A Vulnerability in the Song Authentication
Protocol for Low-Cost RFID Tags

Sarah Abughazalah, Konstantinos Markantonakis, and Keith Mayes

Smart Card Centre-Information Security Group (SCC-ISG)
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
{Sarah.AbuGhazalah.2012,K.Markantonakis,Keith.Mayes}@rhul.ac.uk

Abstract. In this paper, we describe a vulnerability against one of the
most efficient authentication protocols for low-cost RFID tags proposed
by Song. The protocol defines a weak attacker as an intruder which
can manipulate the communication between a reader and tag without
accessing the internal data of a tag. It has been claimed that the Song
protocol is able to resist weak attacks, such as denial of service (DoS)
attack; however, we found that a weak attacker is able to desynchronise
a tag, which is one kind of DoS attack. Moreover, the database in the
Song protocol must use a brute force search to retrieve the tag’s records
affecting the operational performance of the server. Finally, we propose
an improved protocol which can prevent the security problems in Song
protocol and enhance the server’s scalability performance.

Keywords: RFID, mutual authentication, protocol, security, privacy.

1 Introduction

Radio frequency identification (RFID) technology is an identification technology
that uses radio waves to identify objects such as products. An RFID system con-
sists of three components, namely a tag, reader and server (database). An RFID
tag is an identification device composed of an integrated circuit and antenna.
It is designed to receive a radio signal and automatically transmit a reply to
the reader. A passive RFID reader is a device that broadcasts a radio frequnecy
(RF) signal through its antenna to power, communicate and receive data from
tags. It is connected to the server to retrieve data associated with the connected
tags. An RFID server is a database containing data related to the associated
tags which it manages [IJ.

The major concerns of designing an RFID system are privacy and security [2].
Insecure communication between the reader and tag is inherently vulnerable to
interception, modification, fabrication and replay attacks [2]. One of the prob-
lems that is encountered in designing an RFID system is a denial of service (DoS)
attack. In a desynchronisation attack, which is one kind of DoS attack, the at-
tacker tries to prevent both parties from receiving messages. For example, the
attacker can block the exchanged message(s) from reaching the target causing

L.J. Janczewski, H.B. Wolfe, and S. Shenoi (Eds.): SEC 2013, IFIP AICT 405, pp. 102 2013.
© IFIP International Federation for Information Processing 2013

A Vulnerability in the Song Authentication Protocol 103

the tag and the server to be unable to update their information synchronously.
Thus, the tag and back-end server cannot recognise each other in subsequent
transactions [3].

Song et al. [4] proposed an efficient RFID authentication protocol for low-
cost tags. This protocol uses the hash functions, message authentication code
(MAC) and PRNG functions for authentication and updating purposes. Each
tag stores only the hash of a secret namely (t), and the server stores the old
and new values of the secret (Spew, Soid), the hashed secret (tpew, tod) and the
tag’s information (D). This scheme uses a challenge-response protocol, where the
server and tag generate random numbers to avoid replay attacks. However, Cai
et al. [5] presented a paper showing that Song et al.’s protocol does not provide
protection against a tag impersonation attack. Moreover, Rizomiliotis et al. [6]
found that an attacker can impersonate the server even without accessing the
internal data of a tag and launch a DoS attack.

As a result, a new version has been proposed in [7] (referred to here as the
Song protocol). The Song protocol uses the same data and processes except that
the construction of the exchanged message (M2 and M3) has been changed.
In the new version of the Song protocol, Song claim that the proposed protocol
resists DoS attack by storing the old and new values of the secret and the hashed
secret, thus when the attacker blocks the transmitted message, the server still
can use the recent old values to resynchronise with the tag.

In this paper, we focus on examining the new version of the Song protocol
[7]. We discover that an attacker is able to desynchronise a tag without even
compromising the internal data stored in the tag. Furthermore, this protocol
is not scalable, as the server needs to perform a brute force search to retrieve
the tag’s records, which in turn affects the server performance, especially if it
has to handle a large population of tags. After analysing the weaknesses of
this protocol, we propose a revised protocol to eliminate these attacks with
comparable computational requirements.

