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Abstract
Aims/hypothesis Type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) are prevalent diseases of metabolic origin. We
examined the association between NAFLD and the development of type 2 diabetes among non-Asian adults, and whether the
association differs by race.
Methods We analysed data from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a population-based
prospective cohort study. Participants underwent non-contrast abdominal computed tomography (CT) at baseline (2010–2011)
and assessment of glucose measures at the follow-up exam (2015–2016). NAFLD was defined as liver attenuation ≤51
Hounsfield units on CT images after exclusion for other liver fat causes. Race was self-reported. We used targeted maximum
likelihood estimation (TMLE) with machine-learning algorithms to estimate difference in type 2 diabetes risk between the
NAFLD and non-NAFLD groups.
Results Of the 1995 participants without type 2 diabetes at baseline (mean age±SD, 50.0±3.6 years; 59% women; 55.0% White
and 45.0% Black), 21.7% of White and 16.8% of Black participants had NAFLD at baseline, and 3.7% of White and 8.0% of
Black participants developed type 2 diabetes at follow up. After multivariable adjustment, risk difference for type 2 diabetes
associated with NAFLD vs no NAFLD was 4.1% (95% CI 0.3%, 7.9%) among White participants and −1.9% (95% CI −5.7%,
2.0%) in Black participants.
Conclusions/interpretation NAFLDwas associated with a higher risk of type 2 diabetes amongWhite participants but not among
Black participants. This finding suggests that the effect of liver fat on impaired glucose metabolism may be smaller in Black than
in White individuals.
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Abbreviations
CARDIA Coronary Artery Risk Development in Young

Adults
CT Computed tomography
hs-CRP High-sensitivity C-reactive protein
HU Hounsfield units
NAFLD Non-alcoholic fatty liver disease
TMLE Targeted maximum likelihood estimation

Introduction

Approximately 34.2 million Americans (10.5% of the US
population) have diabetes, and 1.5 million Americans are diag-
nosed with diabetes every year [1]. The prevalence of type 2
diabetes is twofold higher among African American than
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White individuals [2]. The rising number of individuals with
type 2 diabetes and its racial disparity remains challenging.

The liver plays a key role in the control of glucose homeo-
stasis by controlling glycolysis and gluconeogenesis [3]. Non-
alcoholic fatty liver disease (NAFLD) is the most common
chronic liver disease in the USA [4] and is reported to be
associated with type 2 diabetes [5–7]. Despite this, African
Americans have significantly lower NAFLD prevalence
compared with White individuals [8]. Thus, there may be a
different relationship between NAFLD and risk of type 2
diabetes by race. However, associations between NAFLD
and incident type 2 diabetes have been reported in Asian
populations [5–7], with few studies in the USA being
conducted among individuals of different race. Therefore, it
remains uncertain whether NAFLD is associated with incident
type 2 diabetes among non-Asian populations and whether the
association differs by race.

Prior studies investigating the association between NAFLD
and incident diabetes have a major limitation. In these studies,
the NAFLD group had dissimilar baseline characteristics
compared with the non-NAFLD group (e.g., adiposity, insulin
resistance and behavioural characteristics) [5–7].
Furthermore, there are many shared metabolic risk factors
between type 2 diabetes and NAFLD which facilitate model
misspecification and biased estimates of exposure effect. In
this setting, implementation of targeted maximum likelihood
estimation (TMLE) using machine-learning algorithms with a
rich set of potential confounders can be advantageous [9]. It
improves the chances of correct model specification since
TMLE is a doubly robust method if either exposure or
outcome mechanisms are estimated consistently; and TMLE

allows for flexible and data-adaptive estimation using non-
parametric machine-learning methods (particularly ensemble
methods, such as SuperLearner) to avoid strong assumptions
about the distribution of the data (e.g., multivariate normality).
In addition, it allows us to prevent overfitting even when
adjusting for a variety of covariates. Thus, it may be preferable
to misspecified regressions (e.g., generalised linear regres-
sion) to generate less biased estimates [9, 10].

The Coronary Artery Risk Development in Young Adults
(CARDIA) study is a prospective longitudinal cohort study
among White and Black participants who underwent non-
contrast computed tomography (CT) scanning of the abdomen
and assessments of glucose measures between 2010 and 2011
[11]. Among the CARDIA participants free of diabetes, we
assessed whether CT-defined NAFLD was associated with
incident type 2 diabetes and whether the association differed
by self-reported race. We used TMLE with machine-learning
algorithms to estimate difference in type 2 diabetes risk
between the NAFLD and non-NAFLD groups.

