
Inv i t ed Talks

Basis of Parallel Speculative Execution

Paul Feautrier

Laboratoire PRISM
Universit6 de Versailles

78035 VERSAILLES CEDEX
France

Abst rac t . The next generation of supercomputers will probably need
large amounts of parallelism, both for generating the needed computing
power and for masking memory latency. Furthermore, it is necessary
to expand the use of parallelism to less regular programs than is usually
found in numerical applications. The main obstacle to be overcome is the
presence of control dependences, i.e. of situations in which the result of
an operation is used to decide if another operation is going to be executed
or not. This forbids parallelization, unless speculative execution is used:
an operation is initiated before being sure that it must be executed.
Our aim here is to explore the logical constraints which must be satis-
fied by parallel speculative programs. This is best done in the framework
of scheduling. For instance, one obtains speculative execution simply by
ignoring some control dependences when constructing the schedule. If
this is done, one has to insert compensating dependences to restore the
correctness of the object program. One also has to keep enough informa-
tion for being able to undo the effects of speculative operations. Lastly,
one has to insure that everything stays finite in the object program, in-
cluding the size of temporary memory and the amount of computation
per logical time step. Preliminary solutions are given for some of these
problems.

1 Speculative Execution, How and Why

The next generation of supercomputers will probably need large amounts of
parallelism, both for generating the needed computing power and for masking
memory latency by multithreading. To hide a memory access latency of L pro-
cessor cycles, one need about L threads. At present, L is of the order of 50,
which is manageable. If L grows to a few thousands, where are we to find that
much parallelism?

In the case of regular programs (scientific computations and signal process-
ing) this is not too difficult. One uses data parallelism, which will be enough
provided the data sets are large. But regular programs are a small fraction of
the workload of a processor. How do we find large amount of parallelism in
irregular programs?

The main obstacle to be overcome is the presence of control dependences,
i.e. of situations in which the result of an operation is used to decide if another
operation is going to be executed or not. This forbids parallelization, unless

speculative execution is used: an operation is initiated before being sure that
it must be executed. To get a rough idea of the quantities involved, let T1 be
the sequential execution time. Let o" be the proportion of operations which are
executed speculatively, and suppose that about one half of those are useful.
Lastly, suppose that the removal of control dependences is enough to insure
total parallelization. The elapsed t ime on P processors is then:

Tv - 1(1 + o'/2)
P

and the efficiency is:
P1 1

E - - PTp 1 + o/2"

This is the most favorable case. It tell us that the amount of speculation must
stay small if we want reasonable efficiency.

Our aim here is to explore the logical constraints which must be satisfied by
parallel speculative programs. This is best done in the framework of scheduling.
For instance, one obtains speculative execution simply by ignoring some control
dependences when constructing the schedule. If this is done, one has to insert
compensating dependences to restore the correctness of the object program.
One also has to keep enough information for being able to undo the effects of
speculative operations. Lastly, one has to insure that everything stays finite in
the object program, including the size of temporary memory and the amount of
computat ion per logical t ime step. Preliminary solutions are given for some of
these problems.

2 N o t a t i o n s a n d D e f i n i t i o n s

We will use here the notations and conventions of [4] and [2]. The program model
we will restrict ourselves to is as follows:

- The only data structures are scalars, and arrays of scalars.
- Expressions do not include any pointer or pointer-like mechanism such as

aliasing, EQUIVALENCE, etc.
- Basic statements are assignments to scalars or array elements.
- The only control structures are the sequence, the do loop, the whi le or

r e p e a t loop, and the conditional construct i f . . t h e n . , e l s e , without re-
striction on stopping conditions of whi le loops, nor on predicates in i f ' s .
gurus and procedure calls are prohibited.

- wh i l e loops have explicit counters.
- Array subscripts must be affine functions of the counters of surrounding do,

while or repeat loops and of structure parameters. The input program is
supposed to be correct, thus subscripts stay within array bounds, and all
whi l e loops terminate after a finite number of iterations.

The emphasis will be on operations, i.e. executions of data processing state-
ments. An operation is named by giving the name of the executed statement
and its iteration vector, i.e. the values of the surrounding loop counters. Each
operation has a set of governing predicates, which is obtained in the following
way:

- If the operation is in the true branch of a conditional i f p . . . , then p is
among its governing predicates.

