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Abstract. In this paper, we first identify the need to be equipped with
the capability to perform raw volatile memory data acquisition from live
smartphones. We then investigate and discuss the potential of differ-
ent approaches to achieve this task on Symbian smartphones. Based on
our initial analysis, we propose a simple, flexible and portable approach
which can have a full-coverage view of the memory space, to acquire
the raw volatile memory data from commercial Symbian smartphones.
We develop the tool to conduct the proof-of-concept experiments on the
phones, and are able to acquire the volatile memory data successfully. A
discussion on the problems we have encountered, the solutions we have
proposed and the observations we have made in this research is provided.
With the acquired data, we conduct an analysis on the memory images
of the identified memory regions of interest, and propose a methodology
for the purpose of in-depth malware security and forensics analysis.

Keywords: Symbian, mobile devices, smartphones, volatile memory data
acquisition, malware security and forensics analysis.

1 Introduction

Mobile phones are becoming increasingly prevalent and sophisticated. They are
continuously evolving into “smarter” devices (i.e. smartphones with higher pro-
cessing power and enhanced features) to cater to the needs of users to stay
connected anytime, anywhere, with information readily available. Due to the
connection and processing capability of smartphones, illegal access to a wealth
of information (for example, contacts list, emails, messages, downloaded confi-
dential documents from email attachments) belonging to the users can be ac-
quired from their smartphones with the appropriate technologies (for example,
information theft malwares [1], or mobile forensics tools). Therefore, the capa-
bilities to perform in-depth security analysis to prevent and detect attacks, and
forensics investigation to acquire evidence from these devices are essential.
Current mobile phone forensics tools are restricted to the acquisition and
analysis of active files and data (i.e. logical data acquisition) from the Sub-
scriber Identity Module (SIM), memory cards and the internal flash memory
[2-]8]. There exists research work focusing on the low-level physical accquisition
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of raw data from the mobile phones’ non-volatile memories |[9-12], to support in-
depth forensics investigations and evidence analysis, but did not take the volatile
memories into consideration.

On the other hand, to support smartphones volatile application data acqui-
sition, loaded malware driver detection, malware behaviour and analysis, it is
necessary to have the capability to perform raw volatile memory data acquisition
from mobile devices. The ability to acquire the raw volatile memory data from a
live device provides security analysts and forensics investigators with a complete
picture and insight of the operational states of the live device. However, current
anti-virus and anti-malware tools [, [13-16] for smartphones are limited to the
scanning of programs and files in the non-volatile storage space to carry out
signature based virus detection.

In this paper, we propose a method to acquire raw volatile memory data from
live Symbian smartphones and the methodology to analyse the acquired data to
facilitate security analysis and forensics investigations. We develop the tools to
conduct the proof-of-concept experiments on commercial Symbian smartphones.
There are two main reasons for the choice on the Symbian OS in this research:

1. Even as Android and iOS is rising fast to become the most popular mobile
OSes, with Android holding a market share of 52.5%, according to a mobile
OS market share survey by Gartner |17, 18], Symbian still holds 16.9% of
the market share and is the second most widely used OS in mobile phones.
In addition, based on the statistics provided by StatCounter [19], Symbian
is observed to be the top smartphones used for the purpose of mobile web
browsing.

2. Nonetheless, little has been done on the research of Symbian smartphones
live memory security and forensics analysis yet. The reason is that most mod-
ern mobile OSes (including Symbian), like generic computer system OSes,
use a layer of abstraction such as the virtual memory instead of operating
directly on the physical memory. This abstraction layer provides the ability
to sandbox each process into its own memory space for security protection.
Therefore, with this memory protection in place, a raw volatile memory ac-
quisition tool would have to reside in the kernel space to gain access to the
entire memory space [20, [21]. However, in Android, a process memory is
exposed to the user-side through the procfs filesystem and this mechanism
can be utilized to achieve the live volatile memory acquisition from smart-
phones running Android OS |22]. On the other hand, Symbian OS does not
provide any such mechanism to be leveraged on. As such, it is necessary to
investigate and devise a method for conducting a live volatile memory data
acquisition pertaining to Symbian smartphones.

