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Abstract
Diabetes and its complications cause a heavy disease burden globally. Identifying exposures, risk factors andmolecular processes
causally associated with the development of diabetes can provide important evidence bases for disease prevention and spur novel
therapeutic strategies. Mendelian randomisation (MR), an epidemiological approach that uses genetic instruments to infer causal
associations between an exposure and an outcome, can be leveraged to complement evidence from observational and clinical
studies. This narrative review aims to summarise the evidence on potential causal risk factors for diabetes by integrating
published MR studies on type 1 and 2 diabetes, and to reflect on future perspectives of MR studies on diabetes. Despite the
genetic influence on type 1 diabetes, few MR studies have been conducted to identify causal exposures or molecular processes
leading to increased disease risk. In type 2 diabetes, MR analyses support causal associations of somatic, mental and lifestyle
factors with development of the disease. These studies have also identified biomarkers, some of them derived from the gut
microbiota, and molecular processes leading to increased disease risk. These studies provide valuable data to better understand
disease pathophysiology and explore potential therapeutic targets. Because genetic association studies have mostly been restrict-
ed to participants of European descent, multi-ancestry cohorts are needed to examine the role of different types of physical
activity, dietary components, metabolites, protein biomarkers and gut microbiome in diabetes development.
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Abbreviations
BCAA Branched-chain amino acid
BCKD Branched-chain α-ketoacid dehydrogenase
MR Mendelian randomisation Introduction

Diabetes is a leading health issue that causes severe disease
and has a huge economic burden worldwide [1, 2]. Many
epidemiological studies have assessed the causes of diabetes
to provide an evidence base for disease prevention. For exam-
ple, in type 2 diabetes, an exposure-wide umbrella review
including 142 factors identified a wide range of biomarkers,
medical conditions and dietary, lifestyle, environmental and
psychosocial factors that were associated with the risk of
disease [3]. The picture is somewhat different for type 1 diabe-
tes owing to the strong genetic contribution and less influence
of external factors. In addition to genetic factors, only a few
environmental factors, including birthweight and childhood
obesity, have been linked to type 1 diabetes [4]. While results
from observational studies have provided initial evidence of
potential exposures associated with diabetes, residual
confounding and reverse causation limit our understanding
of the complex set of factors underlying the development of
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Collider bias A bias caused by genetic associations obtained from genome-wide association 

analysis with adjustment for certain covariates. This can also be caused by 

stratifying the population based on a collider or studying the association between 

a risk factor for the disease and disease progression

Confounding and 

reverse causality

These two biases can usually be minimised but may be introduced by using invalid 

genetic instrumental variables, such as involving genetic variants with pleiotropic 

associations with confounders

Horizontal 

pleiotropy

Instrumental variables influence the outcome not only through the exposure but 

also through alternative pathways. Horizontal pleiotropy can be balanced or 

imbalanced. Imbalanced horizontal pleiotropy generates bias in MR estimates. For 

example, if the genetic variants for smoking are associated with a risk factor for 

type 2 diabetes, such as physical activity, in an imbalanced way, the MR 

association between smoking and type 2 diabetes will be biased by horizontal 

pleiotropy. Whether the association is biased by positive (leading to an 

exaggerated estimate) or negative (leading to an attenuated estimate) horizontal 

pleiotropy can be assessed by comparing the associations in the inverse variance 

weighted and MR-Egger regression methods

Instrumental 

variables

Genetic variants (i.e. SNPs) that are strongly associated with the exposure and 

not associated with confounders and that affect the outcome merely via the 

exposure, such as cis-SNPs that encode a protein

Linkage 

disequilibrium

The non-random assortment of genetic variants that can be understood as the 

correlation of genetic variants. Linkage disequilibrium can be used as a criterion 

for genetic instrument selection and for identifying proxy genetic variants

MR An epidemiological method based on observational genetic data for causal 

inference

MR sensitivity 

analyses

MR statistical analysis methods supplementing the main analysis (usually the 

inverse variance method). Includes a wide range of methods, such as the 

frequently used weighted median, weighted mode, MR-Egger, MR-PRESSO and 

contamination mixture methods, and newly developed methods based on 

summary-level data, such as the MR-Cause method. These analyses can examine 

the robustness of MR results and provide indications about outliers, heterogeneity 

and pleiotropy

Multiple instruments The genetic score of more than one genetic instrumental variables

