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Abstract
Aims/hypothesis We aimed to compare the performance of risk prediction scores for CVD (i.e., coronary heart disease and
stroke), and a broader definition of CVD including atrial fibrillation and heart failure (CVD+), in individuals with type 2 diabetes.
Methods Scores were identified through a literature review and were included irrespective of the type of predicted cardiovascular
outcome or the inclusion of individuals with type 2 diabetes. Performance was assessed in a contemporary, representative sample
of 168,871 UK-based individuals with type 2 diabetes (age ≥18 years without pre-existing CVD+). Missing observations were
addressed using multiple imputation.
Results We evaluated 22 scores: 13 derived in the general population and nine in individuals with type 2 diabetes. The Systemic
Coronary Risk Evaluation (SCORE) CVD rule derived in the general population performed best for both CVD (C statistic 0.67
[95%CI 0.67, 0.67]) and CVD+ (C statistic 0.69 [95%CI 0.69, 0.70]). The C statistic of the remaining scores ranged from 0.62 to
0.67 for CVD, and from 0.64 to 0.69 for CVD+. Calibration slopes (1 indicates perfect calibration) ranged from 0.38 (95% CI
0.37, 0.39) to 0.74 (95% CI 0.72, 0.76) for CVD, and from 0.41 (95% CI 0.40, 0.42) to 0.88 (95% CI 0.86, 0.90) for CVD+. A
simple recalibration process considerably improved the performance of the scores, with calibration slopes now ranging between
0.96 and 1.04 for CVD. Scores with more predictors did not outperform scores with fewer predictors: for CVD+, QRISK3 (19
variables) had a C statistic of 0.68 (95% CI 0.68, 0.69), compared with SCORE CVD (six variables) which had a C statistic of
0.69 (95% CI 0.69, 0.70). Scores specific to individuals with diabetes did not discriminate better than scores derived in the
general population: the UK Prospective Diabetes Study (UKPDS) scores performed significantly worse than SCORE CVD (p
value <0.001).
Conclusions/interpretation CVD risk prediction scores could not accurately identify individuals with type 2 diabetes who
experienced a CVD event in the 10 years of follow-up. All 22 evaluated models had a comparable and modest discriminative
ability.
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DARTS Diabetes Audit and Research in Tayside
EHR Electronic health records
FPG Fasting plasma glucose
HES Hospital Episodes Statistics
HF Heart failure
NRI Net reclassification index
PAD Peripheral artery disease
RECODE Risk Equations for Complications Of type 2

Diabetes
SBP Systolic blood pressure
SCORE Systemic Coronary Risk Evaluation
UKPDS UK Prospective Diabetes Study

Introduction

CVD treatment initiation and intensification in clinical prac-
tice are guided by risk prediction algorithms. The UK
National Institute for Health and Care Excellence (NICE)
guidelines pragmatically recommend the use of the QRISK2
risk prediction tool in people with and without diabetes. The
American College of Cardiology/American Heart Association
(ACC/AHA) recommends estimating the 10 year risk of CVD

using the Atherosclerotic Cardiovascular Disease (ASCVD)
risk score [1]. Contrary to this, the European Society of
Cardiology (ESC) does not recommend a specific CVD risk
prediction tool, and instead stratifies individuals into three
categories based on risk factors including: presence of target
organ damage, number of risk factors, diabetes duration and
age [2].

Despite major advances in treatment, people with type 2
diabetes remain at high risk of CVD, the main cause of
morbidity and mortality in this population [3]. There is,
however, considerable heterogeneity in risk [4], supporting
the need for risk-stratified management. With over 300
published CVD risk prediction tools [5], many of which have
not been validated in individuals with type 2 diabetes, nor
directly compared within the same patient population, it is
unclear which CVD score performs best in people with diabe-
tes. Previous comparisons only partially addressed this ques-
tion, due to focusing on non-representative individuals with
diabetes enrolled in drug trials [6], focusing on a relatively
short follow-up [7] or using a modest sample of individuals
[8], and with all focusing on a small subset of available scores,
without exploring performance to predict CVD outcomes
more relevant for those individuals. Quite apart from the great-
er CVD risk, even at a given level of individual risk factors, it
is evident that the initial presentation of CVD in individuals
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with diabetes differs from that of the general population, with
greater representation of heart failure (HF) and of peripheral
artery disease (PAD), while haemorrhagic strokes are less
frequent [9]. General population scores, and indeed many
designed for people with diabetes, have focused largely on
the prediction of CHD and stroke only.