The rest of this paper is organised as follows: in Section [l we present the
Song protocol process in detail. In Section [the weaknesses of the Song protocol
are illustrated. In Section M, the revised protocol is presented. In Section [l we
analyse the proposed protocols with respect to informal analysis. In Section [6]
we conclude and summarise the paper’s contribution.

2 Review of the Song Protocol

This section reviews the Song protocol as shown in the original protocol [7].
Notation used in this paper are defined as follows:

h: A hash function, h : {0, 1}* — {0, 1}!

fi: A keyed hash function, fy, : {0, 1}*x {0, 1} {0, 1}! (a MAC algorithm)
N: The number of tags

I: The bit-length of a tag identifier

— T;: The i** tag (1 <i < N)

104 S. Abughazalah, K. Markantonakis, and K. Mayes

— D;: The detailed information associated with tag T;

— s;: A string of 1 bits assigned to i*" tag T;

— t;: T’s identifier of 1 bits, which equals h(s;)

— Xpew: The new (refreshed) value of x

— Xo14: The most recent value of x

— r: A random string of 1 bits

— e: Error message

— @: XOR operator

— |I: Concatenation operator

— <—: Substitution operator

— x > k: Right circular shift operator, which rotates all bits of x to the right
by k bits, as if the left and right ends of x were joined.

— x < k: Left circular shift operator, which rotates all bits of x to the left by
k bits, as if the left and right ends of x were joined.

— €pg: The random choice operator, which randomly selects an element from a
finite set using a uniform probability distribution

The Song protocol consists of two processes: the initialisation process, and the
authentication process, which are summerised below:

2.1 Initialisation Process

This stage only occurs during manufacturing when the manufacturer assigns
the initial values in the server and tag. The initialisation process is summarised
below:

— An initiator (e.g. the tag manufacturer) assigns a string s; of 1 bits to each
tag T;, computes t; = h(s;), and stores t; in the tag, where 1 should be
large enough so that an exhaustive search to find the l-bit values t; and s;
is computationally infeasible.

— The initiator stores the entries [(Si, ti)new, (Si, ti)oid, Di] for every tag that
it manages in the server. D; is for the tag information (e.g., price, date, etc.).
Initially (s;, ti)new is assigned the initial values of s; and t;, and (s;, t;)oia is
set to null.

2.2 Authentication Process

The authentication process is shown in Table [Tl as presented in the new version
of the protocol [7]:

Table 1. The authentication process of the Song protocol

1. Reader — Tag: r1 € {0, 1}

2. Tag — Reader: 12 €x {0, 1}', M1 = t; ® r2 and M2 = f;; (r1 || r2)
3. Reader — Server: r1, M1 = t; @ r2 and M2 = f;; (r1 || r2)

4. Server— Reader: M3 = s; & fy; (r2 || r1) and D;

5. Reader — Tag: M3 = s; @ fi; (r2 || r1)

A Vulnerability in the Song Authentication Protocol 105

1. Reader: A reader generates a random bit-string r1 €g {0, 1}' and sends it
to the tag T;.

2. Tag: The tag T; generates a random bit-string 12 € {0, 1}! as a temporary
secret for the session, and computes M1 = t; ® r2 and M2 = f;;(r1 || r2),
then sends M1 and M2 to the reader.

. Reader: The reader transmits M1, M2 and rl to the server.

4. Server:

(a) The server searches its database using M1, M2 and rl as follows.
i. It chooses t; from amongst the values t;(new) O t;(o1a) stored in the
database.

ii. It computes M'2 =f;,;(rl || (M1 & t;)).

iii. If M'2 = M2, then it has identified and authenticated T;. It then
goes to step (b). Otherwise, it returns to step (i). If no match is
found, the server sends € to the reader and stops the session.

(b) The server computes M3 = ;@ f; (r2 || rl) and sends it with D; to the
reader.
(¢) The server updates:

w

Si(old) — Sz(new)

i(new) (Sz < 1/4) (tz > 1/4) drl dr2
ti(olal — by (new)

ti(new) — h(si(new))

w0

(31

. Reader: The reader forwards M3 to the tag T;.

