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Abstract. It is very natural when people compile their programs, they
would require a compiler that gives the best program performance. Even
though today’s compiler have reached the point in which they provide the
users a large number of options, however, because of the unavailability
of program input data and insufficient knowledge of the target architec-
ture; it can still seriously limit the accuracy of compile-time performance
models. Thus, the problem is how to choose the best combination of op-
timization options provided by compiler for a given program or program
section. This gives rise the requirement of an orchestration algorithm
that fast and effective to search for the best optimization combination
for a program.

There have been several algorithms developed, such as Exhaustive
Search (ES); Batch Elimination (BE); Iterative Elimination (IE); Com-
bined Elimination (CE); Optimization Space Exploration (OSE); and
Statistical Selection (SS). Based on those of algorithms, in this paper
we proposed Heuristics Elimination (HE) algorithm, a simple algorithm
that was mostly inspired by OSE with some differences. The HE algo-
rithm uses a heuristic approach by applying genetic algorithm to find the
best combination of compiler’s optimization options. It is unlike OSE,
however, this proposed algorithm starts from a set of some possible com-
binations randomly selected, then they are iteratively refined by some
genetic operators to find one optimal combination (as the solution).

Keywords: Compiler optimization, optimization options, performance,
orchestration algorithm, exhaustive search, batch elimination, iterative
elimination, combined elimination, optimization space exploration, sta-
tistical selection.

1 Introduction

As we all know that optimizations of compiler for modern architectures have
achieved high level of sophistication [11]. Although compiler optimizations have
made a significant improvements in many programs, however, the potential for
the degradation of performance in certain program patterns is still seen by com-
piler developer and many users. The state of the art is allowing the users deal
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with this problem by providing them many compiler options. This compiler
options’s existence indicates that today’s optimizers are not capable of making
optimal choices at compile time. Moreover, the availability of input data of pro-
gram is very minimum, and the lack of knowledge about the target architecture
can limit the accuracy of compile-time performance models.

Therefore, the determination of the best combination of compiler optimizations
for a given programor programsection remains an unattainable compile-time goal.
Today’s compilers have evolved to the situation in which users are provided with a
large number of options. For instance, GCC Compilers include 38 options, roughly
grouped into three optimization levels, O1 through O3 [11]. On the other hand,
compiler optimizations interact in unpredictable manners, as many have observed
[2], [4], [10], [11], [8], [9]. Therefore, it is desired a fast and effective orchestration
algorithm to search for the best optimization combination for a program.

Many automatic performance tuning systems have taken a dynamic, feedback-
directed approach to orchestra compiler optimizations. In this approach, many
different binary code versions generated under different experimental optimiza-
tion combinations are being evaluated. The performance of these versions is
compared using either measured execution times or profile-based estimates. It-
eratively, the orchestration algorithms use this information to decide the next
experimental optimization combinations, until converge criteria are reached [11].

2 Algorithms of Orchestration

In this section, we briefly present an overview of some algorithms that have goal
finding an optimal combination of compiler’s options. To do this, let we first
define the goal of optimization orchestration as follows :

Given a set of compiler optimization options {F1, F2, . . . , Fn}, where n is the
number of optimization. Find the combination that minimizes the execution time
of program efficiently, without using a priori knowledge of the optimization and
their interactions.

2.1 Algorithm of Exhaustive Search

The exhaustive search (ES) approach, which is called the factorial design [2],
[8], would try to evaluate every possible compiler’s options in finding the best.
This approach provides an upper bound of an application’s performance after
optimization orchestration. However, its complexity O(2n), which is prohibitive
if it involves a large number of compiler’s options. As an illustration, for GCC
compiler with 38 options, it would take up to 238 program runs – a million years
is required for a program that runs in two minutes. Considering this fact, this
algorithm will not be evaluated under the full set of options [11]. By the use of
pseudo code, ES can be depicted as follows.

1. Get all 2n combination of n compiler’s options, {F1, F2, . . . , Fn}.
2. For the optimized version compiled under every combination of n compiler’s

options, measure application execution time.
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3. An optimal combination of compiler’s options is one that give the smallest
execution time to the program.

2.2 Algorithm of Batch Elimination

The idea of Batch Elimination (BE) is to identify the optimizations with nega-
tive effects and turn them off at once. BE achieves good program performance,
when the compiler’s options do not interact each other [11], [12], and [13]. The
negative effect of one compiler’s option, Fi can be represented by its RIP (Rel-
ative Improvement Percentage), RIP (Fi), (see equation 1) which is the relative
difference of the execution times of the two versions with and without Fi, that
means T (Fi = 1) and T (Fi = 0) respectively (Fi = 1 means Fi is on, and Fi = 0
means Fi is off).

