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Abstract. Stacking regressions is a method for forming linear combinations of different predictors to give improved 
prediction accuracy. The idea is to use cross-validation data and least squares under non-negativity constraints 
to determine the coefficients in the combination. Its effectiveness is demonstrated in stacking regression trees of 
different sizes and in a simulation stacking linear subset and ridge regressions. Reasons why this method works 
are explored. The idea of stacking originated with Wolpert (1992). 
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1. Introduction 

Suppose one has available K predictors vl ( x ) , . . . ,  vK (x) of a numerical outcome variable 
y in terms of  a vector x.  Assume these were constructed using the same learning set 
£ = {(Yn, xn),  n = 1 , . . . ,  N }  where each Xn is an input vector. In common examples 
the predictors are of  the same type but differ in complexity. For instance, in CART one 
takes vk (x) to be the predictor using the subtree with k terminal nodes. Another example 
is in linear regression. If  x is K-dimensional, then vk (x) is that least squares regression 
based on k variables having lowest learning set squared error. Other examples occur when 
the predictors are derived using different methods, i.e. neural nets, nearest-neighbor, etc. 

What is wanted is not a collection of predictors, but a single predictor. Often, the approach 
used is to find the single best predictor among the {vk (x)}. This is done either using a test 
set or cross-validation to estimate the prediction error of  each Vk (x)  on "future" data. 

David Wolpert (1992), in an article appearing in the Neural Network literature, pro- 
posed the following interesting idea: if we have a set of  predictors (linear or nonlinear) 
vt ( x ) , . . . ,  vK (X) then instead of selecting a single one from this set, a more accurate pre- 
dictor can be gotten by combining the V l , . . . ,  VK. The method for combination is based 
on level one data defined as follows: leave out the nth case and repeat the procedures for 

constructing the predictors, getting v~ -n)  (x),  k = 1 , . . . ,  K.  Define the K-variable vector 
zn  by 

zk~ = v~-~) (xn).  

Then the level one data consists of {(Yn, zn) ,  n = 1 , . . . ,  N } .  
Ordinarily the level one data would be used to select one of the vk, i.e. use v~ where k 

minimizes Y~-k (yn -- zk,~) 2. Wolpert's idea is that the level one data has more information 
in it, and can be used to construct "good" combinations of the Vkr~. He illustrated this idea 
by using level one data to form nonlinear combinations of  nearest neighbor predictors. But 
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he also remarks that just how to use level one data to form accurate combinations is "black 
art". 

The idea of combining predictors instead of selecting the single best is well-known 
in statistics and has a long and honorable theoretical background. We include several 
references--Rao and Subrahmaniam (1971), Efron and Morris (1973), Rubin and Weis- 
berg (1975), Berger and Bock (1976), and Green and Strawderman (1991). What is not 
spelled out is how to combine given a finite data set. 

We simplify the problem by restricting attention to combinations of the form 

v(x) = E akvk(x). 
k 

Given a learning set £ = {(y~, xn), n = 1 , . . . ,  N} one possibility is to take the {ak} to 
minimize 

- 2 (M) 

n k 

There are two problems with this approach. The first is that if the vk (x) were constructed 
using £, and the {ak } gotten by minimizing squared error over £, then the resulting {ak } 
will overfit the data - generalization Will be poor. This problem can be fixed by using the 
level-one cross-validation data. That is, take the {ak } to minimize 

(1.2) 
n k 

where Zkn : V(k -n)  (Xn) .  
The second problem is more difficult. Usually the {Vk (x)} are strongly correlated, since 

they are all trying to predict the same thing. If the {ak} are computed as the minimizers of 
(1. l) or its cross-validation version (1.2), then they will be highly sensitive to small changes 
in the data. Again, generalization will be poor. 

The usual method for estimating regression coefficients of highly correlated variables is 
ridge regression (Hoerl and Kennard (1970)). This is the recipe that minimizes 

n k 

under the constraint ~ a~ = s. Then the optimal value of s is selected by another cross- 
validation. In our experiments, ridge and some variants of ridge were tried. Results were 
better than using the least squares {ak}, but were not consistent. 