6. Tag: The tag T; computes s; = M3 & f;;(r2 || r1) and checks that h(s;) =
t;. If the check fails, the tag keeps the current value of t; unchanged. If the
check succeeds, the tag has authenticated the server, and sets:

t; < h((si < 1/4) & (t; > 1/4) & 1l & r2)

3 Weaknesses of the Song Protocol

This section shows that the Song protocol suffers from DoS attack and database
overloading.

3.1 DoS Attack

The Song protocol aims to meet some of the main security and privacy features.
Resistance to DoS attack is one of the main security features. This is achieved
by keeping the old values of the tag’s secret (soq) and hashed secret (toq) in
the server database just once; they are then renewed continuously once authen-
tication is achieved. However, the Song protocol does not provide resistance to
DoS attacks. Without knowing the secret value (t;) which is stored in the tag,
an adversary can easily cause synchronisation failure by twice intercepting the
communication between the reader and the tag.

106 S. Abughazalah, K. Markantonakis, and K. Mayes

The protocol will fail if the attacker intercepts the communication in this
way; if the server’s message (M3) is intercepted, tampered or blocked up to
twice, the server database will have no matching data to complete the mutual
authentication, causing the DoS attack. For example, in the first access of the tag,
the server’s values (So1d, tora) are set to null, while (Sew, tnew) values are set to
specific values where (t,,eq,) is equal to the tag’s value (t;). If the authentication
succeeds, then (tnew) and (t;) will be updated to the same value and (soid, toid)
will take the previous values of (Spew, tnew). However, if the attacker blocks M3
from reaching the tag, then the server will update the server’s data and the
tag will be unable to update (t;). In this situation, the value (t; in the tag will
have to match the value (t,;q) in the database and mutual authentication can
still be achieved. Now we suppose that the attacker blocks M3 for the second
time; then the tag will also not update (t;), while at that moment, (o4, toiq) in
the database have been renewed. As a result, the tag’s data will not match the
server’s data, causing an authentication failure.

3.2 Database Overloading

The Song protocol claims that the server should be able to handle a large tag
population without exhausting the server in identifying the tags. However, as
shown in [7], the server needs to perform [(k+2)*F]| computations to authenticate
the connected tag, where F is a relatively computationally complex function
(such as a MAC or hash function) and k is an integer satisfying 1 < k < 2n,
where n is the number of tags. Hence, in every tag access, the server database
has to run [k*F]| computations on all its records to find the matching record,
thereby exhausting the server in the searching process and affecting operational
performance.

4 Revised Protocol

We propose an improvement to the Song protocol by eliminating the two issues
discussed in Section Bl In the Song protocol, if the authentication is achieved,
the server’s data will be updated even if the matching record is found in (s,4)
and (ter¢). In the revised protocol, we propose that the updating process should
only take place when the authentication is achieved and the matching record is
found in (Spew) and (tnew); otherwise, the data remains the same. The solution
is based on Yeh et al.’s protocol [8] which was designed to avoid a DoS attack
found in Chien et al.’s protocol [9].

In order to reduce the number of computations required by the server to
authenticate the tag, we use the notion of indexing. This requires the server
and tag to store another value to serve as an index. The server stores a new
index (Inew) and an old index (Iyq), where the tag stores an index value (I;).
The value of the index is assigned during manufacturing. In addition, the tag
stores a flag value, which is kept as either 0 or 1 to show whether the tag has
been authenticated by the server or not. Moreover, for calculating the index the

A Vulnerability in the Song Authentication Protocol 107

server and tag need a new value (k) stored by both parties. We assume all the
operations in the tag are atomic i.e. either all of the commands or none are
processed.

In the revised protocol, we use the same notation as presented in the Song
protocol. The initialisation and authentication processes are as follows:

4.1 Initialsation Process

This stage only occurs during manufacturing when the manufacturer assigns
the initial values in the server and tag. The initialisation process is summarised
below:

— The server assigns random values of L bits for each tag it manages to (Snew,
tnews Knews Inew) 0 the server and (t;, k;, I;) in the tag.

— Initially, (Sotd, toid, Kotd, lord) in the server is set to null.

— The Flag value in the tag is set to zero.

4.2 Authentication Process
The authentication process is summarised below:

— Reader: A reader generates a random bit-string r1 €g {0, 1}! and sends it
to the tag T;.