Methods

Study population The CARDIA study is an ongoing longitu-
dinal cohort study that enrolled 5115 Black and White partic-
ipants, aged 18 to 30 years, from four US field centres
(Birmingham [AL], Chicago [IL], Minneapolis [MN] and
Oakland [CA]) in 1985 and 1986 [11]. CARDIA follow-up
exams were conducted 2, 5, 7, 10, 15, 20, 25 and 30 years after
CARDIA baseline measures. All participants provided written
informed consent at each study visit, and institutional review
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boards at each field centre and the coordinating centre
approved the study annually. The current analysis was restrict-
ed to the 3498 CARDIA participants who attended the 25 year
follow-up exam (our ‘baseline’ for longitudinal analysis)
between 2010 and 2011 and the 30 year follow-up exam
(our ‘follow up’ for longitudinal analysis) between 2015 and
2016. For the current analyses, we excluded: (1) participants
who did not undergo CT scanning of the abdomen due to
pregnancy or severe obesity (weighing more than 450 lbs);
(2) participants with missing CTmeasurements for liver atten-
uation; (3) participants who had chronic liver disease or
secondary hepatic steatosis (i.e. self-reported hepatitis or
cirrhosis, hepatitis C, hepatitis B, primary biliary cholangitis,
and hemochromatosis); (4) men who consumed ≥30 g alcohol
per day and women who consumed ≥20 g alcohol per day
[12]; (5) participants with self-reported HIV; (6) participants
taking medications that cause hepatic steatosis (e.g., amioda-
rone, diltiazem, methotrexate, tamoxifen, valproic acid and/or
steroids); and (7) participants with missing data for glucose
measurements at baseline or follow up, and participants with
diabetes already present at baseline (Fig. 1).

Quantitative detection methods of liver fat content Non-
contrast CT scans were performed at baseline using GE multi-
detector CT scanners (GE 750HD 64 [Birmingham centre] or
GE LightSpeed VCT 64 [Oakland centre]; GE Healthcare,
Waukesha, WI, USA) or a Siemens multidetector CT scanner
(Sensation 64 [Chicago and Minneapolis centres]; Siemens
Medical Solutions, Erlangen, Germany) [13]. Image analysis
and quality control were performed at a core reading centre
(Wake Forest University Health Sciences, Winston-Salem,
NC, USA). Liver attenuation was measured in the right lobe
of the liver using CT slices through the upper abdomen. Liver
attenuation was calculated as the mean of nine measurements
from three CT slices (three measurements per slide) using
circular regions of interest of 2.6 cm2. The interclass correla-
tion coefficient between different readers on a random select-
ed sample of 156 participants was 0.975 for liver attenuation
measured by CT [13].

NAFLD was defined as liver attenuation measured by CT
≤51 Hounsfield units (HU) (which corresponds to a
liver:spleen attenuation ratio <1 [14, 15]), without other
causes of liver fat being present.

n=3498 par�cipants at baseline (2010–2011): n=1640 Black par�cipants and n=1858 White par�cipants

n=2199 diabetes-eligible at baseline: n=1041 Black par�cipants and n=1158 White par�cipants

n=3470 with CT data available at baseline: n=1626 Black par�cipants and n=1844 White par�cipants

n=3158 with CT data on liver a�enua�on available at baseline: n=1504 Black par�cipants and n=1654 White par�cipants

Excluded: n=14 Black par�cipants and n=14 White par�cipants
1. Body weight limita�ons (n=6 Black par�cipants and n=5 White par�cipants)
2. Pregnancy (n=8 Black par�cipants and n=9 White par�cipants)

Excluded: n=122 Black par�cipants and n=190 White par�cipants
Missing data about liver a�enua�on on CT

Excluded: n=182 Black par�cipants and n=279 White par�cipants
1. Chronic liver disease (n=22 Black par�cipants and n=26 White par�cipants)
2. Secondary hepa�c steatosis (n=160 Black par�cipants and n=253 White par�cipants)

Heavy alcohol use (n=116 Black par�cipants and n=218 White par�cipants)
HIV (n=14 Black par�cipants and n=10 White par�cipants)
Medica�ons causing secondary hepa�c steatosis (n=30 Black par�cipants and n=25 White par�cipants)

n=2697 NAFLD-eligible at baseline: n=1322 Black par�cipants and n=1375 White par�cipants

Excluded: n=281 Black par�cipants and n=217 White par�cipants
1. Missing data to diagnose diabetes at baseline (2010–2011; n=120 Black par�cipants and n=76 White par�cipants)
2. Missing data to diagnose diabetes at follow up (2015–2016; n=161 Black par�cipants and n=141 White par�cipants)

Excluded: n=144 Black par�cipants and n=60 White par�cipants
Diabetes at baseline

n=1995 (57.0%) final sample: n=897 Black par�cipants and n=1098 White par�cipants

