
EFTOS: A Software Framework for More 
Dependable Embedded  H P C  Applications. 

G. Deconinck 1 , V. De Florio 1, R. Lauwereins 1 , T. Varvarigou 2 

1 K.U.Leuven, Dept. Elektrotechniek, Kard. Mercierlaan 94, B-3001 Leuven, Belgium 
2 N.T.U.A., Dept. Elect. Comp. Eng., I. Putechniou 9, GR-15733 Zographou, Greece 

Abstract. Within the ESPRIT project EFTOS (Embedded Fault-To- 
lerant Supercomputing), a framework is developed to integrate fault tol- 
erance flexibly and easily into distributed embedded HPC applications. 
This framework consists of a variety of reusable fault tolerance modules 
acting at different levels. The cost and performance overhead of generic 
Operating System and Hardware level fault tolerance mechanisms are 
avoided, while at the same time the burden of ad hoc fault tolerance 
programming is removed from the application developers. Integration of 
this functionality in real embedded applications validates this approach, 
and provides promising results. 

Keywords. fault tolerance, embedded system, HPC 

1 Introduction 

Current industrial embedded applications require high computing performance 
that may be only provided by parallel computing systems. However they are 
prone to data-induced software faults and operate in industrial environments. 
Hence, these applications require fault tolerance to cope with the problems that 
will occur. Application developers tend to deal with these needs of availability 
and reliability of their applications by developing their own fault tolerance code 
as part of their application. This increases the cost of application development, 
maintenance and upgrade considerably. 

Within the ESPRIT project EFTOS (Embedded Fault-Tolerant Supercom- 
puting), several of these embedded applications have been investigated which 
require both high performance and fault tolerance [2]. We saw that different ap- 
plications have many fault tolerance requirements in common, and incorporated 
similar ad hoc solutions. The goal of EFTOS is to streamline these requirements 
into a reusable fault tolerance framework that can be flexibly and easily inte- 
grated into the target applications. As such, application developers can enjoy 
the benefits of a variety of fault tolerance functions from which they can pick 
and choose what is necessary for their environment. The cost and performance 
overhead of generic Operating System and Hardware level fault tolerance mech- 
anisms are avoided, while removing the burden of fault tolerance programming 
from the application developers at the same time. 

Although the project aims at general embedded applications running on par- 
allel systems, two representative applications have been analysed in more detail: 



1364 

an image processing module in an automatic mail processing system [3] and a 
remote controller in a high voltage substation. 

The distributed target system on which this framework is being implemented 
is a Parsytec CC System [1] which combines powerful processing nodes, I/O 
modules and routers into a parallel system (MIMD architecture). The parallel 
operating system, EPX (Embedded Parallel extensions to uniX), provides the 
functionality to operate the parallel environment via a message-passing API. 

The EFTOS project is coordinated by Parsytec, who specialises in embedded 
HPC systems. AEG and ENEL represent the market of embedded applications. 
The knowledge on fault tolerance is supplied by K.U.Leuven, N.T.U.A. and 
D.L.R. The project started in April 1996 and runs for 2 years. 

Several research projects investigated fault tolerance for embedded applica- 
tions on distributed systems. 

- The Delta-4 project (Esprit 818/2252) proposes a generic architecture for 
dependable distributed computing, based on multiplication of modules. Two 
variants of the architecture focus on portability and on performance of the 
approach. Both however rely on fail-silent hardware and on an atomic mul- 
ticast protocol [6]. 

- The projects PDCS/PDCS2 (Esprit 3092/6362) consider predictably depend- 
able computing systems aiming at making the design, development and pro- 
duction of dependable computing systems more predictable and cost effective 
(fault prevention, tolerance, removal and forecasting) [7]. Focus is on safety 
and security issues, as well as on quantitative assessments of dependability of 
the system. The MARS system (partly developed in this project) addresses 
embedded real time systems. It meets hard real time deadlines and toler- 
ates interconnection and node faults, but requires dedicated hardware and 
a specific operating system (suited for time-triggered applications) [5]. 

- The FTMPS project (Esprit 6731) applies software fault tolerance solutions 
to number- crunching applications in massively parallel systems [4]. However, 
real-time aspects are not taken into account. 

In fact, none of these projects considered standard hardware and operating 
systems for soft real time applications, to provide a powerful fault tolerance 
framework. It is clear however that there is an emerging need to provide such a 
framework to allow the application developer to incorporate adaptable fault toler- 
ance solutions into the embedded HPC applications, based on standard hardware 
and software products. The availability of such a framework could decrease the 
current tendency of industrial application developers who frequently develop 
(similar) ad hoc solutions to improve the fault tolerance capabilities of their 
embedded applications. 