Our aim was to inform the use of risk scores in clinical
practice by quantifying the validity of existing risk scores in
predicting standard CVD (CHD, stroke, PAD), as well as a
broader definition of major CVD outcomes (CVD+) that
includes HF and atrial fibrillation (AF), as these are more
frequent outcomes in diabetic populations [10, 11].
Additionally, we explored the scores’ predictive performance
against individual disease types: stroke, CHD, AF and HF.
We also compared the performance of both bespoke CVD risk
scores for individuals with diabetes and CVD risk scores for
the general population. The latter are preferred for clinical
practice as a single tool is simpler to deploy. While it is
assumed that diabetes-specific scores may perform better in
people with diabetes, no formal comparison with general
population scores has been undertaken before. We first
performed a literature review to identify CVD risk prediction
scores, and subsequently validated these in a large UK-based
electronic health records (EHR) dataset. We also performed
key subgroup analyses, stratifying by sex, age, CVD history
and treatment.

Methods

Literature review A literature search for CVD risk assessment
tools was performed using MEDLINE [12]. The search strat-
egy focused on key words including ‘CVD’, ‘type 2 diabetes’,
‘risk assessment’ or ‘risk score’ and names of known risk
scores. Please see the electronic supplementary material
(ESM)Methods section and ESMFig. 1 for more information.

Cohort study of individuals with type 2 diabetes A cohort of
168,871 individuals with type 2 diabetes (18 years or older
without recorded CVD+ diagnosis prior or 30 days after the
time of type 2 diabetes diagnosis) was extracted from
Cardiovascular disease research using Linked Bespoke stud-
ies and Electronic health Records (CALIBER), linking three
English EHR sources: primary care records from the Clinical
Practice Research Datalink (CPRD), Hospital Episodes
Statistics (HES) and national death registration from the
Office for National Statistics (ONS) [13]; see ESM
Methods. The study was approved by the Medicines and
Healthcare products Regulatory Agency (MHRA) (UK)
Independent Scientific Advisory Committee [17_155], under
Section 251 (NHS Social Care Act 2006).

Individuals with type 2 diabetes in this dataset were iden-
tified based on a CALIBER phenotyping algorithm (https://

www.caliberresearch.org/portal/phenotypes), harmonising
and combining data from general practitioner (GP) records
and HES; see ESM Table 1. The CALIBER phenotyping
algorithms have been extensively validated, as described
previously [14]. As primary care registration is close to
universal in the UK and free at the point of delivery, with
reimbursements based on correct entry of diagnostic codes,
type 2 diabetes case ascertainment based on UK primary care
data can be considered as highly accurate [15].

Individual characteristics The following participant character-
istics and measurements were extracted: sex, age (years),
smoking status, HbA1c, fasting plasma glucose (FPG), BMI,
HDL- and LDL-cholesterol, total cholesterol, triacylglycerol,
systolic blood pressure (SBP) and diastolic blood pressure
(DBP), urine albumin/creatinine ratio, serum creatinine, C-
reactive protein, total white blood cell count and ECG results
(see ESM Methods and ESM Tables 2–4).

Cardiovascular outcomes Individuals were followed up from
their initial type 2 diabetes diagnosis until their first cardio-
vascular event, death, end of study (5 February 2018) or
10 year follow-up landmark, whichever occurred first.
Individuals with a previous record of AF were excluded due
to the inability to differentiate between ongoing vs recurrent
AF events in EHR. Individuals with any other pre-existing
CVD event were excluded from the main analyses, and
considered in subsequent subgroup analyses of performance
in participants with pre-existing CVD at the time of diagnosis.

A CVD event was defined as the first occurrence of fatal or
non-fatal myocardial infarction (MI), sudden cardiac death,
ischaemic heart disease, fatal or non-fatal stroke, or PAD since
diagnosis of type 2 diabetes. We additionally defined CVD+
as including HF and/or AF: ‘CVD + AF + HF’ .
Additionally, we explored performance against individual
CVD components: CHD, stroke, AF and HF. Detailed
CALIBER [13] endpoint definitions are provided in ESM
Table 5.