Fig. 1 Flow diagram illustrating the derivation of samples for analysis.
Heavy alcohol use was defined as alcohol consumption ≥30 g/day in men
and ≥20 g/day in women. Medications causing secondary hepatic

steatosis included amiodarone, diltiazem, methotrexate, steroids, tamox-
ifen and valproic acid
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Glucose, race and other baseline characteristics Fasting
glucose was determined in participants who reported fasting
for ≥8 h when blood was drawn by venepuncture according to
a standard protocol [11]. Fasting glucose was measured using
hexokinase coupled to glucose 6-phosphate dehydrogenase,
manufactured by Linco Research (St Louis, MO, USA).
Using a commercially purchased pool of control samples,
quality control was conducted; within-run precision (%CV)
was <1% and the between-run precision (%CV) was <2%.
Prevalent diabetes was defined as fasting glucose ≥7.0 mmol/l
or the use of diabetes medications at baseline. Incident type 2
diabetes was defined as fasting glucose ≥7.0 mmol/l or the use
of diabetes medications at follow up among those without
prevalent diabetes at baseline [16].

Other data were collected using standardised protocols and
quality control procedures across study centres at each visit, as
described previously (see electronic supplementary material
[ESM] Methods for full details) [11]. These included age,
sex, socioeconomic status (education attainment, income,
marital status, employment status), behavioural characteristics
(smoking, alcohol consumption, sugar-sweetened carbonated
drink consumption, physical activity), medical history (history
of coronary heart disease, stroke and bariatric surgery, family
history of diabetes, and use of antihyperglycaemic, antihyper-
tensive or lipid-lowering medications), physical measure-
ments (BP, BMI, waist circumference, waist-to-hip ratio),
fasting laboratory measurements (insulin [including HOMA-
IR], total cholesterol, triglyceride, HDL-cholesterol, LDL-
cholesterol, eGFR, high-sensitivity C-reactive protein [hs-
CRP]) and CT-derived fat measures (total abdominal fat
volume, subcutaneous adipose tissue and visceral adipose
tissue). The race of each participant was self-assigned at the
CARDIA study baseline according to the following given
categories:: ‘Hispanic’, ‘Black, not Hispanic’, ‘White, not
Hispanic’, ‘American Indian or Alaskan native’, ‘Asian or
Pacific Islander’, ‘Don’t Know’ or ‘No Answer’. Race was
confirmed by the participants of the CARDIA study at the 2
year follow up. Here, we include self-reported race as a proxy
for the social determinants of health that are associated with
disparities in morbidity and mortality [17–19].

Statistical analyses Summary statistics for baseline character-
istics of participants were calculated overall, and for non-
NAFLD and NAFLD groups, separately. The statistical
significance of differences between the groups was deter-
mined using the unpaired t test or Mann–Whitney U test for
continuous variables, and χ2 tests for categorical variables.
Assuming that missing data for covariates occurred indepen-
dently of missing glucose measures, all variables with missing
data (ESM Table 1) were imputed with 20 data sets using
chained equations [20]. Results from each imputed dataset
were combined using the standard rules from Rubin [21].

The 5 year cumulative incidence of type 2 diabetes was
calculated separately in the non-NAFLD and NAFLD groups
at baseline. Risk difference and relative risk for incident type 2
diabetes associated with NAFLD were calculated in unadjust-
ed and adjusted models. We used the TMLE model, a
semiparametric doubly robust method, which provides an effi-
cient substitution estimator [9]. The implementation of TMLE
involves the following steps: (1) generating estimators for the
outcomemodel on exposure and all potential confounders (i.e.
probability of having type 2 diabetes calculated using NAFLD
and covariates [outcome regression]); (2) generating estima-
tors for the exposure model on all potential confounders (i.e.
probability of having NAFLD calculated using covariates
[propensity score regression]); (3) calculating the clever
covariate based on the exposure model for both exposed and
unexposed groups; (4) fluctuating the initial estimator of the
outcome model to target the parameter of interest; and (5)
calculating the risk of outcome of interests for exposed and
unexposed groups, and then calculating the measure of asso-
ciation of interest [22]. We used the SuperLearner algorithm
to estimate both propensity score regression and outcome
regression. The SuperLearner algorithm combines a library
of data-adaptive machine-learning models and parametric
models (i.e. ensemble method) in order to calculate an estima-
tor that may perform better than any singlemodel in the library
(see ESMMethods for details) [23]. This approach minimises
bias and overfitting compared with using misspecified regres-
sions (e.g., linear associations). Therefore, we adjusted for a
rich set of covariates.