A method that gives consistently good results is this: minimize 

n k 

under the constraints ak >_ 0, k = 1 , . . . ,  K. This resulting predictor ~ akvk appears 
to almost always have lower prediction error than the single prediction vk having lowest 
cross-validation error. 
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The word "appears" is used because a general proof is not yet in place. The evidence 
offered consists of some analytic work in Section 2, experiments on trees and extensive 
simulations. The lowering of error rates is pervasive. Because Wolpert named his method 
"stacked generalizations" we refer to the present method as stacked regressions. The plan 
for the presentation of the results is as follows: In Section 2 we give some general reasons 
why this method works as well as it does. In Section 3, the method is applied to stacking 
trees of different sizes. Using this method on two well-known data bases results in a 10% 
reduction in error on each. 

Statisticians often (and myself in particular) use linear regression prediction as mouse 
experiments on new methods. Some reasons are that it is easy to generate simulated 
data, to compute the regressions and to carry out large simulations. Sections 4-8 cover 
simulation experiments with linear regression. In Section 4 we give some basic definitions 
and define the simulation structure: 40 input variables and 60 cases are used. In Section 
5, the results of stacking subset regressions are examined. That is, the v l , . . . ,  vK are the 
subset regressions gotten by stepwise backward deletion of variables. Section 6 looks at 
stacking ridge regressions, i.e. the Vl,. •. ,  v/~ are the ridge regressions corresponding to 
ridge parameters A1, . . . ,  AK. 

In Section 7, the subset regressions and ridge regressions are stacked together and the 
results compared to selecting (via cross-validation) the best of the best subset regression 
and best ridge regression. Stacking wins, sometimes by a large margin. 

Generating the level one data by leave-one-out cross-validation can be very computer 
intensive. In Section 8 simulation evidence is used to show that (surprizingly) the level 
one data generated by much cheaper 10-fold cross-validation is more effective than the 
leave-one-out level one data. Section 9 contains various concluding comments concerning 
the stacked procedures, and Section 10 gives conclusions. 

The results show that stacking can produce predictors with substantially reduced predic- 
tion errors. Stacking never does worse than selecting the single best predictor. We note 
that the biggest gains came when dissimilar sets of predictors were stacked, i.e. subset 
selection and ridge regressions. The more similar the predictors, the tess advantage there 
is in stacking. We have also experimented in stacking linear regression predictors with 
k-nearest neighbor predictors. Here again, there were substantial reductions in error. 

Stimulated by my technical report on stacking, Le Blanc and Tibshirani (1993) investi- 
gated other methods of stacking, but also come to the conclusion that non-negativity con- 
straints lead to the most accurate combinations. They also gave examples where stacking 
classifiers gives increased accuracy. Perrone (1994) has also done relevant work. 

2. Why Non-negativity Constraints Work 

Only partial answers are available. Suppose that the {vk (x)} are strongly correlated and 
the {ak} are chosen using least squares or ridge regression. Then there is no guarantee that 
the resulting predictor ~ k  akvk (x) will stay near the range [mink vk (x), maxk vk (x)] and 
generalization may be poor. 
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Now consider imposing the non-negativity constraints on the {c~k } together with the addi- 
tional constraint ~ c~k = 1. For any {ak} satisfying the constraints c~k _> 0, ~ k  c~k = 1, 

v(x)  = ~ akvk(x)  
k 

is an "interpolating" predictor. That is, for every value of x,  

minvk(m)  < v (x )  < r n ~ x v k ( x ) .  
k 

So, what our procedure does is to find the best "interpolating" predictor. 
To do some more exploration, note that 

n k i , j  

where Rij is the matrix of residual products 

= Z ( w  - v , ( x n ) ) ( w  - v j ( x . ) ) .  
n 

Now suppose we want to determine the {ak} as the minimizers of  (xtRc~ under the non- 
negativity and sum one constraints (the cross-validation data is used in practice to determine 
the {ak} but we ignore this to present the conclusions in a simple form). An important 
question is: under what conditions on the matrix R is the best single predictor also the best 
stacked predictor? 

By the best single predictor we mean that vk such that Rkk = mini  Rjj .  Then the 
following holds: 

THEOREM 1 The best single predictor Vk is also the best stacked predictor if and only if 

Rkk <_ Rik, all i. 