Statistical analysis Models were evaluated on discrimination
(using Harrell’s C statistic [16]) and calibration (calibration-
in-the-large [CIL] and calibration slope [CS] [17]); see ESM
Methods. We note that when predicting the occurrence of a
binary outcome (such as a disease) at a single moment in time,
the C statistic is identical to the area under a receiver operating
characteristic (ROC) curve [16]. The C statistic varies from
1.0 (perfect discrimination) to 0.5 (random chance). It has
been suggested that a C statistic below 0.70 indicates inade-
quate discrimination, between 0.70 and 0.80 acceptable
discrimination, and between 0.80 and 0.90 excellent model
discrimination [18]. Missing data were addressed using multi-
ple imputation, and, for comparison’s sake, the results were
compared with those obtained from a complete-case deletion
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dataset. Models were evaluated both before and after recali-
bration, a process whereby a model’s intercept and slope are
updated to adapt a risk score to a different local setting, a
similar but distinct outcome or both. Here, the risk scores were
independently recalibrated to predict all six of the CVD
endpoints described. To prevent model overfitting, recalibra-
tion was performed in a 10% (16,887) independent training
sample, which is an ample sample size to estimate the two
coefficients (the intercept and slope) necessary for model
recalibration. The remaining 90% (151,984) of the dataset
was used to compare like-with-like model performance of
the uncalibrated and recalibrated models. Subgroup perfor-
mance was explored for CVD history, sex, age and statin
usage at the time of diagnosis. The discriminative ability of
two models was formally compared by testing the difference
in C statistics using the test data. The net reclassification index
(NRI) for CVD was calculated using the test data (after model
recalibration in the training data) to compare Systemic
Coronary Risk Evaluation (SCORE) CVD against the follow-
ing scores: QRISK2, QRISK3 and Cardiovascular Health
Study (CHS) Basic.

Missing variables (presented in Table 1 and ESM Tables 2,
6, 7) were imputed using multiple imputation [19]. Imputation
variables were selected using the procedure described previ-
ously [20], guarding against missing data while at the same
time maximising predictive accuracy. Moreover, the proce-
dure eliminates predictors whose proportion of usable cases
fails to meet a minimum value (here 0.5). Imputation-specific
results were combined using Rubin’s rules [21].

Results

Literature review We included 15 publications reporting 22
different risk score models that predicted the 10 year risk of
CVD. Only two of the scores were published before 2000
(Framingham 1991 [22], Framingham 1998 [23]) (ESM
Results, ESM Tables 8, 9).

Out of the 22 identified CVD risk prediction models, nine
were derived in individuals with type 2 diabetes alone (Risk
Equations for Complications Of type 2 Diabetes [RECODE]
[24], Diabetes Audit and Research in Tayside [DARTS] [25],
UK Prospective Diabetes Study [UKPDS] 56 [26], UKPDS
68 Congestive Heart Failure [C-HF] and Stroke [27], UKPDS
82 C-HF and CHD [28], and CHS Basic and Advanced [29]),
and 13 scores enrolled both non-diabetic individuals and indi-
viduals with type 2 diabetes (SCORE CHD and CVD [30];
Finrisk Stroke, CHD and CVD [31]; Framingham 1991 CHD,
CVD and Stroke [22]; Framingham 1998 [23]; QRISK2 [32];
QRISK3 [33]; ASCVD [1]; and Reynolds Risk [34, 35]), and
these were considered general population samples. Ten rules
were designed to predict CVD, seven predicted CHD, three

predicted stroke and two HF (ESM Table 8 [Type of predicted
CVD reported]).

All the risk scores incorporated classic CVD risk factors,
such as age, sex, blood pressure and smoking status. Twenty
risk scores included information about lipids. The scores that
included a proportion of individuals with diabetes typically
included type 2 diabetes (presence/absence) as a predictor,
but did not include diabetes-specific risk factors such as diabe-
tes duration and glycaemic status (which are often used in
diabetes-specific scores). The total number of predictors in
these risk prediction models ranged from six (SCORE [30])
to 19 (QRISK3 [33]) (ESM Fig. 2, ESM Table 10).