Multivariable MR 

analysis

An analysis that includes at least two traits proxied by instrumental variables and 

provides MR estimates after mutual adjustment for the included traits. This method 

helps with minimisation of pleiotropy and mediation estimation

Non-linear MR An MR design for examining the non-linear association between the exposure and 

the outcome. The design requires individual-level data

One-sample MR Genetic associations for the exposure and the outcome from one dataset

Population structure 

bias

This bias can be generated by using genetic association data from populations of 

different ancestries, in which ancestry is correlated with both phenotype and 

genotype. For example, the results are likely to be biased if MR analysis used 

genetic instruments from a European population and outcome data based on a 

non-European population and vice versa. This bias can be minimised by using 

data from populations of the same ancestry and adjusting for top-ranked genetic 

principal components

Standard terms and key concepts in MR studies
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diabetes. Thus, whether the factors observed in previous
observational studies are causally associated with the risk of
diabetes remains unconfirmed. A clear appraisal of the causal
risk factors for diabetes is of great importance for disease
prevention.

Mendelian randomisation (MR) is an epidemiological meth-
od that can strengthen causal inference by using genetic variants
as instrumental variables [5]. An instrumental variable is a vari-
able that satisfies three main conditions: (1) it is associated with
the exposure (relevance assumption); (2) it does not share a
common cause with the outcome (independence assumption);
and (3) it is related to the outcome only through the exposure
(exclusion restriction assumption) (Fig. 1). The text box
summarises the common terms used in MR studies and their
key concepts and limitations. As genetic variants are randomly
assorted at conception and thus are generally unassociated with
environmental and self-adopted factors, MR is believed to be
less affected by measured and unmeasured confounding
factors. This narrative review aims to summarise the evidence
on potential causal risk factors for diabetes by integrating
published MR studies on type 1 and 2 diabetes, and to reflect
on future perspectives of MR studies on diabetes.

Causal exposures and risk factors for type 1
diabetes

Because there is a strong genetic component in type 1 diabe-
tes, MR studies of type 1 diabetes are limited and only a few
potentially modifiable risk factors have been identified
(Table 1). Low birthweight [6], childhood obesity [6, 7] and
a higher abundance of the Bifidobacterium genus [8] have
been associated with an increased risk of type 1 diabetes.

MR studies have found no associations of adult body size
[6], features of the liver or pancreas [9] and serum 25-
hydroxyvitamin D levels [10] with type 1 diabetes.

A protein-wideMR study examined the associations of 1611
circulating protein biomarkers with the risk of type 1 diabetes
and identified associations for signal regulatory protein gamma,
IL-27 Epstein–Barr virus-induced 3 and chymotrypsinogen B1
[11]. These findings linking certain viral infections, particularly
by enteroviruses (e.g. coxsackievirus), with the risk of type 1
diabetes are consistent with recent observational studies [12],
thus providing an avenue to better understand and prevent this
disease.

Causal exposures and risk factors for type 2
diabetes

Most MR studies on glycaemic outcomes have focused on
type 2 diabetes. Our previous exposure-wide MR study exam-
ined the associations of 97 exposures with risk of type 2 diabe-
tes using data from the DIAbetes Genetics Replication And
Meta-analysis (DIAGRAM) consortium (74,124 cases and
824,006 controls). In total, 34 factors that were possibly caus-
ally associated with the risk of type 2 diabetes were identified
[13]. In Table 2 we summarise and update the associations of a
wide range of exposures with type 2 diabetes fromMR studies
on diabetes.

Somatic and psychological health status The results of MR
studies of somatic and psychological health status in relation
to type 2 diabetes are summarised in Table 2. Contradictory
associations were reported for LDL-cholesterol and type 2
diabetes, with an inverse association observed in a European

Two-sample MR Genetic associations for the exposure and the outcome from two independent 
datasets. This design can incorporate summary-level data from multiple sources 
and thus increase the power. However, the results may be influenced by 
population features of different studies

Vertical pleiotropy Instrumental variables associated with traits in the same pathway from the 
exposure to the outcome. In detail, the exposure proxied by genetic instruments 
may influence a downstream factor and therefore influence the risk of the outcome. 
This type of pleiotropy does not bias MR estimates. For example, the association 
between genetically predicted alcohol consumption and type 2 diabetes risk is 
mediated by blood pressure, which does not violate the MR assumptions