Proof:  Since the minimization of c~t_Ro~ under o~ >_ 0, ~ ak  = I is a quadratic program- 
ming problem, the Kuhn-Tucker conditions are necessary and sufficient for a solution (see, 
for example, Luenberger (1984)). In this case the conditions are that there is a )~, and vector 
/z such that 

R o ~ = A + #  

where ak > 0 ~ #k = 0 and ak  = 0 =v Pk >_ 0. I fc t j  = ~k(i) is the solution, then 

implying that Rkk = ,k and Rik _> Rkk. Conversely, suppose that Rkk <_ Rik. Then for 
a~ = 6k(i), ~-2~ Rji~k(i) = Rjk. Putting )~ = Rkk gives R a  = )~ + / ~  where # has the 
requisite properties. • 
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Let P~k be the correlation between the ith and kth set of residuals and o-i, o- k their standard 
deviations. The best single prediction is the best stacking predictor iff 

o- i 

Thus, if oi -~ ok then Pik ~'~ 1. Put another way, all vi(x) with comparable squared error 
to vk(x) have to be nearly equal to vk(x). 

Although the above remarks are true only if ~ ak  = 1, it turns out that this constraint is 
largely unnecessary. That is, the sum-unconstrained optimum {c~k } will have the property 
that ~ k  ak "~ 1. To see this, let the non-negative sum-unconstrained minimizer of 

Z ( y ~ -  ZakVk(X~) )2  (2.1) 
n 

have sum s, and put 6~k = ak/s,  v = ~ akvk and v* = ~ akvk.  
For simplicity, we use the notation II#ll 2 = ~ n  #2n" Then 

I ly  - v t l  - -  I1(1 - s ) y  + s ( y  - v * ) l l  

> I1 - ~l  I l y l l  - ~ l l y  - v * l l  

leading to 
]lyH - I ty  - v i i  Ilyll  + Hy - vH 

< s _ ~  
Ilyl l  ÷ I ly  - v ' I t  - Hy][ - I ly  - v * l l  

If there are some good predictors among the {vk} then both HY - vii and I l y  - v ' I t  will 
be small compared to HY[] and the minimizing {ak} will have a sum not far from one. In 
the many simulations we have done, the decreases in prediction error are almost identical 
whether or not the sum constraint ~'~ ak  = 1 is used. 

3. S t a c k i n g  Trees  

To see how stacking worked with trees, we set up the following program using the CART 
algorithms: given data Z: = {(y~, x~) ,  n = 1 , . . . ,  N},  leave out some randomly selected 
test data £TS resulting in £~ = Z: -- £TS. Divide the data in £r  into J almost equal parts 

£1 , . . . ,  £J and define £(J) = U - £j. Using the data in £(J) grow a large tree TO ") with 

K terminal nodes. Prune upward so that T~ j) is the subtree of T °.) having minimal learning 

~r(J) set error among all k-node subtrees of T ~  ). Let v~ ~) (x)  denote the predictor based on .~ k • 
Take the {ak} to minimize 

Z Z kq (x //2 
J (yrL,X,~)CL~ k 

under the constraints ak >_ 0. Grow a tree TK based on all data in Z: t, with minimum error 
subtrees {Tk } and corresponding predictors {vk }. Now estimate the error in 
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by 
1 

(w - (3.1) 

(yn ,Xn )C:= ]2T S 

where.NTs = I £ T s l  . This procedure is repeated many times with £ T S  and the £j selected 
at random and the error measures in (3.1) averaged to give an estimate of the stacking error. 
At the same time, the vk having smallest cross-validated error rate is selected. Its error 
measure is given by 

1 
- -  V k ( X n ) )  2 

NTS 

and this is also averaged over many repetitions. 
The two data sets we experimented with were the Boston Housing data (Belsley, Kuh 

and Welsch (1980)) and an Ozone data set (Breiman and Friedman (1985)). The Boston 
Housing data has 506 cases and 12 variables. At each iteration £TS consisted of 50 cases. 
One hundred iterations were run using 10-fold cross validation ( J  = 10). The Ozone data 
has 330 complete cases and 8 variables. Again 50 randomly selected cases were used in 
£TS, J set to 10, and 100 iterations. The results are shown in Table 1. 