RIP (Fi) =
T (Fi = 0)− T (Fi = 1)

T (Fi = 1)
× 100% (1)

The baseline of this approach switches on all compiler optimization options.
T (Fi = 1) is the execution time of the baseline TB as shown in equation 2.

TB = T (Fi = 1) = T (F1 = 1, . . . , Fn = 1) (2)

The performance improvement by switching off Fi from the baseline B relative
to the baseline performance can be calculated with equation 3.

RIPB(Fi = 0) =
T (Fi = 0)− TB

TB
× 100% (3)

If RIPB(Fi = 0) < 0, the optimization of Fi has a negative effect. The BE
algorithm eliminates the optimizations with negativesRIP in a batch to generate
the final combination tuned version. The complexity of BE algorithm is O(n).

1. Compile the application under the baseline B = {F1, . . . , Fn}. Execute the
generated code version to obtain the baseline execution time TB.

2. For each optimization Fi, switch it off from B and compile the application.
Execute the generated version to obtain T (Fi = 0), and compute RIPB(Fi =
0) according to equation 3.

3. Disable all optimizations with negative RIP to generate the final tuned
version.

2.3 Algorithm of Iterative Elimination

Iterative Elimination (IE) algorithm was designed to consider the interaction
of optimizations. Unlike BE algorithm, which turns off all optimizations with
negative effects at once, IE algorithm iteratively turns off one optimization with
the most negative effect at a time.
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IE algorithm starts with the baseline that switches all compiler’s optimization
options on [11], and [7]. After computing the RIP s of the optimizations accord-
ing to equation 3, IE switches the one optimization with the most negative effect
off from the baseline. This process repeats with all remaining optimizations, un-
til none of them causes performance degradation.

1. Let B be the combination of compiler optimization options for measuring
the baseline execution time, TB. Let the set S represent the optimization
searching space. Initialize S = {F1, . . . , Fn} and B = {F1 = 1, . . . , Fn = 1}.

2. Compile and execute the application under the baseline setting to obtain the
baseline execution time TB.

3. For each optimization option Fi ∈ S, switch Fi off from the baseline B and
compile the application, execute the generated code version to obtain T (Fi =
0), and compute the RIP of Fi relative to the baseline B, RIPB(Fi = 0),
according to equation 3.

4. Find the optimization Fx with the most negative RIP . Remove Fx from S,
and set Fx to 0 in B.

5. Repeat Steps 2, 3, and 4 until all options in S have non-negative RIP s. B
represent the final option combination.

2.4 Algorithm of Combined Elimination

Combined Elimination (CE) algorithm combines the ideas of the two algorithms
(BE and IE) just described [11], and [7]. It has a similar iterative structure as
IE. In each iteration, however, CE applies the idea of BE : after identifying the
optimization with negative effects (in this iteration), CE tries to eliminate these
optimizations one by one in a greedy fashion.

Since IE considers the interaction of optimizations, it achieves better perfor-
mance of program than BE does. When the interactions have only small effects,
however, BE may perform close to IE in a faster way. Based on the way CE
designed, it takes the advantages of both BE and IE. When the optimizations
interact weakly, CE eliminates the optimizations with negative effects in one
iteration, just like BE. Otherwise, CE eliminates them iteratively, like IE. As a
result, CE achieves both good program performance and fast tuning speed.

1. Let B be the baseline option combination, and let the set S represent the
optimization search space. Initialize S = {F1, . . . , Fn} and B = {F1 =
1, . . . , Fn = 1}.

2. Compile and execute the application under baseline setting to obtain the
baseline execution time TB. Measure the RIPB(Fi = 0) of each optimization
options Fi in S relative to the baseline B.

3. Let X = {X1, . . . , Xl} be the set of optimization options Fi with negative
RIP s. X is stored in increasing order, that is, the first element, X1, has the
most negative RIP . Remove X1 from S, and set X1 to 0 in the baseline B
(in this step, B is updated by setting the optimization option with the most
negative RIP to zero). For i from 2 to l,
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– Measure the RIP of Xi relative to the baseline B.
– If the RIP of Xi is negative, remove Xi from S and set Xi to 0 in B.