— Tag: A tag T; generates a random bit-string 12 €5 {0, 1}! as a temporary
secret for the session, and computes M1 = t; ® r2 and M2 = f;(x1 || r2).
The tag then checks the value of the Flag:

1. If Flag=0, which means the tag was authenticated successfully, the tag
will use the new updated index which is equal to the server’s value (I,ex),
and sends I;, M1 and M2 to the reader. Finally, the tag sets Flag=1, and
recomputes the value of an index I;= h(k; @ r2).

2. If Flag=1, which means the tag has not been authenticated, the tag will
use the value of the index computed in the former transaction (after
setting Flag=1) which is equal to the server’s value (I54), then the tag
transfers I;, M1, and M2 to the reader. Finally, the tag sets Flag=1, and
recomputes the value of an index I;= h(k; @ r2).

— Reader: The reader transmits M1, M2, I, and rl to the server.
— Server:

1. The server searches the received value of (I;) in (Iey) and (Iniq) to find
a match and retrieves the attached tag data. If there is a match in L,eq,
it retrieves (Spew, tnew, Knew) associated to (L,eq). Then the server sets
12 < M1 ® typew, and computes M'2 =f;,,0,, (rl || r2) to authenticate the
tag. Then it marks x=new.

2. If there is a match in I,;4, the server retrieves the associated data (sud,
totd, Koid), and computes M1 @ t,4 to obtain r2. The server computes
M'2 =f; 514 (r1 || r2). If M'2 = M2, then it has identified and authenticated
T,;. Then it marks x—old.

108 S. Abughazalah, K. Markantonakis, and K. Mayes

3. The server computes M3 = s, @ f;,(r2 || r1) and sends it with D; to the
reader.
4. In case the index is found in I,,.,,, the server sets:

Sold <~ Snew

Snew (Snew K 1/4) & (tnew > 1/4) & rl & 12
toid < tnew

tnew h(snew)

kold — knew

Knew h(tnew)

Loia¢h(koa @ 12)

Inew%h(knew S5 1‘2)

Otherwise, if I; is found in I,;4, the server keeps the data the same with-
out any update except for:

Lota+h(koia & 12)
Liew<h(kpew @ 12)

— Reader: The reader forwards M3 to the tag T).

— Tag: The tag T; computes s; = M3 @ £;;(r2 || r1) and checks that h(s;) = t,.
If the check fails, the tag keeps the current values unchanged. If the check
succeeds, the tag has authenticated the server, and sets:

t; < h((si < 1/4) & (t; > 1/4) & 1l & r2)
Flag < 0

5 Analysis

Due to the fact that the server updates its data after each successful authen-
tication, the Song protocol cannot achieve resistance to a DoS attack. In this
section, we analyse our revised protocol and show that it can provide immunity
to several attacks including the DoS attack and at the same time improve the
server performance. Although, the tag’s storage, communication and computa-
tion costs will be higher than the Song protocol, but the revised protocol appears
to meet stronger privacy and security requirements.

— DoS attack: We tend to use the old and new values of (Spew, Soids tnews told)
, as pointed in the Song protocol, to avoid DoS attack caused by M3 being
intercepted. Moreover, in the proposed improved protocol, the server can
still use (Soid, toid, lota) to identify a tag, even when the attacker blocks the
message (M3) more than once, and thus can reach synchronisation.

A Vulnerability in the Song Authentication Protocol 109

Table 2. Computational requirements

The Song protocol [7]| Our improved protocol Section 4
Sending MAC MAC
Tag Authenticating |[MAC + H MAC+ H
Updating H 3H
Total 2MAC + 2H 2MAC + 4H
If x=new If x=old
Sending MAC MAC MAC
Server Authenticating |[k*MAC MAC MAC
Updating H 4H 2H
Total (k+1)*MAC + H |2MAC +4H 2MAC 12H

n : The number of tags

k: An integer satisfying 1 < k < 2n

x: The value kept as either new or old to show whether the tag uses the old or new values of
the tag’s record

H: Hash function

MAC: Message authentication code

— Database overloading: Table 2 demonstrates that the Song protocol needs to
perform MAC functions on all the stored hashed secrets (tpnew, tord) until it
finds the matched tag’s record and authenticates the connected tag; in the
improved protocol, on the other hand, the server can retrieve the associated
tag’s record directly according to the received value of index (I;) and apply
the MAC function only on the retrieved data.