- If the operation is in the false branch of a conditional, then -~p is among its
governing predicates.

- If the operation is in the body of a do i = 1 whi le p loop, then p is among
its governing predicates.

The fact that while loops terminate cannot be checked at compile time. As a
consequence, the fact that array subscripts stay within array bounds cannot be
checked at compile time when subscripts are expressions involving while-loop
counters. Our position is that such checks are the responsibility of the original
programmer.

2.1 I t e r a t i o n d o m a i n s

The iteration domain ~(S) of statement S is the set of values that the iteration
vector takes in the course of execution of S. Unfortunately, iteration domains for
dynamic control programs cannot be predicted at compile time. In the particular
case where there is only one outermost whi le loop, we know at compile time that
the iteration domain is built from the integral points inside a convex polyhedron;
this polyhedron is bounded if the loop terminates, but this bound cannot be
known statically [3]. In more general cases, the iteration domain has no particular
shape and looks like a (possibly multidimensional) "comb" [7].

In dynamic control programs, we have to consider the calculation of i f and
whi le predicates as full fledged operations. The corresponding statement is given
a name, and the name of the operation is obtained, as usual, by concatenating
this name and its iteration vector.

2.2 A p p r o x i m a t e i t e r a t i o n d o m a i n s

D e f i n i t i o n 1. The approximate iteration domain ~ (S) of a s tatement S is the
set of all instances of S which would be obtained if all the governing predicates
of S always evaluated to true.

The approximate domain of S is a superset of the (actual) iteration domain.
Observe that, in a static control program, the approximate domain of any

statement S is equal to the actual iteration domain, i.e. ~ (S) = ~D(S) for any
S, and there is no need for handling control dependences since they are already
taken into account in the expression of Z~(S).

3 D e p e n d e n c e R e l a t i o n s

3.1 M e m o r y - a n d v a l u e - b a s e d d e p e n d e n c e s

Two operations u and v can execute in parallel if they are independent, i.e. if
they do not modify any of their shared variables. If this condition is not verified,
and if u is executed before v (written u -~ v), then u and v are said to be data
dependent, denoted by u ~ v. Dependences are usually classified into flow, output
and anti-dependences. Two operations u and v can execute in parallel if u is not
comparable to v in the transitive closure of ~. We say that a dependence f rom u
to v is satis/~ed if u executes before v. All dependences should be satisfied, thus
limiting parallelism. Note that if u produces a value for a variable a and if v is
the computat ion of an i f or wh i l e predicate in which a occurs, then u ~ v. For
simplicity, we will suppose here tha t predicates have no side effect.

These dependences, however, are memory-based dependences. They are lan-
guage- and program-dependent, and are not semantically related to the algo-
r i thm. On the contrary, value-based dependences or data flow dependences cap-
ture the production and uses of computed values. Dataflow analysis for static
control programs in the presence of arrays is now well understood [4, 9, 8, 10]. In
the case of dynamic control programs, a fuzzy array data flow analysis (FADA)
has been proposed in [2]. The result of fuzzy array dataflow analysis is a multi-
level conditional called a quast. Each leaf is a set of potential dataflow sources.
Notice that these sets may possibly be infinite. Each quast leaf is governed by
a context given by the conjunction of predicates appearing on the unique pa th
f rom the quast 's root to the leaf.

3.2 C o n t r o l d e p e n d e n c e s

D e f i n i t i o n There is a control dependence from operation u to operation v if the
execution of v depends on the outcome of u. u is called the governing operation.
Such a dependence is denoted by u ~c v. In particular, the evaluation of a wh i l e
loop predicate is control dependent on the outcome of the evaluation at the
previous iterations, if any.

D e s c r i p t i o n o f c o n t r o l d e p e n d e n c e s

The case of ihe i f consiruct Let us consider the following program piece:

G : if then
. o .

S : ...
end if

where S is some statement in the then or else arm, perhaps surrounded by
loops. Let c be the depth of the if construct, i.e. the number of loops surrounding

G. Let a (resp. b) be the iteration vector of G (resp. S). Then, there is a control
dependence from (G, a) to (S, b) iff

b[1..c] = a. (1)

(if c = 0, then a and b[1..c] are equal to the vector of dimension 0 and the
condition (1) is trivially true.)