Covariates included sex, age, self-reported race (not used in
race-stratified analyses), study site, socioeconomic status
(education attainment, income, marital status and employment
status), behavioural characteristics (smoking status, alcohol
consumption, sugar-sweetened carbonated drink consumption
and physical activity score) and clinical characteristics at base-
line, including BMI, waist circumference, waist-to-hip ratio,
hypertension, history of coronary heart disease, history of
stroke, history of bariatric surgery, family history of type 2
diabetes, fasting glucose, total cholesterol, triglycerides,
HDL-cholesterol, LDL-cholesterol [24], HOMA-IR [25], hs-
CRP, eGFR [26], measures of abdominal fat (i.e. total abdom-
inal fat volume, subcutaneous adipose tissue and visceral
adipose tissue) and use of lipid-lowering drugs. Covariates
were selected a priori because they have been associated with
NAFLD and type 2 diabetes [5, 6, 27–30]. We tested for
heterogeneity in the association between NAFLD and incident
type 2 diabetes by self-reported race using the TMLEmargin-
al structural model [31].

Mediation analyses were performed, given that the follow-
ing covariates can be mediators of the associations between
NAFLD and incident type 2 diabetes: baseline fasting glucose,
HOMA-IR and hs-CRP. Structural equation modelling was
used with the Lavaan package [32]. Total, direct and indirect
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effect estimates were calculated using multivariable adjusted
linear regression analysis, adjusted for the same potential
confounding variables.

To compare NAFLD severity and other factors by self-
reported race, we conducted an exploratory analysis among
participants with NAFLD. In sensitivity analyses, we conduct-
ed the following: (1) multivariable linear regression and multi-
variable Poisson regression analyses to compare results
obtained using TMLE; (2) multivariable linear and Poisson
regression analyses using liver attenuation measured by CT
as a continuous variable; (3) generalised additive models to
validate the threshold of liver attenuation measured by CT for
NAFLD affecting incident type 2 diabetes; (4) analyses with-
out imputing missing covariates; and (5) analyses excluding
individuals with impaired fasting glucose (fasting glucose
levels ≥5.6 mmol/l to <7.0 mmol/l) at baseline in addition to
prevalent diabetes.

Statistical analyses were performed using R for Windows,
version 3.6.0 (R Foundation for Statistical Computing,
Vienna, Austria). Statistical significance was defined by a
two-sided p value <0.05. For interpretation of statistical inter-
actions, we used p<0.05.

Results

Of the 3498 participants (56.6% women and 46.9% Black
participants) who attended the baseline exam, we excluded
1503 participants (Fig. 1), for a final analysis sample of
1995 individuals (mean age±SD 50.0±3.6 years, 58.8%
female, 55.0% White and 45.0% Black participants).
Overall demographic and clinical characteristics of the
included participants, and characteristics by the presence
or absence of NAFLD are shown in Table 1. Compared
with those without NAFLD, participants with NAFLD were
more likely to be male, White, and have higher BMI, waist
circumference, fasting glucose, HOMA-IR, serum triglycer-
ide levels, hs-CRP levels, subcutaneous adipose tissue
volume and visceral adipose tissue volume. ESM Table 2
shows the characteristics of participants according to race
and NAFLD. Compared with those without NAFLD,
among White participants, those with NAFLD were more
likely to consume >1 sugar-sweetened carbonated drink per
day and partake in less physical activity per week, while
among Black participants, those with NAFLD were more
likely to smoke (ESM Table 2).

Of the 1995 participants, 5.7% (n=113) had developed
type 2 diabetes at the 5 year follow-up exam (Table 2). In
an unadjusted model, risk difference and relative risk for
type 2 diabetes at follow up associated with NAFLD at
baseline were 7.97% (95% CI 5.44%, 10.51%) and 2.94
(95% CI 2.02, 4.27), respectively. Adjusted risk difference
and relative risk for type 2 diabetes associated with

NAFLD were 0.87% (95% CI −1.33%, 3.06%) and 1.16
(0.81, 1.68), respectively. The weighted algorithms chosen
by SuperLearner show each coefficient (weight) of several
statistical or machine-learning models to build the final
ensemble algorithms (ESM Table 3).

The TMLE marginal structural model showed that self-
reported race modified the association of NAFLD with
incident type 2 diabetes (p for interaction <0.001). In the
stratified analysis by self-reported race, 21.7% (n=238) of
White and 16.8% (n=151) of Black participants had
NAFLD at baseline, and 3.7% (n=41) of White and 8.0%
(n=72) of Black participants had developed type 2 diabetes
at follow up (Table 2). In total, 1.6% of participants with-
out NAFLD and 11.3% of participants with NAFLD had
developed type 2 diabetes among White people, while
among Black participants 7.0% of those without NAFLD
and 13.2% of those with NAFLD had developed type 2
diabetes at follow up. Adjusted risk difference for type 2
diabetes associated with NAFLD was 4.10% (95% CI
0.27%, 7.92%) among White participants and −1.85%
(95% CI −5.68%, 1.99%) among Black participants. The
relative risk for the association between NAFLD and inci-
dent type 2 diabetes was 2.84 (95% CI 1.42, 5.69) among
White participants and 0.79 (95% CI 0.46, 1.34) among
Black participants. The weighted algorithms chosen by
SuperLearner are shown in ESM Table 3.

