers 
of age at onset in carriers of the G206A mutation in PSEN1 with 
familial Alzheimer disease among Caribbean Hispanics. JAMA 
Neurol 72(9):1043–1051. https://​doi.​org/​10.​1001/​jaman​eurol.​
2015.​1424

	40.	 Burgess S, Davies NM, Thompson SG (2014) Instrumental vari-
able analysis with a nonlinear exposure-outcome relationship. 
Epidemiology 25(6):877–885. https://​doi.​org/​10.​1097/​EDE.​00000​
00000​000161

	41.	 Bhoj EJ, Romeo S, Baroni MG, Bartov G, Schultz RA, Zinn AR 
(2009) MODY-like diabetes associated with an apparently bal-
anced translocation: possible involvement of MPP7 gene and 
cell polarity in the pathogenesis of diabetes. Mol Cytogenet 2:5. 
https://​doi.​org/​10.​1186/​1755-​8166-2-5

	42.	 Zhou Q, Sun WW, Chen JC et al (2022) Phenylalanine impairs 
insulin signaling and inhibits glucose uptake through modifica-
tion of IRbeta. Nat Commun 13(1):4291. https://​doi.​org/​10.​1038/​
s41467-​022-​32000-0

	43.	 Ittner AA, Bertz J, Chan TYB, van Eersel J, Polly P, Ittner LM 
(2014) The nucleotide exchange factor SIL1 is required for glu-
cose-stimulated insulin secretion from mouse pancreatic beta cells 
in vivo. Diabetologia 57(7):1410–1419. https://​doi.​org/​10.​1007/​
s00125-​014-​3230-z

	44.	 Sugawara K, Shibasaki T, Takahashi H, Seino S (2016) Structure 
and functional roles of Epac2 (Rapgef4). Gene 575(2 Pt 3):577–
583. https://​doi.​org/​10.​1016/j.​gene.​2015.​09.​029

	45.	 Gucek A, Gandasi NR, Omar-Hmeadi M et al (2019) Fusion pore 
regulation by cAMP/Epac2 controls cargo release during insulin 
exocytosis. Elife 8:e41711. https://​doi.​org/​10.​7554/​eLife.​41711

	46.	 Li R, Chen W, Li Y, Zhang Y, Chen G (2011) Retinoids syner-
gized with insulin to induce Srebp-1c expression and activated its 
promoter via the two liver X receptor binding sites that mediate 
insulin action. Biochem Biophys Res Commun 406(2):268–272. 
https://​doi.​org/​10.​1016/j.​bbrc.​2011.​02.​031

	47.	 Osman W, Tay GK, Alsafar H (2018) Multiple genetic varia-
tions confer risks for obesity and type 2 diabetes mellitus in arab 
descendants from UAE. Int J Obes (Lond) 42(7):1345–1353. 
https://​doi.​org/​10.​1038/​s41366-​018-​0057-6

	48.	 Chibalin AV, Leng Y, Vieira E et al (2008) Downregulation of 
diacylglycerol kinase delta contributes to hyperglycemia-induced 
insulin resistance. Cell 132(3):375–386. https://​doi.​org/​10.​1016/j.​
cell.​2007.​12.​035

	49.	 Kim JS, Park J, Kim MS et al (2017) The Tnfaip8-PE complex is 
a novel upstream effector in the anti-autophagic action of insulin. 
Sci Rep 7(1):6248. https://​doi.​org/​10.​1038/​s41598-​017-​06576-3

	50.	 Ochoa-Rosales C, Portilla-Fernandez E, Nano J et al (2020) Epi-
genetic link between statin therapy and type 2 diabetes. Diabetes 
Care 43(4):875–884. https://​doi.​org/​10.​2337/​dc19-​1828