The rest of the paper is organised as follow. In Section[2] we present an overview
of the existing work on mobile phone forensics research. In Section[3] we present the
historical account of mobile forensics research specific to the Symbian
smartphones. In Sectionld] we present our investigation on the potential approaches
to achieve araw volatile memory data acquisition from commercial Symbian smart-
phones. We describe the design and the implementation of our live Symbian volatile
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memory acquisition tool, the problems we encountered and the solutions we de-
vised, in Section[Bl The experiments are described in Section Bl We also proposed
the analysis methodology in Section[Bl Conclusions follow in Section[7l

2 Mobile Phone Forensics Research

In this section, we present an overview of the existing mobile forensics work in
general.

In an early work in 2003, Willassen [2] researched on the forensic investigation
of GSM phones. The author presented the types of data of forensic relevance,
which can exist on the phones, the SIM and the core network, and emphasized
the need for more sound mobile forensics procedures and tools.

In 2006, Willassen [9] proposed extracting the physical image of the mobile
phone’s internal flash memory by desoldering the memory chip and reading it
from a device programmer. However, this method is too invasive and brings
with it a high risk of chip damage if the extraction is not performed with high
precision and care. Another proposed method was to read the memory through
the boundary-scan (JTAG) test pins. The extracted memory was examined to
detect the presence of deleted file contents. However, the test pins are usually
not prominently shown and labelled. In this case, attempting to identify them
may be very challenging and time consuming. There is also the possibility that
these pins on the commercial smartphones are not accessible to users.

In the same year (2006), Casadei et al. [3] presented their SIMbrush tool de-
veloped for both the Linux and Windows platforms. The tool relied on the PCSC
library and supported the acquisition of the entire file system, including the non
standard files, on the SIM. However, files with restricted read access conditions
could not be extracted.

In 2007, Kim et al. [4] presented a tool to acquire the data from a Korea
CDMA mobile phone’s internal flash memory. The tool communicated with the
phone through the RS-232C serial interface and was able to acquire the existing
files on the phone using the underlying Qualcomm Mobile Station Modem diag-
nostic mode protocol.

In the same year (2007), Al-Zarouni [10] studied the mobile phone flasher de-
vices and considered their applicability in mobile phone forensics. Flasher devices
were originally used to perform SIM unlocking and firmware flashing. Therefore,
they offered access to the phone’s flash memory. As they did not need installa-
tion on the phone, they were deemed to be forensically sound. However, their
operations were not well-documented and since they were designed to write to
the memory, the effect of evidence altering while performing a read was also un-
known. Their reading capability and memory access range also varied for phones
of different brands and models.

In 2008, Jansen et al. [7] proposed a phone manager protocol filtering tech-
nique by intercepting the data between the phone and the phone manager. The
objective was to address the latency in the coverage of newly available phone
models by existing forensic tools. The authors also proposed an identity module
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programming technique, to populate the phone’s SIM with reference test data,
so as to provide a baseline for the validation of SIM forensic tools.

In 2008, Zdziarski [23] published a book on iPhone forensics which contains
information on how to conduct forensic analysis of iPhone, iPhone 3G, and iPod
Touch. The book covers information on the type of data that can be stored on
an iPhone, the procedure to build a custom recovery toolkit, the recovery of the
raw user disk partition, and the application of data carving techniques to recover
deleted voicemail, images, emails, etc. from the phone.

In 2009, Hoog [8] presented the existing forensic evidence acquisition tools for
Android phones. The Android Debug Bridge (ADB) enabled interaction with
the phone over the USB connection. Therefore, active files on the phone can be
retrieved through the “adb pull” command. Other tools such as the Nandroid
backup and Paraben Device Seizure also supported the extraction of files resid-
ing on the phone.

In 2010, Thing et al. [22] proposed a method to acquire live volatile memory
data from Android smartphones. In Android, the process memory is exposed
to the user-side through the procfs filesystem. The authors proposed utilizing
the process tracing (ptrace) system call to suspend the target process, acquire
a snapshot of its memory, and then resume its execution. A study and analysis
of the dynamic characteristics of volatile data in the process memory was then
carried out.

In 2011, Hoog and Strzempka |24] published a book on iPhone and iOS foren-
sics. The book covers information on the techniques to acquire evidentiary data
from the iPhone, iPad and other iOS devices. It also provides practical advise
on the securing of the devices, and the data and applications residing on them.