Exploratory analysis Among participants with NAFLD, liver
attenuation was lower in White participants (38.9±11.0 HU)
than Black participants (42.3±9.5 HU), with a p value of 0.002
(ESM Table 2). Among participants with NAFLD, waist-to-
hip ratio and visceral adipose tissue volume were higher
among White participants than Black participants (p value
<0.001 for both), while BMI (p=0.001) and subcutaneous
adipose tissue volume (p<0.001) were lower (ESM Table 2).
Among participants with NAFLD, fasting insulin levels and
HOMA-IR at baseline were higher in Black participants than
White participants, with p values of 0.007 and 0.010, respec-
tively (ESM Table 2).

Sensitivity analyses Results were similar when we used multi-
variable linear regression and Poisson regression models
instead of the TMLE (ESM Table 4), and when we used liver
attenuation measured by CT as a continuous variable instead
of using a cut-off value of ≤51 HU for NAFLD (ESM
Table 5). Figure 2, generated using generalised additive
models, shows the appropriateness of using a liver attenuation
cut-off value of ≤51 HU to define NAFLD and assess its
impact on incident type 2 diabetes, and the higher impact of
liver lipid storage on type 2 diabetes among White vs Black
participants. ESM Table 6 shows the characteristics of the
participants without imputed missing covariates. Results with
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and without imputed missing covariates were similar (ESM
Table 7). ESM Table 8 shows the results excluding individ-
uals with impaired fasting glucose at baseline. These results
were similar to the results including participants with impaired
fasting glucose.

Mediation analyses In mediation analyses among White
participants, the direct effect of NAFLD (z) (adjusted risk
difference: 5.80% [95% CI 2.63%, 8.97%]) accounted for
most of the total effect (z+a1b1+a2b2+a3b3, whereby a1b1,
a2b2, and a3b3 represent the indirect effect of NAFLD on type

Table 1 Characteristics of participants at baseline (2010–2011)

Characteristics Overall (n=1995) No NAFLD (n=1606) NAFLD (n=389) p value

Age (years) 50.0±3.6 50.0±3.6 50.2±3.5 0.261

Women 1173 (58.8) 1014 (63.1) 159 (40.9) <0.001

Black participant 897 (45.0) 746 (46.5) 151 (38.8) 0.003

College degree or higher 1595 (79.9) 1280 (79.7) 315 (80.9) 0.667

Income <$50,000/year 629 (31.5) 492 (30.7) 137 (35.2) 0.094

Married 1125 (56.4) 889 (55.4) 236 (60.7) 0.065

Employed full time 1363 (68.3) 1088 (67.7) 275 (70.7) 0.287

Smoking 0.054

Never 1297 (65.0) 1065 (66.3) 233 (59.8)

Former 443 (22.2) 343 (21.4) 99 (25.6)

Current 255 (12.8) 198 (12.3) 57 (14.7)

Alcohol consumption (g/day) 1.9 (0.0–8.2) 1.9 (0.0–8.0) 1.9 (0.0–9.7) 0.304

Sugar-sweetened carbonated drink ≥1 time per day 225 (11.3) 167 (10.4) 58 (15.0) 0.014

Physical activity (exercise units/week) 344.0±273.9 352.0±278.2 310.9±252.6 0.008

Hypertension 874 (43.8) 640 (39.9) 234 (60.1) <0.001

History of coronary heart disease 32 (1.6) 25 (1.6) 7 (1.8) 0.907

History of stroke 25 (1.3) 21 (1.3) 4 (1.0) 0.849

History of bariatric surgery 34 (1.7) 26 (1.6) 8 (2.1) 0.704

Family history of diabetes 763 (38.3) 605 (37.7) 158 (40.6) 0.629

Antihypertensive medication 451 (22.6) 332 (20.6) 120 (30.8) <0.001

Lipid-lowering medication 248 (12.4) 189 (11.7) 59 (15.2) 0.075

BMI (kg/m2) 29.8±6.8 28.7±6.2 34.5±7.0 <0.001

Waist circumference (cm) 93.0±14.9 89.6±13.1 107.0±13.6 <0.001

Waist-to-hip ratio 0.8±0.1 0.8±0.1 0.9±0.1 <0.001

Systolic BP (mmHg) 118.4±15.7 117.2±15.6 123.3±15.5 <0.001

Diastolic BP (mmHg) 74.2±11.2 73.2±11.0 78.7±10.7 <0.001

Fasting glucose (mmol/l) 5.18±0.53 5.11±0.51 5.44±0.54 <0.001

Fasting insulin (pmol/l) 59.0 (36.8–95.2) 52.1 (33.3–81.3) 99.3 (69.5–150.0) <0.001