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1136/bmjopen-2018-025530
https://doi.org/10.1136/bmjopen-2018-025530
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/ijo.2014.131
https://doi.org/10.1159/000517462
https://doi.org/10.1159/000517462
https://doi.org/10.1074/jbc.M116.748335
https://doi.org/10.1074/jbc.M116.748335
https://doi.org/10.1038/s41598-019-38980-2
https://doi.org/10.1038/s41598-019-38980-2
https://doi.org/10.1007/s001250050603
https://doi.org/10.1515/JPEM.2000.13.7.923
https://doi.org/10.1371/journal.pone.0028764
https://doi.org/10.1159/000519382
https://doi.org/10.1038/s41366-022-01172-6
https://doi.org/10.1111/ijpo.12765
https://doi.org/10.1007/s00439-019-01988-9
https://doi.org/10.1038/s41398-022-01817-0
https://doi.org/10.1038/s41398-022-01817-0
https://doi.org/10.1371/journal.pone.0095152
https://doi.org/10.1371/journal.pone.0095152
https://doi.org/10.1001/jamaneurol.2020.1760
https://doi.org/10.1001/jamaneurol.2020.1760
https://doi.org/10.1001/jamaneurol.2015.1424
https://doi.org/10.1001/jamaneurol.2015.1424
https://doi.org/10.1097/EDE.0000000000000161
https://doi.org/10.1097/EDE.0000000000000161
https://doi.org/10.1186/1755-8166-2-5
https://doi.org/10.1038/s41467-022-32000-0
https://doi.org/10.1038/s41467-022-32000-0
https://doi.org/10.1007/s00125-014-3230-z
https://doi.org/10.1007/s00125-014-3230-z
https://doi.org/10.1016/j.gene.2015.09.029
https://doi.org/10.7554/eLife.41711
https://doi.org/10.1016/j.bbrc.2011.02.031
https://doi.org/10.1038/s41366-018-0057-6
https://doi.org/10.1016/j.cell.2007.12.035
https://doi.org/10.1016/j.cell.2007.12.035
https://doi.org/10.1038/s41598-017-06576-3
https://doi.org/10.2337/dc19-1828


1924	 Diabetologia (2023) 66:1914–1924

1 3

Authors and Affiliations

Kirsten Mehlig1   · Ronja Foraita2   · Rajini Nagrani2   · Marvin N. Wright2,3,4   · Stefaan De Henauw5   · 
Dénes Molnár6   · Luis A. Moreno7,8,9,10   · Paola Russo11   · Michael Tornaritis12 · Toomas Veidebaum13   · 
Lauren Lissner1   · Jaakko Kaprio14   · Iris Pigeot2,3   · on behalf of the I.Family consortium

 1	 School of Public Health and Community Medicine, Institute 
of Medicine, University of Gothenburg, Gothenburg, 
Sweden

2	 Leibniz Institute for Prevention Research and Epidemiology 
– BIPS, Bremen, Germany

3	 Department of Mathematics and Computer Science, 
University of Bremen, Bremen, Germany

4	 Department of Public Health, University of Copenhagen, 
Copenhagen, Denmark

5	 Department of Public Health and Primary Care, Faculty 
of Medicine and Health Sciences, Ghent University, Ghent, 
Belgium

6	 Department of Paediatrics, Medical School, University 
of Pécs, Pécs, Hungary

7	 GENUD (Growth, Exercise, Nutrition and Development) 
Research Group, University of Zaragoza, Zaragoza, Spain

8	 Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
9	 Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 

Zaragoza, Spain
10	 Centro de Investigación Biomédica en Red de Fisiopatología 

de la Obesidad y Nutrición (CIBERObn), Instituto de Salud 
Carlos III, Madrid, Spain

11	 Institute of Food Sciences, National Research Council, 
Avellino, Italy

12	 Research and Education Institute of Child Health, Strovolos, 
Cyprus

13	 National Institute for Health Development, Tallinn, Estonia
14	 Institute for Molecular Medicine Finland, University 

of Helsinki, Helsinki, Finland

http://orcid.org/0000-0002-2653-0734
http://orcid.org/0000-0003-2216-6653
http://orcid.org/0000-0002-1708-2319
http://orcid.org/0000-0002-8542-6291
http://orcid.org/0000-0003-4141-5432
http://orcid.org/0000-0002-3675-7019
http://orcid.org/0000-0003-0454-653X
http://orcid.org/0000-0002-3603-0143
http://orcid.org/0000-0001-7659-8924
http://orcid.org/0000-0002-8296-2849
http://orcid.org/0000-0002-3716-2455
http://orcid.org/0000-0001-7483-0726

	Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICSI.Family children’s cohort
	Abstract
	Aimshypothesis 
	Methods 
	Results 
	Conclusionsinterpretation 

	Introduction
	Methods
	Results
	Discussion
	Anchor 11
	References