Table 1. Test Set Prediction Errors 

Data Set 

Housing Ozone 

Best Stacked Best Stacked 

Error 20.9 19.0 23.9 21.6 

There are other interesting results of these runs. We kept track of the average of t }-]~k o~k - 
11 over the 100 iterations. In the housing data the result was .04 and .03 in the ozone data. 
The stacking combined only a small number of the predictors. In both data sets, there were 
usually about 50 subtrees. The average number of subtrees in a stack is 6.5 for the Boston 
data and 6.3 for the Ozone. The stacking ingredients are illustrated for the Housing data 
set. Using all data the best single tree had 23 terminal nodes. The stacking weights are 
given in Table 2. 

Table 2. Siaeking Weights 

# Terminal Nodes Weight 

7 .29 
10 .13 
23 .13 
26 .09 
29 .12 
34 .20 



STACKED REGRESSIONS 55 

Suppose that the subtrees {Tk } are nested; Tk C Zk+l. Then the predictor ~ akvk (X) 
gives the same results as a single tree predictor whose size and structure is that of the largest 
tree in the stack. To see this, let Tm be the largest tree in the stack and t a terminal node in 
T~.  Define the predicted y-value y(t) in t as 

y ( t )  = 

k 

where tk is the ancestor of t in Tk and 9(tk) is the average of all of the y-values falling in 
tk. With this definition Tm gives the same predictions as the stacked subtrees. 

The fact that the 34 terminal node tree is more accurate than the smaller 23 node tree may 
seem startling at first reading. But some reflection shows where the source of the increased 
accuracy lies. The predicted y-value in each terminal node of the larger tree is based not 
only on the data in that terminal node, but also on the data in other terminal nodes with 
which it shares ancestors in the smaller stacked trees. 

The CART pruning algorithm always produces a nested sequence of subtrees. Stacking 
these subtrees results in a single tree where the prediction in each terminal node "gathers 
strength" from the data in "nearby" terminal nodes. This result is unique to trees and no 
analogous interpretations are available for other types of predictors. 

4. Description of the Linear Regression Simulation 

Suppose the data {(Yn, xn),  n = 1 , . . . ,  N} is gotten by independent draws from a distri- 
bution (tl, X )  where X = (X1 , . . , ,  XM) is an M-dimensional random vector. Suppose 
further that this data is used to construct a predictor ¢(x)  of y. The prediction error of ¢ is 
defined as 

PE(O) = E ( Y  (ne ) - 2 

where (y(ne~), X ( n ~ ) )  are random variables with the same distribution as (Y, X ) ,  but 
independent of {(y~, Xn), n = 1 , . . . ,  N}. 

Assume that 
Y = ~ ( X )  + 

where Ee = 0, Ee 2 = ~r 2 and e is independent of X .  Then 

RE(C)  = ~2 + E(p(X(n~w)) _ ¢ ( X ( . ~ ) ) ) 2  

The ~r 2 term is the contribution of the noise in the data and is not in the experimenter's 
control. The second term measures how accurate an estimate ¢ is of # and is referred to as 
the model error (ME) (see Breiman and Spector (1992)). 

Suppose the predictor ¢ is linear; i.e. ¢(x)  = / 3 .  x. Assume that 

= Zgr  m, 
n 

then 
M E  = (/3 - ~)tF(/3 - / 3 )  (4.1) 
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where F is the M × M covariance matrix Fkm = E X k X m .  In all of the simulations 
reported, the accuracy figures given will be for N . M E  where N is the sample size 
(multiplying M E  by N puts it on a natural scale). 

In the simulations, the x-values are sampled from a 40-variable zero-mean Gaussian 
distribution with 

Fkm = R I k - m l , k , m  = 1 , . . . , 4 0 .  

The values .7, 0, -.7 are used for R. 
The coefficients {f/m} are in three clusters: let h be a positive integer and define 

if [ m -  101 < h; c~m = (h - I m  - 1 0 1 )  2 

if I r n - 2 0  I < h ;  a m = ( h - l m - 2 0 1 )  2 

if [ m - 3 0 [ < h ;  c ~ m = ( h - [ m - 3 0 1 )  2. 