Weak instrument 
bias

A bias caused by weak genetic instrumental variables that explain a small 
phenotypic variance, coupled with a small sample size in relation to the outcome. 
The strength of the instrumental variable can be assessed by the F statistic. The 
power of the analysis can be estimated

Standard terms and key concepts in MR studies: continued
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population and a positive association in an African population
[13–15]. A recent study further identified that the diabetogenic
effect of low levels of LDL-cholesterol might be mediated by

increased BMI [16]. Lower levels of bilirubin (a marker of
liver function) [17], testosterone [18] and thyrotropin [19]
were associated with an increased risk of type 2 diabetes in

G Y

U

X

X

X
3

2

1

MR RCT

Disease Trait

Controls Cases Unselected sample

Low genetic score
Exposure levels

High genetic score
Exposure levels

Control group
Exposure levels

Intervention group
Exposure levels

Fig. 1 Study design and assumptions ofMR analysis. The process ofMR
analysis is shown from top to bottom. In detail, MR analysis is based on
genome-wide association analyses of the exposure and outcome. Genetic
instruments for the exposure are independent SNPs that are strongly asso-
ciated with the exposure of interest in a genome-wide association analysis
in an unselected sample, such as a general population. Likewise, summa-
ry-level data on the outcome are obtained from a genome-wide associa-
tion analysis of a binary phenotype that defines the population into cases
and controls. The directed acyclic graph represents the study design and
assumptions of MR analysis; G indicates the genetic instruments, X indi-
cates the exposure of interest, Y indicates the outcome of interest, and U
indicates the confounders. There are three important assumptions in MR

analysis. Assumption 1 indicates that the genetic variants used as the
instrumental variable should be robustly associated with the exposure.
Assumption 2 indicates that the instrumental variable should not be asso-
ciated with any confounders. Assumption 3 indicates that the instrumental
variable used should affect the risk of the outcome only through the risk
factor, not through alternative pathways. Regarding causal inference, the
MR design resembles that of an RCT; specifically, the random allocation
of genetic variants in MR mimics the randomisation process of RCTs,
which minimises confounding effects. Source: Manhattan plot
reproduced from Ikram et al [75], available under a CC BY 2.5 licence
(https://creativecommons.org/licenses/by/2.5/). This figure is available as
a downloadable slide
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some MR studies, but not all [13, 20–22]. Sex-specific associ-
ations were observed for testosterone [23, 24], with an
increased risk of type 2 diabetes in women but a decreased risk
in men with higher testosterone levels [23]. Insomnia, but no
other sleep-related traits, was associated with type 2 diabetes
[13].

Adiposity-related factors Similar to the large body of evidence
from prospective observational studies, childhood obesity,
adulthood overall obesity and central obesity, excessive liver
fat and whole-body and visceral fat mass were all associated
with an increased risk of type 2 diabetes [9, 25–29]. Plasma
levels of adiponectin, an adipocyte-secreted hormone, are
decreased in individuals with obesity, which was associated
with an increased risk of type 2 diabetes [30]. However, this
association was inconsistent in MR sensitivity analyses [30],
suggesting that the association may be biased by pleiotropy
(e.g. from fat mass). SeveralMR studies have found that lower
birthweight, independent of adult body weight, is associated
with a higher risk of type 2 diabetes [31], which may suggest a
role of the uterine environment and fetal development in the
development of type 2 diabetes.

Lifestyle and nutritional factorsMR studies have strengthened
the causal role of cigarette smoking in type 2 diabetes and
failed to convincingly confirm the effects of physical activity
and alcohol and coffee consumption on type 2 diabetes risk
[13, 32, 33]. Although alcohol consumption instrumented by
83 SNPs was not associated with type 2 diabetes, the main
SNP that associates with higher alcohol consumption and
alcohol abuse in European populations (i.e. rs1229984 in the
ADH1B gene) was significantly associated with an increased
risk of disease [13]. A robust inverse association between
coffee consumption and type 2 diabetes risk has been reported
in many observational studies [34]. However, genetically
predicted higher coffee consumption was not associated with
a decreased risk of type 2 diabetes in MR studies [13, 35].
Pleiotropic effects of the SNPs used may cause this lack of
association (e.g. from fat mass or other hot beverages or
caffeine-containing drinks) and the inverse relationship
between genetically proxied coffee consumption and plasma
caffeine levels (i.e. the genetic variants with the strongest
association with higher coffee consumption are associated
with lower plasma caffeine levels) [36].