The case of whi le loops Let us consider the following program piece:

G : do x = I while . . .

$: . . .

end do

where S is some statement in the whi le loop body, perhaps surrounded by
loops within the body. Let c be the depth of the whi le construct, i.e. the number
of loops surrounding G. Let a (resp. b) be the iteration vector of G (resp. S).
Then, there is a control dependence from (G, a) to (S, b) iff

a[1..c] = b[1..c] A a [c+ 1] _< b [c + 1] (2)

4 B a s i c M e t h o d s f o r S p e c u l a t i v e P r o g r a m C o n s t r u c t i o n

4.1 S c h e d u l i n g

Let us suppose that our target parallel compiler is a global memory machine.
When constructing parallel programs for such a machine, one may use a schedule,
i.e. a function ~ from the set of all operations, E to the set of positive integers,
IN. The execution order of the parallel program is:

Operation which are scheduled at the same date are non comparable for this
order and are executed in parallel. As is well known, a sufficient condition for
a parallel program to be equivalent to a sequential one is that 1) they have the
same set of operations, and 2) dependent operation are executed in the same
order in the sequential and parallel program. We deduce that the schedule must
satisfy the following constraint:

u v A v O(u) < O(v),

which, since 0 is integer valued, is equivalent to:

u~v A u --< v ~ O(u) + 1 < O(v). (3)
This is a system of functional inequalities, which must be solved for the unknown
function t~. As is often true for system of inequalities, it may have many different

solutions. For the sake of expediency, one selects beforehand the shape of 0, thus
restricting the range of possible solutions. In this case, recall that the operations
u and v are instance of statements R and S, and that their name is of the form
(R, a), (resp. (S, b)), where a and b are iteration vectors. In the constraint (3)
above, u ~ v and u -4 v both translate into affine constraints on a and b. The
translation is exact for -<, but may be conservative for 5 in the presence of
dynamic control. It seems natural to select affine schedules: the consequent in
(3) becomes an affine constraint too.

Schematically, our problem takes the following form: let x be the variables of
the problem (a, b and the structure parameters). Let ¢i(x) > 0, i = 1, M be the
affine constraints in the antecedent of (3), and let ¢(x) > 0 be its consequent.
By Farkas lemma, we know that (3) is satisfied iff there exists positive numbers
A~, i = 0, M such that:

M

¢(x) - - +

i=1

This relation is valid for all values of x. Hence, one can equate the constant term
and the coefficient of each variable in each side of the identity, to get a set of
linear equations where the unknowns are the coefficients of the schedules and the
Farkas multipliers, hi. Since the latter are constrained to be positive, the system
must be solved by linear programming. Most of the time the system has many
solutions. One can minimize various objective functions, as e.g., the number of
synchronization points.

Unfortunately, some loop nests do not have affine schedules. The reason is
that when a loop nest has an affine schedule, it has ipso facto a large degree of
parallelism. However, it is clear that some loop nests have few or even no paral-
lelism, hence no affine schedule. The solution in this case is to use a multidimen-
sional schedule, whose domain is IN d, d > 1 ordered according to lexicographic
order. Such a schedule can have as low a degree of parallelism as necessary, and
can even represent sequential programs.

The selection of a multidimensional schedule can be automated by using
algorithms from [6, 5]. It can be proved that any loop nest in an imperative
program has a multidimensional schedule. Multidimensional schedules can be
particularly useful in the case of dynamic control programs, since we have in that
case to overestimate the dependences and hence to underestimate the degree of
parallelism.

4.2 H o w t o w r i t e s p e c u l a t i v e p r o g r a m s

In this context, our proposal for speculative execution is very simple: it consists
in ignoring some of the control dependences in the source program. Let us first
explore informally some of the consequences of this idea.

Firstly, why does this proposal have a chance of increasing the degree of par-
allelism of the object program? This is simply because each dependence is an
obstacle for parallel execution, and that removing one of them may give a better
schedule. Why is the resulting program speculative? Suppose that operation u is

in control dependence with v, and that the dependence is kept when computing
a schedule. We thus have 0(u) < 0(v). If this dependence is discarded for spec-
ulative execution, then the above constraint may not hold. In this case, v may
have to be started before its governing predicate, hence speculatively.