4. Repeat Steps 2 and 3 until all options in S have non-negative RIP s. B
represents the final solution.

2.5 Algorithm of Optimization Space Exploration

The basic idea of algorithm pruning is to iteratively find better combination of
optimization options by merging the beneficial ones [9]. In each iteration, a new
test set Ω is constructed by merging the combination of optimization options in
the old test set using union operation. Then, after evaluating the combination
of optimization options in Ω, the size of Ω is reduced to m by dropping the
slowest combinations. The process repeats until the performance increase in the
Ω set of two consecutive iteration become negligible. The specific steps are as
follows :

1. Construct a set, Ω, which consists of the default optimization combination,
and n combinations, each of which assigns a non-default value to a single
optimization. In the experiment [11], the default optimization combination,
O3,turns on all optimizations. The non-default value for each optimization
is off.

2. Measure the application execution time for each optimization combination
in Ω. Keep the m fastest combination in Ω, and remove the rest (i.e., n - m
combinations).

3. Construct a new set of Ω, each element in which is a union of two optimiza-
tion combinations in the old Ω. (The union operation takes non-default
values of the options in both combinations.)

4. Repeats Steps 2 and 3, until no new combinations can be generated or the
increase of the fastest version in Ω becomes negligible. The fastest version
in the final Ω as the final version.

2.6 Algorithm of Statistical Selection

Statistical Selection (SS) algorithm uses a statistical method to identify the
performance effect of the optimization options. The options with positive effects
are turned on, while the one with negative effects are turned off in the final
version, in an iterative fashion. This statistical method takes the interaction of
optimization options into consideration.

The statistical method is based on orthogonal arrays (OA), which have been
proposed as an efficient design of experiments [3], [1]. Formally, an OA is anm×k
matrix of zeros and ones. Each column of the array corresponds to one compiler
option, while each row of the array corresponds to one optimization combination.
SS algorithm uses the OA with strength 2, that is, two arbitrary columns of the
OA contain the patterns 00, 01, 10, 11 equally often. The experiments [11] used
the OA with 38 options and 40 rows, which is constructed based on a Hadamard
matrix taken from [6].
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By a series of program runs, this SS algorithm identifies the options that have
the largest effect on code performance. Then, it switches on/off those options
with a large positive/negative effect. After iteratively applying the above solution
to the options that have not been set, SS algorithm finds an optimal combination
of optimization options. The pseudo code is as follows.

1. Compile the application with each row from orthogonal array A as the com-
bination of compiler optimization options, and execute of the optimized ver-
sion.

2. Compute the relative effect, RE(Fi), of each option using equation 4 and 5,
where E(Fi) is the main effect of Fi, s is one row of A, T (s) is the execution
time of the version under s.

E(Fi) =
(
∑

s∈A:si=1 T (s)−
∑

s∈A:si=0 T (s))
2

m
(4)

RE(Fi) =
E(Fi)

∑k
j=1 E(Fj)

× 100% (5)

3. If the relative effect of an option is greater than a threshold of 10%.
– if the option has a positive improvement, I(Fi) > 0, according to equa-

tion 6, switch the option on,
– else if the option has a negative improvement, switch the option off.

I(Fi) =

∑
s∈A:si=0 T (s)−

∑
s∈A:si=1 T (s)∑

s∈A:si=0 T (s)
(6)

4. Construct a new orthogonal array A by dropping the columns corresponding
to the options selected in the previous step.

5. Repeat all above steps until all of the options are set.

3 Algorithm of Heuristics Elimination

As mentioned in the previous section, Heuristic Elimination (HE) algorithm was
mostly inspired by OSE algorithm; that is why the way it works is similar to OSE
algorithm with some differences. HE algorithm iteratively find the combination
of compiler’s optimization options by applying heuristic approach using genetic
algorithm.

The basic genetic algorithm is very generic and there many aspects that can
be implemented very differently according to the problem [5]. For instance, repre-
sentation of solution or chromosomes, type of encoding, selection strategy, type
of crossover and mutation operators, etc. In practice, genetic algorithms are im-
plemented by having arrays of bits or characters to represent the chromosomes.
How to encode a solution of the problem into a chromosome is a key issue when
using genetic algorithms. The individuals in the populations then go through
a process of simulated evolution. Simple bit manipulation operations allow the
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implementation of crossover, mutation and other operations. Individual for pro-
ducing offspring are chosen using a selection strategy after evaluating the fitness
value of each individual in the selection pool. Each individual in the selection
pool receives a reproduction probability depending on its own fitness value and
the fitness value of all other individuals in the selection pool. This fitness is used
for the actual selection step afterwards. Some of the popular selection schemes
are Roulette Wheel, Tournament, etc.