HOMA-IR 2.0 (1.2–3.2) 1.7 (1.1–2.7) 3.5 (2.3–5.4) <0.001

Total cholesterol (mmol/l) 5.01±0.92 5.02±0.91 4.97±0.94 0.316

Triglyceride (mmol/l) 1.02 (0.75–1.44) 0.95 (0.70–1.32) 1.40 (1.02–1.95) <0.001

HDL-cholesterol (mmol/l) 1.50±0.43 1.56±0.43 1.26±0.34 <0.001

LDL-cholesterol (mmol/l) 2.95±0.83 2.95±0.82 2.96±0.85 0.767

eGFR (ml min−1 [1.73m]−2) 94.8±18.6 94.8±18.6 94.9±18.7 0.931

Hs-CRP (mg/l) 1.3 (0.6–3.1) 1.1 (0.5–2.6) 2.7 (1.3–5.3) <0.001

Total abdominal fat volume (cm3) 472.9±209.5 438.0±197.5 617.1±196.0 <0.001

Subcutaneous adipose tissue (cm3) 332.0±167.3 314.3±163.9 404.8±161.6 <0.001

Visceral adipose tissue (cm3) 123.6±67.6 108.0±56.0 187.8±73.3 <0.001

Liver attenuation (HU) 56.8±10.8 60.8±5.9 40.2±10.6 <0.001

Data are presented as mean±SD, n (%) or median (IQR)

The statistical significance of differences between groups was determined using an unpaired t test or Mann–WhitneyU test for continuous variables, and
χ2 tests for categorical variables
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2 diabetes through fasting glucose, HOMA-IR and hs-CRP,
respectively; adjusted risk difference: 6.63% [95% CI 3.40%,
9.86%]) on type 2 diabetes risk (Fig. 3 and ESM Table 9).
HOMA-IR at baseline significantly mediated the association
between NAFLD and incident type 2 diabetes (a2b2; adjusted
risk difference 0.97% [95% CI 0.36%, 1.58%]), while fasting

glucose (a1b1) and hs-CRP (a3b3) did not (ESM Table 9).
Among Black participants, neither the total (z+a1b1+a2b2+
a3b3) nor direct (z) effect of NAFLD was significantly asso-
ciated with the incident type 2 diabetes, with adjusted risk
differences of 0.17% (95% CI −4.96%, 5.30%) and −1.50%
(95% CI −6.62%, 3.62%), respectively.

Direct effect: z

−1.50 (−6.62, 3.62)

Total indirect effect: 

a1b1+a2b2+a3b3

0.83 (−0.08, 1.74)

Direct effect: z

5.80 (2.63, 8.97)

Black participantsWhite participants

NAFLD

(baseline)

Diabetes

(follow-up)

Fasting glucose

(baseline)

HOMA-IR

(baseline)

hs-CRP

(baseline)

Total effect: z+a1b1+a2b2+a3b3

6.63 (3.40, 9.86)

NAFLD

(baseline)

Diabetes

(follow-up)

Fasting glucose

(baseline)

HOMA-IR

(baseline)

hs-CRP

(baseline)

Total indirect effect: 

a1b1+a2b2+a3b3

1.68 (−0.39, 3.74)

Total effect: z+a1b1+a2b2+a3b3

0.17 (−4.96, 5.30)

Direct effect: b1

8.41 (5.97, 10.86)

Direct effect: a1

−0.02 (−0.09, 0.06)

Direct effect: a3

0.55 (0.01, 1.10)

Direct effect: b3

−0.01 (−0.35, 0.33)

Direct effect: a1

0.11 (0.01, 0.21)

Direct effect: a3

1.40 (0.26, 2.54)

Direct effect: b1

15.28 (11.90, 18.66)

Direct effect: b3

0.14 (−0.14, 0.43)

a b

Direct effect: a2

0.53 (0.31, 0.75)

Direct effect: b2

1.83 (0.99, 2.67)

Direct effect: b2

−0.14 (−1.14, 0.85)

Direct effect: a2

1.33 (1.01, 1.66)

Fig. 3 Path model diagram with the results of mediation analysis using
structural equation modelling in (a) n=1098 White participants and (b)
n=897 Black participants. The path model shows the effect of NAFLD on
type 2 diabetes incidence as mediated simultaneously by fasting glucose,
HOMA-IR and hs-CRP at baseline. The direction of the path analysis
fromNAFLD to type 2 diabetes incidence was prespecified. NAFLDwas
defined as liver attenuation measured by CT ≤51 HU at baseline (2010–
2011), which corresponds to a liver:spleen attenuation ratio <1, without
other causes of liver fat. Diabetes was defined as fasting glucose ≥7.0
mmol/l or the use of diabetes medications at follow up (2015–2016). We
used structural equation modelling. The model adjusted for sex, age,

study site, baseline socioeconomic status (education attainment, income,
marital status and employment status), baseline behavioural characteris-
tics (smoking status, alcohol consumption, sugar-sweetened carbonated
drink consumption and physical activity score) and baseline clinical char-
acteristics, including BMI, waist circumference, waist-to-hip ratio, hyper-
tension, history of coronary heart disease, history of stroke, history of
bariatric surgery, family history of diabetes, total cholesterol, triglycer-
ides, HDL-cholesterol, LDL-cholesterol, eGFR, measures of abdominal
fat (i.e., total abdominal fat volume, subcutaneous adipose tissue and
visceral adipose tissue) and use lipid-lowering drugs. Effect sizes (95%
CI) are shown; significant values are displayed in bold
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generalised additive models
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Discussion