Otherwise ¢/m = 0. Sample y~ from 

Y =/31X1 + . . .  +3~X,~ + e 

where e E N(0, 1), and f3m = 3'c~m. The value of" / is  determined such that the theoretical 
R 2 given by 

E(Ern/~mXrn)2 = .5. 

1 + E ( E  m 5 m X m )  2 

The data-determined values of R 2 average .82 in the simulations. Five different sets of 
coefficients are used, corresponding to h = 1 , . . . ,  5. For h = 1, there are 3 strong nonzero 
coefficients. For h = 5, there are 27 weak nonzero coefficients. The range covered includes 
both ends of the coefficient spectrum. 

In the simulations, the data {(y,~, xn),  n = 1 , . . . ,  N} were generated anew in each 
iteration. In all cases, 250 iterations are performed, and average M E  values and their 
standard errors computed. There are always 40 x-variables and 60 cases. 

5. Stacking Subset Regressions 

In each iteration of the simulation, the variable subsets were determined using stepwise 
deletion. For k = 1 , . . . ,  40 this gave a sequence of regressions such that the kth regression 
had k nonzero coefficients {~k(m)}, m = 1 , . . . ,  40. To generate the level one data, for 
each n = 1 , . . . ,  60, (yn, a:n) was taken out of the data and variable deletion carried out 
using the remaining 59 cases. With k variables, denote the linear least squares predictor by 

v~ -n)(x)  and put 

= 

The level one data is 
(y~,zl~, . . .z4o~),  n = 1 , . . . , 6 0 .  

Least squares regression constrained by coefficient nonnegativity is carried out using this 
data. (The algorithm and code for the constrained LS regression are given in Lawson and 
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Hanson (1974)). Denote the resulting coefficients by c q , . . .  C~4o. Then the final coefficients 
are given by 

40 

/3(m) : Eo~k/~k(m),  m = 1 , . . . , 4 0 .  
1 

The ME of this stacked regression is compared to the best subset regression where "best" 
is determined by cross-validation. For each k, k = 1, . . . ,  40, the estimated CV prediction 
error is 

6O 

P z(k) :  (vn - 
n : l  

The subset regression selected is that k minimizing t=;E(k). Figure 1 compares the model 
errors for the five coefficient sets for R = .7, 0, - .7 .  The numbers on the abscissa corre- 
spond to the coefficient sets gotten by setting h = 1,2, 3, 4, 5. The triangles indicate the 
stacked regressions, the circles indicate the best (CV) single subset regression model error. 
The estimated SE's for the best single subset ME range from 1.3 to 2.0 and from .7 to 1.0 
for the best stacked regression. In all cases, both procedures were used on the same data. 

Although stacked regression is a clear improvement over the best subset regression, a 
suspicion remains that because ME is convex in the coefficients, simpler mixture methods 
might reduce the error as much as stacking. To see if this is true, we tried three different 
mixture methods. The first is an equally weighted mixture of the 5 subsets with lowest 
estimated CV prediction errors. The second is a similar mixture of the l0 "best" subsets. 

The third is more complex. Let PER be the full model CV prediction error, and P E  
the minimum CV prediction error. Take an equally weighted mixture of all models with 
CV estimated PE less than PE + .2(PEF - PE). However, if fewer than four subset 
models satisfy this condition, take a mixture of all models with estimated PE less than 
PE + .4(PEF - PE). 
The results can be summarized as: 

• Stacking is uniformly best. 

• Each of the three methods is sometimes close to stacking, sometimes substantially 
worse. 

6. Stacking Ridge Regression 

In ridge regression, the coefficients/3 are determined as the minimizers of 

 (vn - xn)  2 

subject to the constraint ~ m / 9 ~  = s. The equivalent Lagrangian problem is to find the 
coefficients t9(A) that minimize 

- x )2 + A 
n 
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Figure 1. Model Errors for Best Subset vs Stacked Subsets. 
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The solution is given by 

= (x x + ) ,I)X'y 

where X is the data matrix. The literature gives a variety of methods for determining the 
value of the ridge parameter ~ to be used. The method used here is cross-validation. 