2 Faul t  t o l e r a n c e  r e q u i r e m e n t s  

The errors that occur in systems in the scope of the EFTOS project can be 
summarised in broad terms in the following categories: 



1365 

- software errors triggered by untested or unforeseen input values; 
- hardware faults caused by electromagnetic interference; 
- the propagation of errors through communication channels from one part of 

the system to the others; 
- memory corruption by errors propagating from one process to another, as 

processes are running concurrently in the same memory space; 
- the loss of a number of subsequent inputs due to a faulty input item; 
- meeting time constraints and deadlines. 

t h r e a d  l e v e l  

m e m o r y  l e v e l  
n o d e  l e v e l  

s y s t e m  l e v e l  

m e s s a g e  l e v e l  

l i n k  l e v e l  

d e t e c t i o n  

w a t c h d o g s  

m e m o r y  access  c h e c k i n g  
I ' m  a l ive  

m o n i t o r i n $  s y s t e m  
p a r a m e t e r s  
c o m m u n i c a t i o n  
t i m e - o u t  
c h e c k i n g  of  
m e s s a g e  o r d e r i n ~  

i s o l a t i o n  a n d  
r e c o n f l ~ u r a t i o n  
t e r m i n ~ t t i o n  o f  
f a u l t y  t h r e a d  

, r e - m a p p i n g  o f  i 
t h r e a d s  
f r e e i n g  m e m o r y  r e s o u r c e s ,  
d i s c o n n e c t i o n  of  a 
f a u l t y  n o d e  
r e c o n f l g u r a t l o n  of  
p r o c e s s  g r a p h  / c o m m u -  
n i c a t i o n  t o p o l o g y  

d i s c a r d  m e s s a g e  

i c h e c k i n g  o f  ¢ o m m u m -  , t e r m * n a t i o n  o f  a 
c a t i o n  c h a n n e l / p a r t n e r  f a u l t y  
s t a t ~ s  be fore  u n i c a t l o n  
c o m m u n i c a t i o n  c h a n n e l  

r e c o v e r y  

r e - i n i t i a l i s a ~ i o n  of  
a t h r e a d  
r e s t o r i n g  saved  
s ta te  in a p p l i c a t i o n  
r e s t o r i n g  m e m o r y  
r e - i n i t i a i l s ~ t i o n  or  fast  
r e b o o t l n g  ¢~f a n o d e  
i n t e g r a t i o n  of  
recovered  n o d e  
i n t o  the ' ; sys tem 
fas t  rebo~Z 
fas t  res tar t  
r e t r a n s m i s s i o n  . 

a s s o c i a t e d  
m e c h a n i s m s  
e x c e p t i o n  
h a n d l i n g  
c h e c k p o i n t i n g ,  
a t o m i c  a c t i o n s  
s tab l e  raemory  

re l iab le  
c o m m u n i c a t i o n  

r e - o r d e r i n g  .~ 

r e - i n i t i ~ l l s a t i o n  o f ~ '  
a corn municstion'~'~ 
c h a n n e l  

T a b l e  1 .  F a u l t  t o l e r a n c e  r e q u i r e m e n t s .  , 

Based on this categorisation we have developed faultAolerance modules that 
deal with the different types of errors. Application developers were asked to 
prioritise these modules according to the relevance to.the needs of their appli- 
cation, their impact on fault tolerance and the feasibility to integrate them into 
the target application. This lead to the following orthogonal classification of re- 
quirements, according to the location where fault tolerance is required (process- 
ing and networking modules), according to the steps to  achieve fault tolerance 
(detection, isolation and recovery mechanisms). Table 1 shows the list of the set 
of fault tolerance functionality that our library contains and the corresponding 
classification. We also added associated mechanisms. 

3 E F T O S  f r a m e w o r k  w i t h  r e u s a b l e  s o f t w a r e  s o l u t i o n s  

Based on these requirements, the EFTOS project is providing a framework for 
fault tolerance, elaborated on a Parsytec CC system, which acts at different 
levels. (This results in the architecture of figure 1.) 

- At the lowest level, it contains elements for error detection (D tools) and 
for error recovery (R tools). These are parametrisable functions that can be 



1366 

used in stand-alone functionality,  or in combination with the next levels to 
apply fault tolerance to processing or communication modules. 

- At the middle level, the DIR net (detection, isolation and recovery network) 
combines these elements to tolerate faults. It ensures consistent decisions in 
the distributed system and serves as a backbone to pass information among 
the fault tolerance elements. 

- At the highest level, these elements can be combined into mechanisms, such 
as to provide fault- tolerant  communicat ion or voting on results. 

The D t o o l s  are meant  to detect errors. They are dynamically started by 
the user during the execution of the application. As such, the programmer can 
supply them with the correct parameters .  When an error is detected, the D tool 
passes the necessary informat ion via a standardised interface to the DIR net. 
This includes the type of  error tha t  occurred, the location where the error is 
detected and the D tool tha t  detected it. Examples of D tools that  are being 
integrated include: 

- watchdog timers for communica t ion  and computation, detecting if a message 
is delivered in t ime or if a task produces its results before a certain deadline; 

- assertions that  check invariant relationships in values of variables; 
- support to detect wrong  memory  accesses, e.g. to unused or non-emsting 

memory or write access to read-only areas; 
- monitoring of system and environmental  parameters to detect deviations 

from the normal beha,,iour; 
- trap handlers to catch signals; 
- application-specific D tools, etc. 