In this longitudinal study of a community-based cohort, among
participants without diabetes at a mean age of 50.0±3.6 years,
NAFLD was more prevalent (21.7% vs 16.8%) and more
severe in White participants than in Black participants (liver
attenuation measured by CT among participants with NAFLD:
38.9±11.0 vs 42.3±9.5). At the follow-up exam conducted 5
years after baseline, Black participants were more likely to
have developed type 2 diabetes than White participants
(8.0% vs 3.7%). Using TMLE with machine-learning algo-
rithms, we found that NAFLD at baseline was associated with
a higher absolute and relative risk for the development of type
2 diabetes in White participants but not in Black participants.
The association observed in White participants was indepen-
dent of a variety of socioeconomic, behavioural and clinical
characteristics, including visceral adipose tissue, insulin resis-
tance and inflammation (using hs-CRP).

In the Framingham Heart Study (mean age±SD 45±6 years;
46% women), which included 1051 White participants without
fatty liver at baseline, greater liver fat (defined as lower liver-
phantom ratio on abdominal CT) was associated with an
increased risk for incident type 2 diabetes over 6 years of follow
up [28]. The study did not exclude people with chronic liver
disease or secondary hepatic steatosis unless it was caused by
excessive alcohol intake at baseline. Furthermore, adjustment for
covariates in this studymight have been insufficient (e.g., param-
eters of socioeconomic status, inflammation and insulin resis-
tance were not adjusted for). In the Multi-Ethnic Study of
Atherosclerosis (n=3153; median age [IQR] 59 [51–68] years;
39.2% White individuals, 27.1% African American, 21.2%
Hispanic and 12.5% Asian), participants with NAFLD had a
higher risk for developing diabetes over 9 years of follow up
[33]. However, how the association between NAFLD and type 2
diabetes differs by race was not clarified. The current study
extends prior knowledge using a larger sample of Black partic-
ipants and demonstrates that NAFLD was associated with a
higher risk for the development of type 2 diabetes in White
participants but not in Black participants, independent of a rich
set of covariates, including parameters of inflammation and insu-
lin resistance. Furthermore, some of the covariates used in the
Multi-Ethnic Study of Atherosclerosis and in the current study
can be mediators of the associations between prevalent NAFLD
and incident type 2 diabetes (specifically fasting glucose,
HOMA-IR and hs-CRP). Thus, we performed mediation analy-
ses. The results indicated that NAFLDwas largely directly asso-
ciated with incident type 2 diabetes among White participants,
while HOMA-IR at baseline slightly mediated the association.

Ectopic fat storage, the accumulation of lipid droplets in
nonadipose tissues (e.g., the liver, skeletal muscle and pancre-
as), is associated with insulin resistance and diabetes. Although
African Americans have been shown to be at higher risk for
type 2 diabetes compared with White individuals, they are

likely to have lower levels of ectopic fat [34]. African
Americans had lower NAFLD prevalence and severity
compared with White adults in a prior study [8], which is
consistent with our results. A previous cross-sectional study
suggested that Black West African individuals have lower
levels of liver fat than Europeans, and greater liver fat was
associated with lower insulin sensitivity only in Europeans
[35]. We observed that NAFLD was associated with the devel-
opment of type 2 diabetes only in White adults. These results
suggest that fat accumulation in the liver may play less of a role
in the development of type 2 diabetes among Black
populations.

TMLEwith machine-learning algorithms can be preferable
to the conventional regression approaches when analysing the
current observational data with a large number of variables
and potentially complex relationships between them, as it
can help protect against bias. The correct model specification
is crucial to obtain unbiased estimates. When the exposure
groups are dissimilar, as in the current study, careful statistical
adjustment for confounders is necessary. There are two broad
approaches for confounding adjustment: conventional
outcome regression modelling and exposure modelling
(propensity score methods). Conventional outcome regression
models (e.g., the generalised linear model) can be biased
under misspecification of a parametric outcome model [36].
Propensity score methods, on the other hand, require the
correct specification of an exposure model. Contrastingly,
the TMLE model is a doubly robust method, combining
outcome and exposure models to generate an unbiased esti-
mate as long as at least one of the models is correctly specified
[9]. TMLE also enables the utilisation of non-parametric
machine-learning approaches, which can mitigate model
misspecification. We used the ensemble machine learning
algorithm, SuperLearner, that combines multiple machine-
learning models and uses them to make a prediction as good
as or better than any single model. It can empirically identify
interactions and nonlinear relationships among variables. It
can, therefore, avoid making strong assumptions about the
distribution of the data (e.g., multivariate normality) and about
the associations between variables (e.g., linear relation). Prior
studies showed that TMLE with machine-learning algorithms
provided a less biased estimate compared with various other
statistical methods [9, 37]. Thus, this method may be prefera-
ble for the current cohort data, which has complex relation-
ships between a large number of variables.