3 History of Symbian Smartphone Forensics

In 2007, Mokhonoana and Olivier |5] proposed an on-phone forensic tool to ac-
quire the active files from a Symbian OS version 7 phone and store it on the
removable media. Instead of interfacing with the PC connectivity services, the
tool interacts with the operating system to perform a logical copy of the files.
Experiments were conducted on the Sony Ericcson P800 phone. The main limi-
tation of the tool is that files in use could not be copied (e.g. call logs, contacts).

In 2008, Distefano et al. [6] proposed a mobile phone internal acquisition tech-
nique on the Symbian OS version 8 phones. The mobile phone data is acquired
using a tool residing on the removable media, instead of the PC/mobile phone
USB connection based approach. The tool utilizes the Symbian S60 File Server
API in the read-only mode. The authors carried out experiments comparing the
tool with Paraben Device Seizure (USB connection to phone) [25] and P3nfs
(Remote access through Bluetooth) [26]. The tool took a longer time to perform
the acquisition but managed to acquire more data compared to the P3nfs. When
compared with the Paraben Device Seizure, lesser data was acquired. However,
the authors observed that the larger data size from Paraben was due to the
additional information from its acquired data management.
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In 2012, Thing and Tan [11] proposed a method to acquire privacy-protected
data from Symbian OS version 9.3 and version 9.4 phones. The authors bypass
the Symbian platform security (introduced from Symbian OS version 9.1) to ob-
tain an unrestricted read access to the entire filesystem on the phone. Based on
the obtained privilege, the authors retrieve the files relevant to SMS messages
from the Nokia E72 and N97 phones (running Symbian OS version 9.3 and ver-
sion 9.4, respectively). Reverse-engineering work is then carried out to derive the
various SMS storage formats on the files and to recover both active and deleted
SMSes previously stored on the phones’ flash memory.

In the same year (2012), Thing and Chua [12] proposed a low-level linear
bitwise data acquisition technique for the Symbian OS version 9.4 phones to
support evidentiary file carving. A study and analysis of how files are stored and
fragmented on the Symbian smartphone flash memory was also carried out.

However, there is no existing work on the live volatile memory data acquisi-
tion pertaining to Symbian smartphones. To the best of our knowledge, this is
the first work that aims to investigate and devise a method for conducting a live
volatile memory data acquisition from Symbian smartphones.

4 Investigation of Potential Live Symbian Volatile
Memory Data Acquisition Approaches

In Symbian, debugging APIs are provided for its programmers. They are typ-
ically used during Symbian application development to debug and investigate
program efficiency problems. We investigate the potential usefulness of these
APIs in live raw volatile memory data acquisition from the commercial Symbian
smartphones.

4.1 Run-Mode Debugging

The run-mode debugging APIs are applicable in accessing the process memory
of a running application. This type of debuggers is target-resident based and
focus primarily in debugging applications and middleware. A process or thread
identifier is required in order to access a relevant target specific memory region.
However, they are restricted in capability and do not have a deep insight in the
kernel-mode software and device drivers. For malwares and rootkits to obtain
privileged functionalities, they must be able to execute in the supervisor mode
and the way to achieve this is through the use of drivers or kernel modules.
Therefore, the acquisition tool must be able to obtain a deep insight into the
kernel space modules. In addition, memory not committed to any process at the
acquisition point in time will not be accessible.

4.2 Stop-Mode Debugging

The stop-mode debugging APIs are able to “freeze” the processes on the device
and acquire a snapshot of its current memory state. However, they are required
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to be hardware-assisted by utilizing (or tapping onto) the JTAG boundary-scan
test pins [9, 127, 28] on the device. This hardware based approach works by
accessing the debug ports used by the embedded device processors. JTAG is
then switched between the extest or debug mode so as to produce an image
dump of the memory. However, the test pins are usually not prominently shown
and labelled. In this case, attempting to identify them is known to be very
challenging and time consuming. On the commercial smartphones, these pins
are commonly removed to prevent access by users.

4.3 Kernel Module

Instead of relying on the existing Symbian drivers or APIs, we can instead write
our own kernel space driver for the purpose of memory acquisition. The driver
can be a logical device driver that utilizes a logical channel to interact with the
user-side application. The driver can then receive specific arguments such as the
address of the memory to acquire, and send the acquired data to the user-side
application to be stored on the non-volatile memory or to be transmitted out
from the phone through a network connection such as 3G or Wifi. Upon receiving
the memory address, we intend to perform direct de-referencing of the address to
obtain the corresponding memory data and pass it back to the user-side calling
application. The idea of the direct de-referencing of the address method is sim-
ple. It also provides a flexible way of accessing the memory on the device. Since
it utilizes the basic de-reference operator, it should theoretically work across
Symbian smartphones with different CPU architectures and/or memory models
since the kernel shields us from the effect of these different implementations.