Individual characteristics and 10 year CVD outcomes The
baseline characteristics of the individuals are presented in
Table 1 and ESM Tables 2, 6, 7. The mean age was 59.3 years
(SD: 13.9), 78,204 (46%) participants were women and
43,102 (26%) individuals were on statins.

During a median follow-up time of 10 years since type 2
diabetes diagnosis, 38,335 (22.70%) individuals suffered a
CVD, AF or HF event. Of these, 29,025 (17.19%) had a
CVD event, 20,628 (12.22%) CHD, 13,826 (8.19%) AF,
9465 (5.6%) HF and 6727 (3.98%) stroke (see Kaplain-
Meier estimates in Fig. 1, ESM Table 11).

Predicting cardiovascular risk in individuals with type 2
diabetes Results obtained from the complete case-analyses
(see ESM Results) were similar to results from the multiple-
imputation analysis. Nevertheless, because the complete-case
analysis slightly overestimated model performance (ESM
Figs. 3, 4, ESM Tables 12, 13), we present the later, more
conservative, results in the main text (Fig. 2, ESM Figs. 5,
6, ESM Tables 14, 15).

Most models achieved similar calibration in CVD predic-
tion (CS: from 0.38 to 0.74; CIL: from −1.89 to 2.26) (Fig. 2,
ESM Table 14). Models designed to predict stroke and/or HF
did not substantially underperform compared with CVD-
derived models. The scores almost uniformly underestimated
the risk of CVD+ (CS: from 0.41 to 0.88, CIL: from −1.50 to
2.69) (ESM Table 14), the exceptions being the Framingham
1991 CVD and DARTS scores which systematically
overestimated risk.

The CHD Basic (CS: 0.86; CIL: −0.22), ASCVD (CS:
0.46; CIL: −0.19), QRISK2 (CS: 0.69; CIL: −0.25) and
QRISK3 (CS: 0.72; CIL: −0.05) models (originally derived
to predict any CVD) generally showed near-perfect calibration
for CVD+. Focusing on scores not originally intended to
predict CVD, we found that the Framingham 1998 score (a
CHD score) could accurately predict both CVD (CS: 0.74
[95% CI 0.72, 0.76]; CIL: −0.15 [95% CI -0.16, −0.13]) and
CVD+ (CS: 0.88 [95% CI 0.86, 0.90]; CIL: 0.23 [95% CI
0.22, 0.25]). For the ‘other’ group (including stroke and HF-
derived scores), we found that RECODE for CVD (CS: 0.73
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[95%CI 0.70, 0.76]; CIL: −0.2 [95%CI -0.21, −0.19]) and for
CVD+ (CS: 0.85 [95% CI 0.82, 0.87]; CIL: 0.17 [95% CI
0.16, 0.18]) calibrated well (Fig. 2). Despite observing
reasonable external calibration, models had more difficulty
discriminating between individuals who experienced an
event within 10 years of follow-up and those who remained
event free: the C statistic ranged from 0.62 to 0.67 (95% CI
0.67, 0.67) for SCORE CVD (Fig. 3). Similar patterns of
discrimination were observed when predicting CVD+, with
this combined endpoint showing a minimally improved C
statistic (from 0.64 to 0.69) compared with CVD, and again
with SCORE CVD having the largest C statistic (0.69 [95%
CI 0.69, 0.70]). Testing for the pairwise difference in C
statistics (ESM Fig. 7) indicated that SCORE CVD
outperformed all other scores aside from the ASCVD,
Finrisk CVD and SCORE CHD. SCORE CVD also
performed better than the nine diabetes-specific scores
(Fig. 3, ESM Fig. 7). A net reclassification comparison
(applied after model recalibration, see below) showed that

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

Time since type 2 diabetes diagnosis (years)

C
um

ul
at

iv
e 

in
ci

de
nc

e

CVD + AF + HF

CVD

CHD

Stroke

HF

AF

Fig. 1 Kaplan–Meier estimates of the 10 year cumulative incidence of
CVD after a diagnosis of type 2 diabetes.