A speculative operation must not modify the program memory. Its result
must be held in temporary storage until its governing predicates are evaluated.
If the outcome is t r u e , then the result is committed by moving it to permanent
storage. In the opposite case, the result is discarded from temporary storage.

Our objective now is to give rules for the correctness of a speculative program.
One of the questions to be faced first is the problem of spurious exceptions. A
speculative operation may not be executed in the source program. Hence, there
is no guarantee that it will not raise an error. Such an error may come from the
original program, or from the boldness of our speculation. Software solutions
to this problem are too slow. A hardware solution is to take advantage of the
exceptional values which are provided by some number systems, notably the
Not-a-Number value (NAN) of the IEEE 754 floating point norm. If the floating
point unit detects an error, it should not raise an exception, but rather generate
a NaN. The exception should be raised, either if the NaN result is committed, or
when it is next used as an argument. Note the dire effect this deferred exception
scheme has on debugging. This simply reinforce the familiar motto: "Never debug
an algorithm on a parallel machine".

4.3 P a r t i a l a n d t o t a l c o r r e c t n e s s o f a s p e c u l a t i v e p r o g r a m

A program is partially correct if, whenever the program terminates, its results
are correct. A program is totally correct if, besides being partially correct, it
always terminates provided its initial data is within its input range.

In the present case, we fortunately do not have to specify what are correct
results, or what is the input range of our program. Our basic hypothesis is that
the original sequential program is totally correct. What we have to guarantee
is that , whenever the original program terminates, the speculative program also
terminates giving identical results.

P a r t i a l c o r r e c t n e s s We have partial correctness iff, whenever a program ter-
minates, its results are correct. We are going to prove a stronger result: in the
speculative program, each non speculative operation has the same result as in
the original program.

In the non speculative case, this means only that data dependences are to
be satisfied, and this is one of the validity condition of the schedule. A prob-
lem arises when one of the arguments is the result of a speculative operation.
This result cannot be used until it has been committed, i.e. until its governing
predicate has terminated. This can be enforced by the introduction of compen-
sating dependences, which are the composition 1 of a control dependence and a

1 in the sense of the composition of relations.

10

flow dependence. Compensating dependences are to be taken into account for
scheduling.

T h e o r e m 2. A speculative program in which compensating dependences are sat-
isfied is partially correct.

Proof. Suppose a contrario that there is an operation u which is executed in the
original program and whose result is not the same in the original program and
in the speculative version. We may suppose that this operation is the earliest
one in the execution order of the parallel program. Since operations are deter-
ministic, this implies that one of the arguments of the operation is not correct.
This argument may be the result of a non speculative operation, which is neces-
sarily in flow dependence with the distinguished operation. By the definition of
a dependence, the source operation is executed earlier in the parallel program
than u and gives an incorrect result, a contradiction.

If the incorrect argument may be the result of several operations, it may
be that we have chosen the wrong one. This implies that one of the governing
operation has given an incorrect result. Since, thanks to the compensating depen-
dences, the governing operations are executed before u in the parallel program,
we have found another contradiction.

4.4 T o t a l c o r r e c t n e s s

Intuitively, not taking a control dependence into account may yield a nontermi-
nating behavior. In the case of dynamic control programs where the only whi le
loop is the outermost loop, a necessary and sufficient condition for correctness
is that fronts must be finite [3]. Our aim here is to give a termination criterion
for more general speculative programs. Together with the preceding theorem, it
will entail the total correctness of the object program.

Firstly, we must have some idea of the structure of the target code. As is the
case for synchronous parallel programs, we will suppose that the outer loops are
sequential, their function being the enumeration of the successive values of time.
Contrary to the static control case, these loops are whi le loops. Their number
is equal to the dimension of the schedule. The operations which are scheduled at
t ime t constitute the front at time t. The definition of a front is more complicated
than in the static control case. An operation which is scheduled at t ime t is to
be executed provided that its governing operations which have been executed
before t have evaluated to true.