The R t o o l s  provide recovery mechanisms. They are started by the DIR 
net and have to bring the application back into a consistent state. Possibly 
the system will have less funct ional i ty than before (graceful degradation). They 
include the following: 

- restarting a single node or a set of nodes; 
- disabling communicat ion channels temporari ly or permanently; thereafter 

they have to be reset, reinitialised, and brought back into a consistent state. 
New communicat ion channels must  be established if a communication chan- 
nel was completely removed or if the reconfiguration steps require another 
application topology; 

Fig. i. EFTOS architecture. The application makes use of the message-passing environ- 
ment EPX, running on top of the operating system kernel, The elements for detection 
(D tools) and recovery (R tools) interact with the application and are interconnected 
via the DIR net. 



1367 

node #I node #:~ 

Fig. 2. Architecture of the DIR net. 

- (virtually) disconnecting unusable threads or nodes from the rest of the 
application; releasing memory  and other  resources, that  were assigned to 
threads or links that  failed or had to be removed; 

- validate output before releasing it, or selecting the correct answer from a set 
to mask faults; 

- application-specific or user-specified recovery actions, etc. 

The detection-isolation-recovery net, in short D I R  ne t ,  is the backbone of 
the fault tolerance framework. It provides an interface to which all D tools and R 
tools should conform, while leaving enough room for flexibility within the tools. 
The DIR net allows distributed actions to take place. Therefore, it consists of 
a hierarchical network with a central  manager  and several distributed agents. 
This DIR net structure is shown in figure 2. 

- The main module in the DIR net is the manager,  which keeps a global view of 
the system. This view includes the status of each node used in the partition, 
the type and location of the D tools, the type and location of errors that  
occurred, and the status of R tools tha t  are being executed. The manager 
also has the possibility to connect  to an operator  module, which forms a 
two-way interface between the opera tor  and the DIR net to perform manual 
recovery actions. 

- The DIR manager is assisted by multiple DIR agents on the different nodes, 
that  do the field work. These agents s tar t  up and initialise D tools. They are 
warned when an error occurs, and forward this information to the manager. 
These agents take local recovery actions, or for coordinated actions, they 
start  R tools upon request of the DIR net manager. Note that different 
agents are not interconnected, but  can only communicate via the manager. 

A hierarchical/centralised s t ructure  of the DIR net has been implemented so 
far. We are also evaluating a dis t r ibuted (peer to peer) architecture for the DIR 



1368 

net to avoid the single point failure problems of the centralised version. However, 
performance reasons make a distributed version of DIR net quite unattractive, 
especially in the area of high performance applications that we are considering. 
Besides, the DIR net is a lean piece of software that has little probability of failure 
compared to the data-dependent software faults affecting the applications, which 
makes failures introduced by the DIR net quite unlikely. Hence, we are leaning 
towards building support mechanisms for the hierarchical DIlZ net structure 
(backups, duplications, message checking, heartbeat mechanisms, etc.). 

4 C u r r e n t  s t a t u s  a n d  o u t l o o k  

A first prototype of this EFTOS framework has been implemented. It com- 
prises basic elements of each of the fault tolerance steps. In a test application, 
this resulted in successful experiences when software fault injection was applied. 
While the implementation work continues on different levels, the developed ba- 
sic elements, structures, and techniques will be tested, integrated into the target 
applications. These industrial application developers will validate the framework 
and provide feedback to the developers. 

As such, the developed framework will become a flexible, and standardised set 
of solutions to improve the dependability of a large set of embedded applications 
at a low cost. 

Acknowledgements. This project has partly been supported by ESPRIT project 
21012 EFTOS, COF/96/11 and an FWO Krediet ann Navorsers. Geert Deconinck has 
a grant from IWT. Rudy Lauwereins is research associate of the FWO - Flanders. 

5 R e f e r e n c e s  

[1] Anon., "Parsytec CC Series", Parsytec GmbH, Aachen (D), Jul. 1995. 
[2] Anon., "EFTOS: Embedded Fault-Tolerant Supercomputing', Technical Annex 

ESPRIT- project 21012, Feb. 1996. 
[3] G. Deconinck et al., "Fault Tolerance Requirements in Postal Automation: a Case 

Study", 4 t~ IFA C Alg. and Arch. for Real-Time Control, Vilamoura (P), Apr. 1997. 
[4] G. Deconinck et al., ~Fault Tolerance in Massively Parallel Systems", Transputer 

Communications, Vol. 2(4), Dec. 1994, pp. 241-257. 
[5] H. Kopetz et al., ~Distributed Fault-Tolerant Keal-Time Systems: The Mars Ap- 

proach ~, IEEE Micro, Feb. 1989, pp. 25-40. 
[6] D. Powell (Ed.), "Delta-4: A Generic Architecture for Dependable Distributed 

Computing", Springer-Verlag, Berlin Heidelberg New York, 1991. 
[7] B. Randell, J.-C. Laprie, H. Kopetz, B. Littlewood (Eds.), ~ESPRIT Basic Re- 

search Series: Predictably Dependable Computing Systems" Springer- Verlag, Berlin 
Heidelberg New York, 1995. 