For each n, delete (y,~, x,~) from the data and for ), fixed compute the ridge predictor 

v l  -n)  (X). The PE(A) cross-validation estimate is 

:  (yn - vl  ( x . ) )  
n 

In the simulations, 40 values of A were used; Ak = .lk 2, k = 1 , . . . ,  40, and the ridge 
regression selected corresponded to the Ak minimizing P~E(Ak). The level one data was 

by setting zk~ = vtA~)(xn),- k = 1 , . . . ,  formed 40. 

Figure 2 compares the model error for stacked ridge regression to the single best ridge 
regression. The results are sensitive to the x-correlation structure and significant improve- 
ments only occur at R = - .7 .  Further discussion of this and the contrast of ridge stacking 
to subset stacking are deferred to Section 9. (The estimated standard errors of the MEs 
ranged from .4 to .9.) 

7. Stacking Subset Selection With Ridge 

The usefulness of stacking is most apparent when both the subset and ridge regressions are 
mixed together by stacking. Denote the nth case deleted k-dimensional subset predictor by 

v~-n) (x) and the nth case deleted ridge regression predictor using parameter A by vi-'~)(x). 
Then, using ridge parameter values A1, . . . ,  Ag,, the level one data is K + K I dimensional 
defined by 

{ k <_ K 
zk~ = v (-n)  ( xn ) ,  K < k < K + K ' .  ~k-K 

In the next step regress y on z l ,  . . . ,  ZK+K, with coefficients constrained to be nonneg- 
ative. Then use the coefficients to form a mixture of the corresponding predictors. In the 
simulation, K I = 40 and Ak = .lk 2. 

The stacking results in a predictor more accurate than either ridge or variable deletion. 
To provide a comparison, we use an obvious and simple combination. Select the best 
ridge regression by cross-validation. Similarly select the best variable subset regression. 
Use whichever one of this pair has the lowest estimated (CV) prediction error. Call this 
method "best of best". Figure 3 compares the "best of best" to stacking. Again, stacking 
is uniformly best, and often significantly better. (The estimated standard errors for best of 
best range from .7 to 2.1 and stacking from .6 to .9.) 
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Figure 2. Model Errors for Best Ridge vs Stacked Ridge. 
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8. Computational Efficiency and J-Fold Cross-Validation 

When the number of  cases N and the number of variables are both large, generating the level 
one data by leave-one-out cross-validation leads to long computing runs. In this section 
we describe a more computationally efficient method for generating level one data and give 
evidence (by simulation) that it is more effective than the leave-one-out construction. 

Again, suppose there are procedures for constructing linear predictors v l ,  . . . ,  VK using 
data {(y~, xn) ,  n = 1 , . . . ,  N}.  In J-fold cross-validation (see Breiman, et. al (1984)), the 
data is divided at random into J-pieces £(1), - - - , /2( j)  of size as nearly equal as possible. 

Let £(J) = £ - £ ( j ) ,  where £ is all of the data. Use £(J) to construct the predictors v (j) ( x ) .  

Then the level one data is defined by if (y~, xn)  E £ 0 ) ;  zk,~ = v~J)(x,~), Yn = Y,~. From 
here on, the procedure to linearly combine the v l , . . . ,  VK is the same as before. 

To compare 10-fold cross-validation stacking to leave-one-out stacking, three runs of 250 
iterations each were done. The three runs corresponded to R = .7, 0 , - . 7 .  In the 250 
iterations, the five coefficient sets were used sequentially, so that each set was used 50 
times. Table 3 compares the leave-one-out MEs to the 10-fold Cv MEs. 

Table 3. Comparing MEs: 10-fold CV vs Leave-One-Out 
CV (Number in brackets is the 10-fold ME) 

R 

-.7 0 .7 

Best Subset 45.6[43.5] 43.9[42.7] 35.3[33.8] 
Best Ridge 43.3[43.5] 34.5[34.5] 17.1117.3] 
Best of Best 44.3141.3] 36.0[32.8] 21.3119.2] 
Stacked Subsets  34.2[32.7] 33.6131.4] 28.7[27.9] 
Stacked Ridge-Subset 33.5[32.3] 31.2129.0] 19.8118.0] 

While the differences are small, they indicate that the 10-fold data gives more accurate 
performance than the leave-one-out data. This is consistent with the results reported in 
Breiman and Spector (1992). 