The result of operation u will be written p(u). With this notation, the spec-
ulative front at t ime t is:

fs (~) = {~ E O(s) I e(~) : t, w : (e(~) << t A ~ 6 ~ ~ ~ p(~) = t rue)}, (4)

~ (t) = U ~ (t) . (s)
s

11

To write the speculative program, we need the following auxiliary functions:

first = min{t] ~P(t) 5£ ¢} (6)
next (r) = min{t [:P(t) ¢ 0 At > v} (7)

with the proviso that these functions take the undefined value _k if the set over
which the minimum is computed is empty. "first" gives the first clock tick at
which there is work to be done, and "next(v)" is the first clock tick after v at
which there is work to be done.

With these notations, the abstract speculative program is:

Program A
do t = first while t ~ /

do~ll J:(t)
t = next(t)

end do

Let us introduce:
t (t) = U

r<<t

To be correct, the abstract program A above has.to satisfy several conditions:

1. An uncommitted value has to be held in temporary storage until the results
of all governing predicates are known. The size of the temporary storage has
to be finite.

2. Each operation has to be executed in finite reM time. Since the execution
time of a parallel program is bounded from below by the number of its
operations divided by the number of processors, this means that the total
number of operations before any logical instant t has to be finite:

Card B(t) < co (8)

3. Lastly, the speculative program must terminate whenever the original pro-
gram does.

The set of uncommit ted results is a subset of the set of all results. Hence,
condition 2 implies 1. It is more difficult to prove that:

T h e o r e m 3 . Program A terminates, provided the source programs terminates
and the schedule is such that all sets I3(t) are finite.

Proof. The proof is only sketched here. If the original program terminates, it
means that no whi le predicate evaluates to true more than a finite number
of times. Since the speculative program is partially correct, it has the same
property. Since all fronts are finite, there must be an infinite number of fronts
for non termination: One can show that this implies an infinite number of true
whi le predicates, a contradiction.

The conjunction of theorems 2 and 3 gives a sufficient condition for the total
correctness of the target speculative program.

12

Testing the legality o/a schedule According to theorem 3, a schedule is legal if,
for all t, Card B(t) < oc. From the definition (4), one obtains:

ms(t) = {a E ~(S) [O((S,a)) <<t,
Vv: O(v) << 0((s, a)) A v 5 c (S, a) =:~ p(v) = t r u e }, (9)

re(t) = [_] ms(t). (10)
s

Since there are only a finite number of statements, it is sufficient to check that
each set ms(t) is finite. We may obtain a superset of ms(t) by selecting several
values of v, v l , . . . , vn and replacing the universal quantifier on v by a finite
conjunction on Vl, • . . , v,~. To select interesting values for v, let us recall that in
the original program, all whi le loops terminate. Let Pi be the nesting level of one
of the whi le loops surrounding S, and let G be its predicate. The termination
condition may be written:

Va3y: p((G, a[1..p~ - 1].y)) = false.

Equivalently, by introducing a Skhlem function, we have:

V a : p((G, a[1 . .p i - 1] .N(a[1. .pi- 1])) = false.

Let us chose:
vi = (G, a[1..pi - 1] .N(a[1. .p/- 1])).

An easy computation gives:

ms(t) C_ ms(t) : {(S, a) E ~(S) I #((S, a)) << t,

0((S,a>) << 0(v{) V a[pi] < N(a[1..pi - 1])}. (11)
i : 1

Since t~((S, a)) << t implies tg((S, a))[1] < t[1], and since the coefficients of
whi le counters in a schedule are necessarily positive, this gives an upper bound
for all whi le couuters which have a nonzero coefficient in 0((S, a))[1]. Let us now
consider a counter a[pi] which does not occur in t~((S, a))[1]. In the corresponding
term of (13), the second disjunct gives an upper bound, but to be sure that alp{]
is bounded we need another bound from the first disjunct. Let di be the index of
the first coordinate of t~ in which a[pi] occurs. We will obtain a bound provided
that:

O((S, a))[1..di - 1] = O(vi)[1..d~ - 1].

This suggests the following legality check:

- For all statement and all surrounding whi le loops:
1. Let p be the depth of the distinguished whi le loop, and let G be its

predicate. Check whether t~((G,a}) << t~((S,b)) for all a, b such that
a[1..p] : b[1..p] and alp + 1] < b[p + 1]. This situation corresponds to
non speculative execution.