From the absence of relevant prior art, we observed that the live volatile
memory data acquisition from Symbian smartphones remains a challenging task.
However, we have identified a potential Symbian kernel space driver approach
which could achieve a successful acquisition. In this paper, we propose a method-
ology and discuss the challenges we faced when devising the tool to perform the
live volatile memory data acquisition. We also look into the security analysis and
forensics investigation of Symbian smartphones based on the acquired data and
discuss the observations we have made.

5 The Proposed Acquisition Approach

The live volatile memory data acquisition tool that we have designed, composes
of two parts. It consists of a user-side component and a kernel-side component.
The user-side component is responsible for loading the kernel-side component,
initializing the client side of the logical channel (to support the subsequent com-
munication with the kernel-side component during operation), passing in the ad-
dresses to be de-referenced and storing the returned data onto the non-volatile
memory. The kernel-side component is a logical device driver which is responsi-
ble for setting up the logical channel with the user-side component to support
communication during operation, and to return the acquired data from the de-
referenced address (which is passed in by the user-side component). We named
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Fig. 1. Symbian Multiple Model Memory Map

the kernel-side component the “Live Volatile Memory Data Acquisiton” driver
or “Lamda’”, and referred to the user-side component as the “LamdalLoader”.

Figure [Tl shows the Symbian multiple model memory map [20]. With the mul-
tiple memory model, Symbian has the concept of a local page directory and a
global page directory. The memory region from 0x00000000 to Ox7FFFFFFF is
translated via the local page directory while the memory region from 0x80000000
to OxXFFFFFFFF is translated via the global page directory. The global page di-
rectory memory regions is accessible by any process while the local page directory
memory region is restricted to the current process.

The regions of memory that we are interested in is the global page direc-
tory region. Specifically, we are interested in the memory address region from
0xC9200000 to OxFFEFFFFF (that is, the extra kernel mappings for the 1/O
and RAM loaded device drivers) and from 0xC8000000 to 0xCI1FFFFF (that
is, the kernel data, heap and stacks, which contain the kernel objects for the
loaded drivers).

Even though we have identified the regions of the memory to perform acqui-
sition, we tested our tool by trying to acquire the entire memory region, starting
from the address 0x00000000, from a commercial Nokia N97 smartphone run-
ning Symbian OS version 9.4, S60 5th Edition. Upon execution, the smartphone
returns a KERN-EXEC 3 panic result and causes it to reboot. Referring to
the memory map, we noticed that the address that we sent in is in the region
of unmapped NULL pointer traps. The KERN-EXEC 3 panic is caused by an
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untrapped page fault and since the offending process is a kernel thread, it causes
the smartphone to reboot.

The encountered page fault during this initial execution matches the doc-
umented behaviour that the kernel does not support on-demand paging [20].
However, upon investigation of the memory management unit (MMU) code in
the Symbian product development kit, we realized that demand paging is actu-
ally implemented. This information leads us to believe that the KERN-EXEC 3
panic was not caused solely by a page fault but by other underlying mechanisms.
We refer to the documentation provided by the product development kit which
describes the impacts of demand page on kernel-side code. The document reveals
that demand paging is not implemented for kernel code and data. Therefore, any
page fault experienced in the kernel code and data will result in an unhandled
fault. We decide to modify the tool to handle the page fault gracefully.

In Symbian, the exception handling and trapping mechanism is provided in
the form of the XTRAP/XTRAPD macros (to enable the exception trapping).
The difference between the two macros is that the XTRAPD macro declares the
result variable whereas the XTRAP macro uses a pre-existing variable. They be-
have in a similar way as the user-side TRAP /leave(), but instead, they can catch
hardware exceptions such as those generated by a faulty memory access. In ad-
dition, we utilize the TPhysAddr Epoc::LinearToPhysical(TLinAddr aLinAddr)
function in Lamda to return the physical address corresponding to the virtual
address passed in by the LamdaLoader. We then check the returned value before
de-referencing the virtual address as an additional safety net. If KPhysAddrIn-
valid (defined in kernel/kern priv.h) is returned, it indicates that the specific
virtual address is unmapped. If the returned value is not KPhysAddrInvalid, we
proceed to carry out address de-referencing. It is also important to note that
even when a virtual address is mapped to a valid physical address, there are
instances when the CPU is not permitted to access a page as it does not satisfy
the access policy for the page currently. This could also result in a fault. Hence,
the exception trapping is useful in this scenario even with the valid mapping
check function in place.