Table 1 Participant characteris-
tics, with data sourced from
around the time of type 2 diabetes
diagnosis (1 year before to 1 week
after diagnosis)

Clinical characteristic Mean (SD) or N (%) Median (Q1; Q3) Missing data (%)

Total no. of individuals 168,871

Follow-up time (years) 9.0 (5.3; 10.0)

Women (%) 78,204 (46.3) 0.0

Age (years) 59.3 (13.9) 60.0 (50.0; 69.0) 0.0

HbA1c 55.2

mmol/mol 64.1 (20.6) 57.0 (49.0; 76.0)

% 8.0 (4) 7.4 (6.6; 9.1)

FPG (mmol/l) 9.7 (3.9) 8.1 (7.1; 11.0) 68.4

BMI (kg/m2) 31.9 (6.8) 30.9 (27.2; 35.5) 40.1

HDL-cholesterol (mmol/l) 1.2 (0.4) 1.2 (1.0; 1.4) 47.9

LDL-cholesterol (mmol/l) 3.2 (1.0) 3.1 (2.5; 3.9) 59.3

Total cholesterol (mmol/l) 5.4 (1.3) 5.3 (4.6; 6.2) 37.9

SBP (mmHg) 140 (18) 140 (130; 150) 25.8

Statin usage (before type 2 diabetes diagnosis) 43,102 (25.5)

Smoking statusa 23.3

Never smoked 67,828 (52.4)

Ex-smoker 35,533 (27.4)

Current smoker 26,165 (20.2)

Townsend score 0.1

1 (least deprived) 32,058 (19.0)

2 35,090 (20.8)

3 35,255 (20.9)

4 37,365 (22.1)

5 (most deprived) 28,990 (17.2)

Q1 and Q3 refer to lower and upper quartiles, accordingly
a The denominator for smoking status is 129,526 individuals, after excluding individuals withmissing information
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SCORE CVD performed slightly better than QRISK2 and
QRISK3 by assigning a lower risk to individuals who did
not experience CVD in the available 10 years of follow-up
(Table 2, ESM Table 16).

We observed that scores with more than ten predictors did
not necessarily outperform scores with fewer variables:
QRISK3 (19 variables) for CVD+ had a C statistic of 0.68
(95% CI 0.68, 0.69), compared with a C statistic of 0.69 (95%
CI 0.69, 0.70) for SCORE CVD (six variables) and a C statis-
tic of 0.69 (95%CI 0.69, 0.69) for the Framingham 1998 score
(seven variables). Similar results were obtained for the CVD-
only outcome. The scores derived from individuals with
diabetes did not outperform scores derived in a population
of non-diabetic individuals (Fig. 3).

Predicting individual CVD endpoints and model recalibration
We additionally evaluated the ability of these 22 rules to
predict individual CVD components: CHD, stroke, AF and
HF. Here, we observed that, similar to CVD, predictions for
CHD were slightly overestimated (ESM Figs. 3, 5). This
overestimating was more severe when using these models to
predict stroke, AF and HF (ESM Figs. 4, 6). Nevertheless,
when considering AF and HF, the discriminative ability of

these models slightly improved (C statistic ≥0.70) relative to
CHD and CVD (ESM Figs. 8–11).

Recalibrating the 22 models using the 10% training dataset
considerably improved calibration (CS: from 0.96 to 1.04)
(ESM Figs. 12–14, ESM Tables 13, 15), with most rules
showing near-perfect calibration in the test data. Given that
most of these 22 rules were not designed to predict stroke, AF
or HF, it was somewhat surprising to see that recalibration
markedly improved performance for these endpoints as well,
(Fig. 4). For example, after recalibration, QRISK3 could
predict HF risk (CS: 1.09 [95% CI 1.02, 1.17]) and AF risk
(CS: 1.08 [95% CI 1.00, 1.16]) remarkably well (Fig. 5).

Subgroup analyses Next, in individuals with type 2 diabetes
without CVD+ at baseline, we explored the discriminative
ability of these CVD scores in subgroup analyses of age, sex
and statin usage (Fig. 6, ESM Fig. 15). Subgroup changes in
performance were shared across the various scores, where
discriminative ability was lower for men and statin naive
and older individuals (significance interaction tests indicated
by a solid line in Fig. 6, ESM Tables 17–19).