The bi-directional relationship between NAFLD and type 2
diabetes has been shown in other studies, even by use of
Mendelian randomisation methods [38, 39]. Mendelian
randomisation is an epidemiological approach aimed at
strengthening causal inference, utilising genetic variants as
instrumental variables [40]. It carries a merit of diminishing
reverse causality. There have been several studies examining
the association between NAFLD and type 2 diabetes using
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Mendelian randomisation. Liu et al suggested that genetically
driven NAFLD significantly increased the risk of type 2
diabetes, while genetically driven type 2 diabetes increased
NAFLD risk [38]. Yuan et al also provided evidence that
genetic predisposition to type 2 diabetes was associated with
an increased risk of NAFLD [39]. Thus, our observational
association might be driven by reverse causation, although
this is unlikely due to this being a 5 year prospective cohort
study. These prior studies, however, involved only European
descendants [38, 39]. By using cohort data that included a
large number of Black individuals from the USA, the current
study was able to suggest racial differences in the association
between NAFLD and the risk of type 2 diabetes.

Strengths and limitations Strengths of this study include the
large, well-characterised, community-based cohort of White
and Black participants, with high retention and standardised
data-collection protocols with quality control. The large
sample size of Black participants allowed us to assess associ-
ations of NAFLD with type 2 diabetes in White and Black
individuals. Additionally, we implemented TMLE using
machine-learning algorithms, which enabled adjustments for
a rich set of covariates. However, this study has several limi-
tations. First, abdominal CT scans are a less accurate assess-
ment of liver fat that have been outperformed by dual-gradient
echo magnetic resonance imaging and proton magnetic reso-
nance spectroscopy [14, 41, 42]. In the current study, among
participants with or without prevalent diabetes at baseline
(mean age 50.1±3.6 years; 58.1% women; mean BMI 30.4
±7.2 kg/m2), the prevalence of NAFLD was 21.8% (227 indi-
viduals out of 1041) among Black participants, 24.2% (280
individuals out of 1158) amongWhite participants and 23.1%
(507 individuals out of 2199) overall. These values might be
relatively lower than the prevalence observed in other studies
using ultrasonography or magnetic resonance-based methods
[8]. Thus, defining NAFLD by CT scanning might lead to
misclassification of NAFLD, and NAFLD-defined by
magnetic resonance-based methods might indicate different
associations from those observed in the current study.
Second, we defined NAFLD as liver attenuation measured
by CT ≤51 HU. Although this cut-off value has been used in
prior studies [43–45], this may be an arbitrary classification.
Therefore, in a sensitivity analysis, we used liver attenuation
measured by CT as a continuous variable; we found that
results were similar (see ESM Table 5). Furthermore, gener-
alised additive models were used to demonstrate the validity
of the threshold for incident type 2 diabetes (Fig. 2). Third,
diabetes ascertainment included only fasting glucose levels
and the use of diabetes medications, but not measures of
HbA1c or glucose tolerance testing since data from the
CARDIA study does not involve the latter measures at follow
up (2015–2016). This could lead tomeasurement bias. Further
studies on associations between NAFLD and incident type 2

diabetes in which diabetes is diagnosed by all of the variables
listed above are warranted since none of the prior studies
conducted in the USA have been able to achieve this [28,
33]. Fourth, in the CARDIA study, simultaneous assessment
of liver chemistry was not carried out alongside CT scans and,
thus, we were unable to assess more severe forms of NAFLD
(e.g., non-alcoholic steatohepatitis [NASH], which is strongly
associated with type 2 diabetes) [46]. Fifth, we used self-
reported race as a social construct, not as a genetic construct,
in order to focus on the racial disparities in disease based on
social determinants of health. To explore the difference in
genetic ancestry, further research is needed using genetic/
genomic data. Finally, differential attrition by race may have
had an impact on our results as a greater percentage of Black
participants enrolled in the CARDIA study were excluded
from the analysis as compared with White participants.

Conclusions NAFLD was associated with a higher risk for the
development of type 2 diabetes in White participants but not
in Black participants. This finding suggests that the effect of
liver fat on impaired glucose metabolism may be smaller in
Black than in White individuals.
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