6 Experiments and Analysis

In this section, we use our tool to perform the acquisition of the ROM shadow
region (0x80000000 to Ox8FFFFFFF) for verification purpose, and the extra
kernel mapping (I/O, RAM loaded device drivers) region (0xC9200000 to 0xFF-
EFFFFF) and the kernel data, heap and stacks region (0xC8000000 to 0xC91FF-
FFF) of the N97 smartphone’s volatile memory for further analysis.

6.1 ROM Shadow Image

We acquired the ROM shadow images from three different experiments; one from
a N97 smartphone, another from the same smartphone after a hard-reset was
performed, and the third from another N97 smartphone with the same version
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of the ROM flash image. We performed a bitwise comparison and verified that
the acquired memory images are identical and therefore, proved that they in-
deed contain the same version of the ROM image. Next, we analyse the image
to identify an approach to facilitate integrity checks of the drivers provided in
the ROM flash image on the smartphones originating from the manufactors.
Symbian drivers are binary files and should contain certain specific header
information. In Symbian, its E32Image files contain a 12-byte UID (unique iden-
tifier and composes of a set of UID1, UID2 and UID3) data that indicate the file
type and identify the particular file object. A 4-byte UID1 value of 0x1000007A
indicates that the file is of an executable type. Therefore, a logical driver has a
UID1 value of 0x1000007A as it is a DLL executable file. In addition, it has a
4-byte UID2 value of 0x100000AF to indicate that it is a logical device driver
(LDD). The 4-byte UID3 value is used to identify a particular object (for exam-
ple, a particular executable file). As the data is stored in little-endian format,
the data pattern for searching and extracting the device driver binaries from the
ROM memory image is (79 00 00 10 AF 00 00 10). On further analysis, we also
discovered that the binary header structure of the detected driver within this
memory image is that of the TRomImageHeader structure, as shown in Fig. 2l

mem.img - mem.img -~ mem.img
offset 00 01 62 03 04 05 06 07 08 09 OA OB GC 0D OE OF 0123456789ABCDEF

DODE73616 |9C 46 OA 80 44 3B OA 80 68 3B OA 80 00 00 00 00 |.F..D;..h;......
O0OE73632 |00 00 00 00 00 00 00 OO OO 00 00 00 00 00 00 00 |.....uvuienunns
000573648 (00 00 0O OO OO0 OO OO OO OO 00 00 00 01 00 00 00 |....vvvuieennnns
00OE73664 |00 00 00 00 OO0 00 OO0 OO 00 00 00 00 00 00 01 00 |.....uvuienunns
00OE73680 88 EF 04 80 FF FF FF FF FF FF FF FF FF FF FF FF ... ..o ool as
000673696
0OOE73712
00RE73728
00RE73744
0OOE737E60
000673776
00OE73792
000573808 00 0O 00 OO0 00 00 1IF E3 04 CO SF ES|  .......c.o..s
000673824 |1C FF 2F E1 00 00 OO0 QO 88 459 OA 80 38 40 2D E9 |../...... I..8@-.
000673840 |20 40 SF ES 20 50 9F ES 05 00 54 El1 38 80 BD 08| @.. P....T.8...
00OE73856 (00 00 94 ES 30 FF 2F E1 04 40 84 E2 05 00 54 E1 |....0./..@....T.
000573872 |FA FF FF 1A 38 80 BD ES 00 00 00 00 00 Q0 00 00 |....B...........
0DDE73888 00 00 AD E3 1E FF 2F E1 10 40 2D ES 73 00 Q0 EB|...... So.@- 5.0,
Q0O673904 |FO 10 SF ES 00 10 80 ES 00 10 AD E2 78 10 B8O E5|............ X...
000673920 |24 10 50 ES 05 10 81 E3 24 10 80 ES 10 80 BD E8 |$....... Fooiinn
00DE73936 |10 40 2D E9 80 00 AQ E3 56 00 00 EB 00 00 50 E3|.@-..... Voo, P.
00673952 00 00 00 OA EF FF FF EB 00 40 BO E1 05 00 00 1A |......... @.....
0DOE73968 B4 00 SF ES 90 10 AD E3 4C 00 00 EB 02 10 AD E3|........ Levannn.