We additionally performed similar subgroup analyses for
individuals with type 2 diabetes irrespective of their baseline
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Table 2 A net reclassification
table comparing the predicted
CVD risk distributions of
QRISK3 and SCORE CVD,
among individuals with type 2
diabetes without and with a CVD
event, during the available
10 years of follow-up

QRISK3 SCORE CVD Total

Low risk [0.0, 0.1) Intermediate risk [0.1, 0.2) High risk [0.2, 1.0]

In participants without CVD

Low risk 19,704 2618 2 22,324

Intermediate risk 9446 46,007 10,735 66,188

High risk 367 5721 31,178 37,266

Total 29,517 54,346 41,915 125,778

In participants with CVD

Low risk 994 190 0 1184

Intermediate risk 903 7461 2732 11,096

High risk 48 1355 12,301 13,704

Total 1945 9006 15,033 25,984

NRI estimates

NRI: 0.041 (0.036, 0.048) Pr(Up|Event): 0.113 (0.109, 0.116)

Event NRI: 0.024 (0.019, 0.031) Pr(Down|Event): 0.089 (0.084, 0.091)

Non-event NRI: 0.017 (0.015, 0.020) Pr(Down|Non-event): 0.124 (0.122, 0.126)

Pr(Up|Non-event): 0.106 (0.105, 0.108)

Calculations are based on the test data after recalibrating in an independent training dataset. Square brackets are used to
indicate the endpoint is included, and parentheses to signal endpoint exclusion. Various NRI estimates are provided,
including the probabilities of an increased (Up) or decreased (Down) predicted risk conditional on event status

Pr, probability

0.669 (0.665, 0.672)
0.670 (0.667, 0.674)
0.662 (0.658, 0.666)
0.668 (0.664, 0.671)
0.664 (0.660, 0.668)
0.664 (0.660, 0.667)
0.664 (0.660, 0.667)
0.647 (0.644, 0.651)
0.643 (0.639, 0.647)
0.630 (0.626, 0.634)
0.665 (0.661, 0.668)
0.664 (0.661, 0.668)
0.668 (0.665, 0.672)

0.660 (0.656, 0.663)
0.660 (0.656, 0.663)
0.640 (0.636, 0.645)
0.633 (0.628, 0.638)
0.619 (0.614, 0.623)
0.644 (0.640, 0.648)
0.644 (0.640, 0.648)
0.639 (0.635, 0.643)
0.651 (0.647, 0.655)

C statistic

DARTS [25]

UKPDS 56 [26]
UKPDS 68 C-HF [27]
UKPDS 68 Stroke [27]
UKPDS 82 CHD [28]
UKPDS 82 C-HF [28]
RECODE [24]
CHS Basic [29]
CHS Advanced [29]

Finrisk CVD [31]
Finrisk Stroke [31]
Finrisk CHD [31]
Framingham 1991 CVD [22]
Framingham 1991 fatal CHD [22]
Framingham 1991 Stroke [22]
Framingham 1998 [23]
QRISK2 [32]

QRISK3 [33]

ASCVD [1]

Reynolds Risk [34,35]
SCORE CVD [30]
SCORE CHD [30]

Type 2 diabetes population C statistic (95% CI)

General population

a

0.688 (0.685, 0.692)
0.693 (0.690, 0.696)
0.680 (0.676, 0.683)
0.689 (0.686, 0.693)
0.683 (0.680, 0.686)
0.683 (0.680, 0.686)
0.689 (0.686, 0.692)
0.664 (0.660, 0.667)
0.654 (0.650, 0.657)
0.636 (0.633, 0.640)
0.684 (0.681, 0.688)
0.688 (0.685, 0.691)
0.690 (0.687, 0.694)

0.689 (0.686, 0.692)
0.688 (0.685, 0.692)
0.656 (0.652, 0.661)
0.663 (0.659, 0.668)
0.641 (0.636, 0.645)
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imputed data and based on a 90% ‘test’ set of the total data used for
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CVD+ status (see Clinical characteristics in ESM Table 20),
finding similar patterns of discrimination as for individuals
without CVD+ at baseline (Fig. 7, ESM Fig. 16, ESM
Tables 21–24). The results showed that score performance
was significantly worse for people with pre-existing CVD+
at the time of type 2 diabetes diagnosis. Finally, we observed
that RECODE performed best (a C statistic of 0.73 [95% CI
0.73, 0.74] for CVD+) in a sample of people with type 2
diabetes including individuals with andwithout CVD+ history
at the time of diagnosis.