— Tag location tracking: To prevent tracking the location of the tag’s holder,
the server’s and tag’s responses should be anonymous. In the proposed pro-
tocol, the server and tag update their data after each successful communi-
cation, so the exchanged values are changing continuously. Moreover, in the
case the authentication failed, the attacker will still not be able to track the
location.

— Tag impersonation attack: To impersonate the tag, the attacker must be
able to compute a valid response (I;, M1, M2) to a server query. However,
it is hard to compute such responses without the knowledge of (t;, k;, r2).
Moreover, the current values of M1, M2 and I; are independent from the
values sent previously due to the existence of fresh random numbers.

— Replay attack: The proposed protocol resists replay attack because it utilises
challenge-response scheme. In each session the protocol uses a new pair of
fresh random numbers (rl, r2), thus the messages cannot be reused in other
sessions.

— Server impersonation attack: To impersonate the server, the attacker must
be able to compute a valid response (M3). However, it is hard to compute
such responses without knowledge of s;, ID; and r2.

— Traceability: All the messages transmitted by the tag are not static, they
change continuously due to the existence of random numbers and the stored
data are updated after each successful authentication. In addition, after the
unsuccessful authentication, the tag’s data will not change, however, M1
and M2 values still will be different in every session due to the existence of

110 S. Abughazalah, K. Markantonakis, and K. Mayes

random numbers (r2 and r2). Furthermore, the index of the tag is changed
in both cases (successful authentication and unsuccessful authentication).

6 Conclusion

This paper showed that the Song protocol has a security problem and a per-
formance issue, specifically a DoS attack and database overloading. To improve
the Song protocol, we presented a revised protocol which can prevent the desyn-
chronisation issues without violating any other security properties. Moreover,
the newly proposed protocol enhances the overall performance, since it is based
on using index values for retrieving the data associated to the connected tags.

References

1. Weis, S.: Security and privacy in Radio Frequency Identification devices. PhD thesis,
Massachusetts Institute of Technology (2003)

2. Avoine, G.: Cryptography in Radio Frequency Identification and fair exchange pro-
tocols. PhD thesis, Ecole Polytechnique Federale de Lausanne, EPFL (2005)

3. Habibi, M., Gardeshi, M., Alaghband, M.: Practical attacks on a RFID authenti-
cation protocol conforming to EPC Class 1 Generation 2 standard. arXiv preprint
arXiv:1102.0763 (2011)

4. Song, B., Mitchell, C.: RFID authentication protocol for low-cost tags. In: Proceed-
ings of the First ACM Conference on Wireless Network Security, pp. 140-147. ACM
(2008)

5. Cai, S., Li, Y., Li, T., Deng, R.: Attacks and improvements to an RIFD mutual
authentication protocol and its extensions. In: Proceedings of the Second ACM
Conference on Wireless Network Security, pp. 51-58. ACM (2009)

6. Rizomiliotis, P., Rekleitis, E., Gritzalis, S.: Security analysis of the Song-Mitchell au-
thentication protocol for low-cost RFID tags. IEEE Communications Letters 13(4),
274-276 (2009)

7. Song, B.: RFID Authentication Protocols using Symmetric Cryptography. PhD the-
sis, Royal Holloway, University of London (2009)

8. Yeh, T., Wang, Y., Kuo, T., Wang, S.: Securing RFID systems conforming to EPC
Class 1 Generation 2 Standard. Expert Systems with Applications 37(12), 7678-7683
(2010)

9. Chien, H., Chen, C.: Mutual authentication protocol for RFID conforming to EPC
Class 1 Generation 2 Standards. Computer Standards Interfaces 29(2), 254-259
(2007)

	A Vulnerability in the Song Authentication
Protocol for Low-Cost RFID Tags
	1 Introduction
	2 Review of the Song Protocol
	2.1 Initialisation Process
	2.2 Authentication Process

	3 Weaknesses of the Song Protocol
	3.1 DoS Attack
	3.2 Database Overloading

	4 Revised Protocol
	4.1 Initialsation Process
	4.2 Authentication Process

	5 Analysis
	6 Conclusion
	References