Fig. 2. TRomImageHeader

6.2 Kernel Data, Heap, Stacks

In this region of the memory, we are able to detect the presence of the loaded
executables and libraries as their paths are clearly shown in this memory re-
gion. Therefore, known malware executables, loaded dynamic libraries and driver
names can be easily detected by performing a simple search. As shown in
Fig. Bl we observed that the path for the loaded sisadriver is at offset 0x855890.
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mem.img - mem.img
Offset 00 Ol 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF 0123456789ABCDEF

00855840 |00 00 00 OO OO OO0 00 00 OO0 OO0 00 00 00 00 OO OO|......oevevaann
00855856 |00 00 00 OO OO0 OO0 02 00 00 OO0 00 00 00 00 OO OO|......vevevauann
0OB55872 |00 00 00 00 00 Q0 00 00 00 00 00 00 28 00 00 OO |, .vivevass (...
00855888 |19 00 00 20 15 00 00 Q0 PP © P
0e8s5204

00855920 00 00 OO 20 00 00 OO0 OD OO OO 30 OD 00 00 0O
00855936 |53 74 61 72 74 65 72 53 65 72 75 65 72 00 00 0O
00855952 |00 00 00 00 28 00 00 00 0D 00 00 30 6D 00 00 00
00855968 |53 74 61 72 74 65 72 53 65 72 75 65 72 00 00 0O
00855984 |00 00 00 OO0 OO OO0 00 00 OO OO0 00 00 40 00 OO QO
00856000 |3C C1 08 80 00 00 00 00 @1 OO OO 00 FB8 CB 13 C8
00856016 |05 00 00 OO0 OO OO 00 OO0 OO OO0 E4 07 00 00 00 0O
00256032 |00 00 00 00 00 00 00 00 EB OF OD C8 ES8 OF oD C8B
00856048 |00 00 00 OO OO OO0 00 OO0 OO0 OO0 00 00 38 00 OO 0O|..
00856064 BE 75 1F 10 BS 4B 20 10 00 00 00 00 00 0O 0O 0O .
OOBSE6080 |00 00 00 40 00 00 00 00 20 00 00 40 04 2C 27 10|..
00856096 |01 00 00 OO0 18 DE 18 C8 00 00 00 00 2C 10 OD C8
00856112 |2C 10 0D C8 18 00 00 0O OB 00 00 30 GB 00 00 00
00856128 |72 61 6E 64 73 76 72 2E 65 78 65 00 30 00 00 0O
00856144 |30 CE 08 80 00 00 00 00 O3 00 00 00 OB 0O OO QO
QOBS6160 |02 00 00 00 02 00 00 00 28 3E 1D C8 78 2F 1D C8B
00856176 |02 00 00 OO0 04 00 00 OO0 OO OO0 00 00 18 00 OO QO
00856192 |05 00 00 20 05 00 00 00 24 48 45 41 50 00 00 00 |...

Fig. 3. LDD Path in Kernel Data

We also found the path of the Lamdal.oader at offset 0x1903456, the path to
AknIconSrv (which is a system application loaded from the ROM) at 0x1920464
and the path of the nokiaiscdriver at 0x856592.

6.3 Extra Kernel Mappings

The extra kernel mappings region is the memory region where the RAM loaded
drivers are residing in. Therefore, it would be a very important region of in-
terest for conducting malware security analysis and forensics investigations. We
designed an experiment to ensure that no other RAM loaded driver is present.
After which, we load an additional driver other than Lamda and acquire this
memory region. Therefore, we expect that the resultant memory image would
contain these two drivers only. We use the similar technique in the ROM memory
image analysis to search for presence of loaded drivers based on the UID string
pattern (79 00 00 10 AF 00 00 10). Consistent with our expectation, only the
two drivers were detected to be present.