9. Remarks 

There are interesting facets to stacked regressions. For instance, how many models are 
generally stacked together (i.e. combined)? That is, how many of the c~k are nonzero? The 
answer is-surprisingly few. For stacked subset regressions, the average number is 3.1, with 
the averages over the 15 simulations (R x h) ranging from 2.9 to 3.4. For ridge stacking 
it's smaller, ranging from 1.6 to 2.3. Stacking subset and ridge together, the range is from 
2.9 to 3.6 with an average of 3.4. 

Another interesting question is how close is ~'~k c~ to 1.0. For stacked subsets the 
evidence is that ~ c~k is systematically less than 1.0 with A v ( ~  c~k) ranging from .7 to 
.9 over the 15 simulations. For stacked ridge, the picture is different. For R = .7, .0 the 
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range of A V ( ~  c~k) is from 1.1 to 1.3. For R = - .7 ,  the range is from .6 to 1.1. The run 
with R = - . 7  and h = 3 was repeated using the same data as the original run but with the 
constraint ~ ak = 1 added in each of the three stacks. The ME results are given in Table 4. 

Table 4. Unconstrained and Constrained MEs 

Subset Ridge Ridge + Subset 

Original Stack 35.5 40.8 35.5 
Constrained Stack 36.4 40.1 35.8 

The main difference is that with the constraint more models are stacked together. Another 
run with R = 0, h = 2 also gave the result that the ~ ak = 1 constraint makes little 
difference in the resulting ME values. 

Two general results deserve comment. First is that the results are sensitive to the value of 
R. In particular, whether subset or ridge regression is better depends strongly on R. This 
contains a lesson. Different studies in the statistical literature sometimes extoll the virtues 
of ridge, and sometimes of subset. All are based on simulations and the moral is that the 
structure of the simulation may dictat e the result. 

The second observation is that stacked ridge regression does not improve as much over 
the CV selected ridge regression as does the stacked subset regression over the CV selected 
subset regression. We think that the explanation is this: in subset regression, the coefficients 
can change considerably in going from k + 1 variables to k variables. However, in ridge 
regression the coefficients change only slightly when going from )~k to ,~k+l. Therefore, 
mixing predictors for Ak close to the minimizing parameter values does not produce a 
predictor much different from the CV minimum predictor. 

Some evidence that bears on the above conjecture relates to simpler mixtures of regres- 
sions. The mixtures of subset regressions discussed in Section 5 were not as accurate as 
stacked regressions, but usually more accurate than the best single subset regression. Sim- 
ilar mixtures of ridge regressions were constructed. They were rarely more accurate than 
the single best ridge regression. When they were slightly better (R = - . 7 )  the stacked 
ridge was even better. 

Besides the stated simulations results, we ran hundreds of preliminary tests experimenting 
with ridge regression and other methods for selecting the {ak }. Som e were promising, some 
improved on existing methods, but the non-negativity constraint method performed by far 
the best. 

10. Conclusions 

Stacking nested subtrees results in a single tree predictor with lower test set error than 
the best cross-validation selected subtree. Stacking various linear regressions together 
decreased error rates. The most improvement occurred when stacking together more dis- 
similar predictors. The implication is that stacking will reduce error when the predictors 
being stacked together are not overly similar. For instance, it seems reasonable that stack- 
ing MARS predictors based on different numbers of basis functions will give improved 
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performance. On the other hand, if vk(x) is a neural net predictor based on K epochs of 
back propagation, then the similarity between the {vk (x)}  for different k may imply that 
stacking will not give much improvement. Wolpert's work and its specific application in 
this paper should open the door to new thinking about model selection. In past statistical 
work, all the focus has been on selecting the "best" single model from a class of models. 
We may need to shift our thinking to the possibility of forming combinations of models 
using level one data. 
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