An MR study found an inverse association between circu-
lating 25-hydroxyvitamin D levels and type 2 diabetes risk
[37], and this association might be driven by the vitamin D
synthesis pathway [37–39]. Lower levels of vitamin K1
(phylloquinone) [40] and higher levels of iron [41] were asso-
ciated with an increased risk of type 2 diabetes. Eight out of
ten plasma fatty acids were found to be associated with type 2

diabetes; however, the associations, with the exception of
palmitoleic acid, were driven by SNPs in the FADS1/2 genes
[42]. Thus, whether these associations were biased by this
pleiotropic gene, which encodes a key enzyme in fatty acid
metabolism, remains unknown [43].

Despite the popularity of MR studies for investigating
dietary and lifestyle exposures in diabetes and cardiometabol-
ic diseases, there are unique challenges in such studies of these
time-varying, compositional and intercorrelated exposures
[44]. For example, MR analyses of nutritional exposures
based on genetic instruments for a single measure of diet
collected in midlife bear an underlying assumption that, on
average, the dietary assessment tool is representative of
long-term habitual intake. Furthermore, like many behaviour-
al exposures, nutrition is intercorrelated with numerous other
lifestyle and environmental factors. Recent studies have docu-
mented that confounding and reverse causation affecting tradi-
tional epidemiological studies may also impact genetic asso-
ciations [45]. A recent study has shown that half of the genetic
variants associated with diet are the consequence of increased
BMI and that it is possible to use genetics to correct for
confounding and reverse causation to strengthen genetic
correlations and causal inference [45].

IGF-1 and inflammatory biomarkers Genetically predicted
elevated levels of IGF-1, a peptide hormone similar in molec-
ular structure to insulin, were positively associated with the
risk of type 2 diabetes [46]. Given the heterogeneous effects of
IGF-1-associated SNPs on type 2 diabetes, a recent MR
analysis examined several clusters of IGF-1-associated SNPs
in relation to type 2 diabetes and specified that this overall
positive association might be explained by pathways related
to amino acid metabolism and genomic integrity [47].
However, the main cluster of IGF-1-associated SNPs that
were associated with a decreased risk of type 2 diabetes
mapped to the growth hormone signalling pathway [47],
possibly mediated by pleiotropic effects from fat mass, as
growth hormone secretion is decreased in obesity [48].

As for inflammatory biomarkers, the IL-1 and IL-6 path-
ways may be involved in the development of type 2 diabetes
[13, 49], even though the evidence is weak. One additional
minor allele of the IL6R SNP rs7529229 (corresponding to the
effect of taking tocilizumab 4–8 mg/kg every 4 weeks) was
suggestively associated with a reduced risk of type 2 diabetes
(OR 0.97, 95% CI 0.94, 1.00), which implied a possible role
of IL-6 receptor blockade in type 2 diabetes prevention.

Circulating metabolites and proteins One of the first demon-
strations of the use ofMR to study circulating metabolites was
in relation to the previously reported epidemiological associ-
ation between plasma levels of branched-chain amino acids
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(BCAAs) and the risk of type 2 diabetes [50]. In an MR
analysis using genetic variation at the PPM1K locus (which
encodes a mitochondrial phosphatase that activates branched-
chain α-ketoacid dehydrogenase [BCKD]), an increase in
leucine, isoleucine and valine levels was associated with an
increased odds of type 2 diabetes [50]. However, given that
BCKD has a range of substrates besides leucine, isoleucine
and valine, untangling which of these substrates causes type 2
diabetes is challenging. A separate MR analysis of BCAAs
showed that higher BCAA levels have no causal effects on
insulin resistance but, rather, genetically raised insulin resis-
tance drives higher circulating fasting BCAA levels [51]. A
metabolome-wide MR approach confirmed evidence of the
strong reverse causal effect, indicating that the genetic predis-
position to type 2 diabetes may trigger early changes in valine
and leucine [52]. Other products of amino acid catabolism,
such as 2-aminoadipic acid (2-AAA) or α-hydroxybutyrate,
are strongly associated with incident type 2 diabetes in obser-
vational studies [53], but MR studies have failed to demon-
strate evidence of causality [54]. There are many reasons for
the discrepancies between observational studies andMR stud-
ies, but the fact that observational studies have been conducted
in a mixture of individuals with normoglycaemia and
impaired glucose tolerance could explain these differences.
A study in the Framingham cohort restricted to individuals
with strict normoglycaemia at baseline (fasting glucose <5.6
mmol/l) provided evidence of a subset of 19 metabolites asso-
ciated with the risk of diabetes among apparently healthy indi-
viduals [55]. Pathway enrichment analyses and MR showed
that metabolites in the nitrogen metabolism pathway are caus-
ally related to the development of diabetes [55].