Discussion

We validated 22 cardiovascular risk scores for their ability to
predict a range of macrovascular endpoints in a cohort of
168,871 people with type 2 diabetes.We report several unique
findings. First, with discriminative abilities below 0.70 (C
statistic), the scores performed universally poorly, which
was compounded in individuals with diabetes and established

CVD at baseline (C statistics close to 0.50). Second, diabetes-
specific scores did not appear to be superior to scores derived
for the general population, and in fact were outperformed by,
for example, the general population SCORE CVD rule. Third,
scores with many additional features did not outperform those
with fewer and more readily available (in primary care)
predictors. Finally, a simple recalibration step markedly
improved score performance, repurposing scores intended to
predict any CVD or CHD to accurately predict stroke, AF and
HF risk (see Fig. 4).

We externally evaluated two risk prediction scores widely
used in the UK (QRISK2 and QRISK3), which had good
discriminatory ability in the general population (C statistics
for QRISK2 of 0.82 in women and 0.79 in men, and for
QRISK3 0.88 in women and 0.86 in men), and found consid-
erable attenuations in their discriminative ability when applied
in individuals with type 2 diabetes (e.g., C statistic 0.66 [95%
CI 0.66, 0.67] for QRISK2). This poor performance may be
somewhat surprising given that the QRISK scores were
derived in a similar, but independent, sample of English
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Fig. 4 Calibration plots after recalibrating 22 prediction rules for 10 year
CVD risk, evaluated in individuals with type 2 diabetes. Estimates are
based on imputed data. Depicted performance is based on 90% of the data
used for external validation, independent of the 10% hold-out sample
used to recalibrate the models. The observed 10 year risk (y axes) is
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defined by quintiles of predicted risk. The scores were evaluated against
(a–c) stroke; (d–f) AF; (g–i) HF. Scores were grouped by the derivation
outcome CVD (subplots a, d, g), CHD (subplots b, e, h), or other (includ-
ing stroke, C-HF; subplots c, f, i). The diagonal line reflects perfect
calibration

651Diabetologia  (2022) 65:644–656



individuals. While the difference in discrimination between
SCORE CVD (0.69 [95% CI 0.69, 0.70]), QRISK2 (0.68
[95% CI 0.68, 0.69]) and QRISK3 (0.68 [95% CI 0.68,
0.69]) was statistically significant (interaction p value
<0.001 for CVD and CVD+), we note that the magnitude of
the difference in the C statistic was small and is unlikely to
have clinical implications. This may be better appreciated
when considering the net reclassification analysis: comparing
SCORE CVD with QRISK2 (non-event NRI 0.009, ESM
Table 16) and with QRISK3 (non-event NRI 0.017, Table 2)
resulted in very modest improvements.

The predictive performance of the risk scores was marked-
ly poorer in individuals with pre-existing CVD at the time of
type 2 diabetes diagnosis (C statistic ranged from 0.50 to 0.54
for the CVD outcome). Most of the prediction models were
developed in individuals without clinical manifestations of
CVD and were not validated in people with established
CVD. Moreover, these risk scores lack predictors that are of
particular importance to individuals with established disease,
such as time since the first diagnosis of CVD, history of CVD
and renal function [36]. The improved performance of the
RECODE score (C statistic >0.70), when considering all
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participants with type 2 diabetes irrespective of their history of
CVD, is likely related to its development in participants with
diabetes with similar mixed histories of CVD. Here, we show
that the inclusion of people with a mixed history of disease at
the time of diabetes diagnosis, combined with appropriate
modelling choices, may improve (instead of worsening) score
performance.

The necessity for a diabetes-specific CVD score has often
been discussed [7] and revolves around the need to account for
excess risk unexplained by conventional risk factors, and the
desire to include diabetes-specific variables such as HbA1c

and diabetes duration, which are known observationally to
predict CVD risk [37]. It has been suggested that a diabetes-
specific score can better deal with exposure and outcome asso-
ciations specific to individuals with type 2 diabetes [25].
Despite these arguments, we did not observe a general benefit
of diabetes-specific rules (including diabetes-specific vari-
ables) compared with scores derived in samples with a
mixture of individuals with type 2 diabetes and the general
population. This suggests that the presence of other risk

factors which may often correlate among themselves, such
as diabetes duration and HbA1c, does not markedly contribute
tomodel performance. Similarly, we note that despite compar-
ing risk prediction tools derived over the course of more than
three decades, during which health and healthcare have gener-
ally improved, the almost uniform performance of these
scores in the present contemporary sample of individuals with
type 2 diabetes illustrates that these healthcare changes have
not affected the external performance of these models.