We observed that the RAM loaded drivers have the E32ImageHeader (Fig. M)
rather than the TRomImageHeader header structure found in the ROM drivers.
The difference is due to the way these two types of drivers were compiled dif-
ferently in Symbian. Unlike the previous case of ROM drivers integrity check,
where simple matching can be performed, the actual extraction of the RAM
drivers has to be conducted to facilitate further security and forensics analysis.
Therefore, to do so, we have to first determine the size of the driver.

Our first attempt is to use the TUint32 iUncompressedSize field in the
E32ImageHeaderComp. However, this field could not be utilized as the loaded
driver found in the RAM is in a compressed form and the size is (expectedly) dif-
ferent from its provided uncompressed driver size. We attempted to calculate the
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mem.img
offset 00 01 02 03 04 05 D6 07 08 09 0OA OB OC OD QE OF 0123455789ABCDEF
124788928 |8D 00 00 00 Ol OO0 OO OO OO OD 00 00 BE 0D 00 00 |...vuwurn.n. n...
124788944 |07 00 00 00 44 72 69 76 65 72 31 00 00 00 00 00 |....Driverl.....
124788960 |07 00 00 00 44 72 69 76 65 72 31 00 14 DF FF 7F|....Driverl.....
1247885976 01 00 00 OO0 Ol OO OO0 0D 78 00 90 DO F8 00 60 00 |........ b S T
1247885992 OC 00 00 0D 00 OO 00 0D O3 02 03 03 BO 0B 00 00|, ... ennnnnn
124789008 A3 08 00 Q0 AF 17 8F E5|.... P
124789024 |C1 SE 56 70 45 S0 4F 43 ED EC B7 38 00 00 OA 0O | .“VpEPOC...8....
124789040 FC 7A 1F 10 02 00 02 02 40 ES 2B DB 10 95 E1 00 .2...... @.+.....

124789056 |2B 00 00 12 60 14 00 00 0O OO0 00 B0 00 10 00 00 [H+... . ..ovvivnn.n
124789072 |00 00 10 00 OO 20 OO0 OO OO OO OO OO0 OC QA 00 0O |..... «..iieannn
124789088 |00 80 00 00 OO 0O OO0 00 01 OO 00 QO F8 14 00 00 |....c.cvvuiannn
124789104 |01 00 0D 0O 60 14 00 00 SC 00 00 G0 00 00 00 OO |.... c.ovvuennnn
124789120 |FC 14 00 00 EO 15 00 00 00 OO 00 QO SE @1 O1 20|............ b
124789136 |9C 15 00 00 AF 17 8F ES 00 Q0 00 @0 FF FF OF 00 ... ..cvviiant
124789152 |00 00 OO0 00 OO CO OO0 OO OO OO 00 OO0 00 00 00 OO |....cvevviiannn
124789168 |DE BB SE BE 37 E6 9F 39 97 39 57 BE 1D 6E F3 30|....
124789184 |CC D9 78 SB 7A 6F 33 79 94 S5E 1C 1B CA S5E 83 37 |..x
124789200 |98 29 6C CD 4B 97 5D A5 CB 1D E3 46 B9 5B AD 5B |.)1.
124789216 |45 AD 2D 72 F3 4B CE 63 39 BS 4C CB 4B 2A 83 A3 E.-
124789232 |SD BA DS CC 30 C7 04 2D 33 12 B6 A4 CB 5C B5 D4|]...0..-3....\..
124789248 |CD BS AA 15 CE 2E 75 BS SB 41 Bl 42 A8 DC F7 ES|...... u..AB....
124789264 |F9 6E F7 B6 F4 D5 7B F4 3E AC 1E E9 F3 BE 66 AF|.n....{.>..... f.
124789280 |7E 79 B9 4A 85 6A Bl 54 56 S5E 73 65 33 47 CB 29 |~y.J.].TV"se3G.)

Fig. 4. UID String with E32ImageHeader Signature ‘EPOC’

size by utilizing the fields such as the iCodeSize and iTextSize, but as expected,
these attempts proved futile as these offsets are based on the uncompressed code.

We hypothesize that the compressed driver size information must exist within
the header or within range of the located driver as the Loader Server has to be
able to determine the size of the driver in order to decompress or load it. Through
further analysis on a few examples of RAM loaded drivers in the memory image,
we observe that the 4 bytes preceding the UID value hold the actual file size of
the driver. With that information, we are able to extract the exact RAM loaded
drivers from the memory image programmatically. The extracted compressed
drivers can then be uncompressed and analysed offline.