Integration of genomic and small molecule data across plat-
forms enables the discovery of regulators of human metabo-
lism and translation into clinical insights. A recent genome-
wide meta-analysis of 174 metabolite levels across six
cohorts, including up to 86,507 participants, identified ~500
genetic loci influencing metabolite levels [56]. Among many
relevant findings for dysglycaemia, the study provided
evidence that a missense p.Asp470Asn (rs17681684) variant
in the GLP2R gene, which encodes the receptor for glucagon-
like peptide 2, was associatedwith a 4% higher type 2 diabetes
risk. Findings from a metabolome-wide MR analysis further
identified newmetabolites that potentially play a causal role in
type 2 diabetes, including betaine, glutamic acid, lysine,
alanine and mannose [52].

High-throughput detection and quantification of serum
proteins in a large human population can provide insight into
the molecular processes underlying diabetes risk. A protein-
wide MR study examined the associations of 164 proteins
with genome-wide association summary statistics available
from the independent INTERVAL study and identified 16
proteins as potentially having a causal effect on the develop-
ment of type 2 diabetes [57]. A recent protein-wide MR study

examined the associations of 1089 circulating protein
biomarkers with the risk of type 2 diabetes [58]. The analyses
identified 20 proteins that might be causally associated with
type 2 diabetes. These findings may provide evidence to
support therapeutic development in type 2 diabetes.

MR studies on circulating metabolites and proteins usually
employ a cis-variant located in an encoding gene region as the
instrumental variable, which satisfies three key assumptions
of MR. However, these MR associations can still be influ-
enced by the genome-wide associations analyses on metabo-
lites and proteins as well as corresponding profiling process
(possible bias caused by batch effects) [59] and different high-
throughput platforms [60]. Of note, using cis-variants as
instrumental variables may not always completely rule out
horizontal pleiotropy, especially when one gene regulates
several metabolites and proteins that are not in a common
pathway. In this case, multivariable MR analysis or removing
the pleiotropic SNPs may help reduce this bias.

Gut microbiota and related metabolites With increasing
evidence suggesting that the human gut microbiome plays a
role in immune function and metabolic disease, there is a need
to discriminate between microbiome features that are causal
for disease and those that are a consequence of disease or its
treatment. A study including genome-wide genetic data, gut
metagenomic sequencing and measurements of faecal short-
chain fatty acids showed that a host genetic-driven increase in
gut production of butyrate was associated with improved insu-
lin response following an oral glucose test. In contrast, abnor-
malities in the production or absorption of propionate were
causally related to an increased risk of type 2 diabetes [61].
Another two-sample MR study identified seven genera of gut
microbiota nominally associated with type 2 diabetes [62]. For
gut microbiota-related metabolites, a separate study found that
genetically predicted higher trimethylamine N-oxide and
carnitine levels were not associated with higher odds of type
2 diabetes. However, the study found possible associations of
high choline and low betaine levels with an increased risk of
type 2 diabetes [63]. Of note, although many genome-wide
association analyses of the gut microbiome have been carried
out, high-quality MR studies on the gut microbiome in rela-
tion to diabetes are limited [8]. This may raise doubt over the
applicability of host genetic variants as an instrumental vari-
able to mimic the function of the gut microbiome.