Due to the inherent limitations of EHR data, some predictor
variables were infrequently measured (ESM Table 3), which
we attempted to address through multiple imputation.
Possibly this reliance on imputed data biased results; however,
we did not observe a meaningful difference in performance
between complex models such as QRISK3 (requiring 19 vari-
ables) and more straightforward models such as SCORECVD
and CHD (requiring only six variables). Furthermore, while
medical history and prescription data could be readily extract-
ed from prior to the time of type 2 diabetes diagnosis,
measured risk factors, such as blood pressure, were extracted
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using a window of 12 months before and 1 week after diag-
nosis. While this does reflect data availability in a real-world
setting, medical professionals intending to use the risk predic-
tion tools will likely actively measure key variables, especially
if these are readily obtained, such as BMI and blood pressure.
Thus, we may have underestimated the true performance of
these risk prediction scores in a more ideal setting.

Performing analyses in primary care records, where such
risk scores are deployed in practice, provides an appropriate
platform for validation studies. We acknowledge that such
data involve issues with missing data and coding errors, but
this better reflects their ‘true’ value in contrast to the more
artificial situation of a research cohort study or clinical trial.
Furthermore, the use of real-life clinical data takes a ‘whole
population’ approach, whereas cohorts and trials apply restric-
tions to entry.

The calibration (agreement between observed and
predicted risk) was generally reasonable for all scores and
could readily be improved by recalibrating the models in an
independent training set. This recalibration was also
successful in repurposing models to predict endpoints
outside their intended use. Here, we reiterate that all perfor-
mance metrics, discrimination (C statistic) and calibration,
were estimated in an independent test dataset fairly
assessing performance without the over-optimism observed
when calculating these metrics in the same training data
used to recalibrate the scores (or when deriving a model
de novo). The near-optimal calibration additionally high-
lights that the recalibrated models were not overfitted and
utilised a sufficiently large training sample size, which
would otherwise result in over- or under-estimating the true
risk in an independent test dataset. This is perhaps most
clearly shown by comparing the calibration plots presented
by van der Leeuw and colleagues [8] derived in a small
sample of 584 individuals with type 2 diabetes with the
calibration observed in the current analysis using more than
16,000 individuals with diabetes (Figs 2, 4, 5). Previous
studies have typically focused on any CVD outcome, or
individual endpoints such as CHD and any stroke. Here,
we show that such models can be used to identify individ-
uals with type 2 diabetes at increased risk for the composite
endpoint CVD + HF + AF (since AF and HF occur much
more frequently in these individuals [38]). While we
showed reasonable out-of-the-box calibration, recalibration
improved performance to near-perfect agreement and we
propose that recalibration is more frequently considered
before applying any model to local settings. Given the
modest sample size (a few hundred cases) required to accu-
rately recalibrate a model [39], combined with the increased
availability of EHR data, such recalibration could be readily
applied by healthcare commissioners at a local level. The
adjustment of prediction models to local settings, so-called
model updating (recalibration), typically requires a fraction

of the time and data (often 100–200 cases should be suffi-
cient [39]), and provides an attractive and efficient alterna-
tive to the derivation of a completely new model for each
local setting, particularly if one also considers the need for
independent replication data to fairly assess model perfor-
mance. Furthermore, reclassification analyses similar to the
ones presented here presuppose that the models are reason-
ably calibrated. To facilitate model recalibration to local
clinical settings, we have appended a straightforward
computer application (https://gitlab.com/cvd_in_t2dm/
recalibration), which we are committed to support and
adjust pending local requirements.

In summary, we have shown that CVD risk scores derived
in the general population performed worse in people with type
2 diabetes. CVD risk scores derived in individuals with diabe-
tes did not in general perform better, emphasising the difficul-
ties of accurately predicting CVD in a relatively high-risk
population. The performance of the scores was also similar
for the wider outcome definition of CVD, which includes HF
and AF which occur more frequently in individuals with
diabetes.
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