As mentioned, the extra kernel mappings not only hold the RAM loaded de-
vice drivers but also the I/O information. While searching for the RAM loaded
binary drivers, we came across an entire region of memory which corresponds to
the content of the address map at offset 0x34525696. Offset 0x34525696 points
to the user local data region in the local page directory. Therefore, our initial
hypothesis is that this is the region which the kernel mapped for use as the 1/0
buffer. Since most I/O operations are buffered for performance benefits, this
would imply that when an application requests for an input from the user (for
example, a password), the input will first be buffered before being read by the
application. The reverse is also true such as when an application needs to write
data to a file. Therefore, further work can be done to research on the feasibility
of monitoring the I/O buffer in order to intercept the information.

As such, since the framebuffer might be on the RAM, there is also a possi-
bility that the current active screen of the device can be found in the image.
Furthermore, for processes that have ended, traces of them may still be residing
in the RAM since a deallocation of the memory does not result in the RAM
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being cleared. The reverse may also be true. However, for Symbian, when an
unit of memory is allocated, it is initialized to zero.

Considering these characteristics of memory allocations and deallocations, we
may be able to extract information such as the phone numbers, call logs, SMSes,
recently opened files and even the plaintext version of the encrypted files; since
in order to process an encrypted file, it must first be decrypted into the RAM.

6.4 Further Experiment: Page Tables Error

We have attempted to acquired the entire memory space from 0x00000000 to
OxFFFFFFFF without any unexpected error except during the acquisition of the
page tables region from 0xC4000000 to 0xC8000000. A smooth process of non-
disrupted successful acquisition of the page tables memory region is only possible
from 0xC4000000 to 0xC6024599. When the tool tries to resolve the address at
0xC6024600, the smartphone was rebooted. We attempted the experiment a few
times and the faulting point is consistent. This is an anomoly as we know that we
already have the exception handling mechanism in place and this reboot must
be caused by something else.

Unfortunately, we are unable to trace the system as tracing is disabled on
commercial phones. Therefore, we are unable to identify the exact cause of this
error. Our implemented solution is to skip this unaccessible memory and go to the
next address. We then observed that after this faulting address at 0xC6024600,
there are several interleaved regions of unaccessible memory.

A hypothesis that requires further investigation to verify in our future work
is that this error could be caused by implementation differences on commercial
phones. For example, Nokia, which is the manufacturer of N97, could have chosen
to map a smaller memory range instead of that indicated by Symbian. It is
therefore necessary to investigate where the manufacturer actually output the
debug trace to. Possible investigative approaches could target the JTAG, Serial,
or other ports on the phone.

7 Conclusions

With the prevalence of smartphones and the increasing amount of important
information they are holding and storing, it is necessary to be equipped with
the capability to conduct an in-depth security analysis and forensics investiga-
tions of smartphone information theft malwares. Therefore, in this paper, we
identified the need for a memory acquisition technology or tool to conduct raw
volatile memory acquisition from live Symbian smartphones. We investigated the
different potential approaches to achieve this task and concluded that the ker-
nel space driver approach to perform address de-referencing is the simplest, and
most flexible and portable way to achieve the acquisition of raw volatile memory
data from the live Symbian smartphones. This approach is also able to obtain
a full-coverage view of the entire memory space. We designed and developed
the tool for the purpose of performing the acquisition. Along the way, we also
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solved the problems relating to exception handling and detection of unmapped
addresses by enhancing the tool.

In addition, we identified the relevant memory regions of interest to facili-
tate further in-depth security analysis and forensics investigations of malwares.
Subsequently, we analysed the ROM memory image, the kernel data, heap and
stacks memory image, and the extra kernel mappings (I/O, RAM loaded device
drivers) to identify ways and devise methods to detect and extract useful infor-
mation (for examples, the identification and matching of the ROM drivers, the
identification and extraction of the RAM loaded device drivers, and the identifi-
cation of the pathnames of the loaded executables) to support further analysis.
Some interesting observations with regard to the I/O buffer region and corre-
sponding information in the user local data memory region in the local page
directory, were made.

With this research work, we hope that it provides more insights into the
Symbian operational environment and an understanding of how more in-depth
anti-malware tools and forensics acquisition and analysis tools can be designed
and developed.
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