Assessment of included MR studies
on diabetes

The overall quality of the MR studies included was satisfac-
tory, with careful genetic instrument selection criteria,
comparatively large sample sizes and different approaches to
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testing the robustness of the findings. As for the examination
of the assumptions of MR, assumption 1 was usually found to
be satisfied by using genetic variants associatedwith the expo-
sure of interest at the genome-wide significance level.
However, there was no unified threshold for linkage disequi-
librium of SNPs. Using a high or low threshold of linkage
disequilibrium could lead to an inflated rate of type 1 and 2
errors, respectively. As MR analysis can minimise confound-
ing, the associations are less likely to be biased by confound-
ing but cannot be completely immune to this bias, especially
when genetic instruments have large pleiotropy effects.
Except for studies using individual-level data, whether genetic
instruments were primarily associated with other phenotypes
or were associated with confounders was rarely examined in
these MR studies. The most common bias in MR analysis is
horizontal pleiotropy caused by violation of assumption 3, the
exclusion restriction assumption, which means that genetic
variants affect the outcome through alternative pathways,
not only through the exposure of interest. The associations
with type 1 and 2 diabetes summarised in this review were
robust in sensitivity analyses, and most studies used MR-
Egger or MR pleiotropy residual sum and outlier (MR-
PRESSO) to detect potential horizontal pleiotropy. Of note,
even though statistical methods can detect and minimise the
influence of horizontal pleiotropy, instrumental variable selec-
tion is a crucial process for reducing the bias. Using genetic
variants in genes with well-understood biological functions as
instrumental variables usually satisfies the assumptions ofMR
analysis and thus generates precise and correct associations.
However, it is difficult to identify specific genetic variants for
certain exposures, especially for health behaviours and
complex phenotypes. Therefore, a thoughtful examination of
pleiotropy should be conducted in analyses using multiple
genetic instruments. Evidence from observational studies
and clinical trials should be used in interpreting MR findings.
Robust MR findings, in turn, should be examined in clinical
trials. In addition, it is tricky to interpret MR results, especially
for binary exposures. Given that the exposure in MR analysis
is not an exact phenotype but is proxied by the effects of
genetic variants on a certain trait, this genetically proxied
exposure usually mimics a lifetime chronic effect, which
hinders the exploration of time-specific associations.

Future perspectives

& The null findings in previous MR studies may have been
caused by inadequate power, particularly for weak associ-
ations of exposures proxied by a few SNPs that explained
a small phenotypic variance. For exposures with robust
associations in traditional observational studies, the
neutral associations in MR studies deserve to be re-
examined in well-powered studies with robust genetic

instruments for the exposures and large sample sizes for
the diabetes outcomes.

& Most previous MR studies were based on summary-level
data, which do not allow the exploration of potential non-
linear associations (e.g. J- or U-shaped); rather, it can only
be assumed that the association is linear without a thresh-
old effect. MR analysis using individual-level data from
large-scale biobanks and studies is needed to examine the
non-linearity of the associations.

& More effort should be put into MR studies on non-
heritable exposures or exposures without genetic associa-
tion information. For example, MR analyses of the asso-
ciation of diet and physical activity with diabetes risk are
warranted.

& Most MR studies have been based on data from European
populations. With more and more data available from
other populations, such as Asian and African populations,
future MR studies are encouraged to include data from
multi-ancestry cohorts.

& Even though the associations between protein biomarkers
and diabetes risk were examined in a few MR studies [11,
58], more independent verification is needed to confirm
these findings. In addition, the intermediate roles of blood
proteins and metabolites in the pathways from environ-
mental exposure to diabetes should be investigated to
provide evidence for treatment and intervention.

& Even though many statistical approaches, such as the
weighted median, MR-Egger, MR-PRESSO, MR-
Cluster and contamination mixture methods, have been
developed to detect pleiotropy and verify the association
with different assumptions, more efforts are needed to
generate new statistical approaches to handle pleiotropy
and other limitations.

Conclusion

This review has integrated data from published MR studies on
type 1 and 2 diabetes to highlight the many possible causal
risk factors for dysglycaemia. While few studies have been
conducted for type 1 diabetes, most MR analyses support that
social, demographic, metabolic and lifestyle factors are caus-
ally associated with the development of type 2 diabetes. More
MR studies in multi-ancestry cohorts are needed to examine
the role of diet in the development of diabetes. MR investiga-
tions based on data on metabolites, protein biomarkers and the
gut microbiome may help to illustrate the pathological molec-
ular basis of diabetes.
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