]3

2. If this test fails, check that the corresponding loop counter occurs in the
first row of the schedule.

3. If this test fails, find the first row of the schedule in which the counter
occurs. If there is no such row, the schedule is illegM.

4. Let d be the rank of the selected row. Check whether 0((G, a))[1..d] =
0((S, b))[1..d]. If this test fails the schedule is illegal.

Converting this test into a scheduling algorithm will be the subject of future
research.

5 C o n c l u s i o n : O p e n P r o b l e m s , E x t e n s i o n s

It should be clear now that this paper is just a preliminary investigation of the
problem of constructing parallel speculative programs. We have given a very
general prescription for speculation: ignore some control dependences. This pre-
scription may impair the data flow of the program, which has to be reinstated
by inserting compensating dependences. One then compute a schedule by famil-
iar methods. The result does not necessarily corresponds to a realistic program:
the schedule must pass a legality test. Is there a way of directly constructing
a legal schedule? Enforcing that wh±le loop counters have non zero coefficients
in a schedule is easy, but what are we to do if the resulting linear program is
unfeasible?

The problem of code generation for a speculative program is still largely
open. We need, for instance, an efficient way of computing the "first" and "next"
functions. Scanning a front is another problem. If the schedule satisfies the first
or second legality criterion (1 and 2 above), the front is a polyhedron or a disjoint
union of polyhedra that can be scanned by familiar techniques [1]. In the last
legal case the situation is more complicated. Lastly, we have to design a technique
for holding uncommitted values and for executing the commit/discard process.

Another question is the selection of the control dependences which are to
be ignored. Like all methods based on schedules, this one is at its best when
applied to loop nests, not to isolated loops. A simple heuristic is to check that, if
all dependences are ignored but the data dependences, the nest has parallelism.

When the data dependences enforce sequential execution by themselves, it
may be that expanding arrays may result in a program with more parallelism.
The problem of expanding arrays in a dynamic control environment is open and
seems quite difficult. However, if we could construct a single assignment program,
the problem of commitment would be greatly simplified.

Lastly, in some important cases it may be possible to use speculative results
in place of the exact result. This happens, for instance, when a wh±le loop imple-
ments a stable convergent process. Doing a few extra iterations may not seriously
damage the final results. This allows to dispense with the commit/discard mech-
anism, but there is no simple way to detect this situation. A directive from the
programmer is needed.

14

R e f e r e n c e s

1. Corinne Ancourt and Franqois Irigoin. Scanning polyhedra with DO loops. In
Proc. third SIGPLAN Syrup. on Principles and Practice of Parallel Programming,
pages 39-50, ACM Press, April 1991.

2. Denis Barthou, Jean-Franqois Collard, and Paul Feautrier. Fuzzy array dataflow
analysis. Journal of Parallel and Distributed Computing, 40:210-226, 1997.

3. J.-F. Collard. Space-time transformation of while-loops using speculative execu-
tion. In Proc. of the 1994 Scalable High Performance Computing Conf., pages 429-
436, IEEE, Knoxville, TN, May 1994.

4. Paul Featttrier. Data/low analysis of scalar and array references. Int. J. of Parallel
Programming, 20(1):23-53, February 1991.

5. Paul Feautrier. Some efficient solutions to the affine scheduling problem, II, multi-
dimensional time. Int. J. o/Parallel Programming, 21(6):389-420, December 1992.

6. Paul Feautrier. Some efficient solutions to the affine scheduling problem, part I,
one dimensional time. Int. Y. of Parallel Programming, 21(5):313-348, October
1992.

7. M. Griebl and C. Lengauer. On the space-time mapping of while-loops. Parallel
Processing'Letters, 1994. To appear. Also available as Report MIP-9304, Fakultiit
fiir Mathematik und Informatik, Universit£t Passau, Germany.

8. Vadim Maslov. Lazy array dataflow dependence analysis. In Proc. 21st ACM
SIGPLAN-SIGACT Syrup. POPL, pages 2-15, January 1994.

9. Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array dataflow
analysis and. its use in array privatization. In Proc. of ACM Conf. on Principles
of Programming Languages, pages 2-15, January 1993.

10. William Pugh and D. Wonnacott. An Exact Method for the Analysis of Value-
Based Data Dependences. Technical Report CS-TR-3196, U. of Maryland, Decem-
ber 1993.