Crossover and mutation are two basic operators of genetic algorithm, and
the performance of genetic algorithm very much depends on these genetic oper-
ators. Type and implementation of operators depends on encoding and also on
the problem [5]. A new population is formed by selecting the fitter individual
from the parent population and the offspring population (elitism). After several
generations (iterations), the algorithm converges to the best individual, which
hopefully represents an optimal or suboptimal solution to the problem.

Given the set of optimization options {F1, F2, . . . , Fn}, there are exist 2n

possible combinations. It is unlike ES algorithm that evaluate every possible
combination of optimization options, however, HE algorithm only needs to eval-
uate a certain number of combinations, and known as population size (m) of
each generation, for instance {C1, C2, . . . , Cm}. The optimal combination of op-
timization options is obtained by improving their fitness value iteratively with
genetic operators in each generation (or iteration), and the combination with
optimal fitness in the last generation will be final (an optimal) solution.

Chromosome that represents the solution of the problem (i.e., the combination
of compiler’s optimization options) is defined as one has fixed length n, and
the value in each location indicates the participation (or involvement) of the
compiler’s option; which is formally defined in equation 7.

Fi =

{
1 if Fi involved
0 otherwise

(7)

where, Fi = 1 for some i if the i-th compiler optimization option Fi is involved
in the combination; otherwise Fi = 0.

According to equation 7, then chromosome is encoded as a sequence of 0’s or
1’s (binary representation). For instance, 01100011110101 (n = 14) represents
the combination of optimization options that involves respectively options num-
ber 2, 3, 7, 8, 9, and 10 in optimization. Since the binary representation used
to represent the chromosome, the uniform (regular) crossover with either single
point or more can be implemented depends on how many options compiler pro-
vides; while the mutation can be done by simply flipping the value in the single
mutated location. In this case, the fitness function is defined by summing each
RIPB(Fi = 0) (adopted from equation 3) in each Cj , and the formal definition
is shown in equation 8.

Fitness(Cj) =

n∑

i=1

RIPB(Fi|Fi = 0) (8)
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where Cj is one of the combination in population, and n is the number of opti-
mization options {F1, F2, . . . , Fn}.

Equation 3 says that, the optimization option of Fi has a negative effect when
the value of RIPB(Fi = 0) < 0. So that, according to the selection criteria, only
the combinations with higher value of fitness function (i.e., fitter) will be consid-
ered as a parent candidate for next generation (iteration).

Having mentioned at the previous discussion, and by considering the repre-
sentation of chromosome; the uniform (or regular) crossover with either single
point or more would be implemented in the reproducing process of individual for
the next generation. The process of crossover is illustrated in Fig. 1 and Fig. 2.

Fig. 1. The operation of Regular Crossover with two-point

Fig. 2. The operation of Regular Crossover with five-point

It is unlike the crossover operator which is binary, mutation is unary. First,
the mutated location is determined randomly, and the value of that location
is then replaced by only flipping the value from ’0’ to ’1’ and vice versa. The
process of mutation is shown in Fig. 3.
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Fig. 3. The operation of mutation operator

The pseudo code of HE algorithm is as follows.

1. Determine genetics’s parameters, i.e., the size of population, the probability
of crossover, and the probability of mutation respectively m, pc, and pm,

2. Generate the initial population (collection of the combination of optimization
options) randomly, P = {C1, . . . , Cm}, with Ci = {F1 = 0 or 1, . . . , Fn = 0
or 1},

3. Compute the value of fitness of each chromosome Cj using equation 8,
4. Based on fitness values computed in the previous step, and certain selection

method (for instance Roulette wheel selection), select chromosome as parent
candidates,

5. Check the termination condition, if the condition is false, then do step (6);
otherwise STOP.

6. Crossover the parent by considering the value of pc, to yield new chromo-
somes (offspring) as many as the population size for the next generation, go
to steps (3) - (5).

Note that the termination condition could be either the determined number of
generations (iterations) or some determined value of threshold as an indicator
of its convergence.

4 Conclusion

In accordance to the way the algorithm find the best combination, HE algorithm
is only relevant to be compared with ES, BE and OSE algorithms. The following
are some remarks about that comparison.

– As the name implies, ES algorithm finds the best combination of the com-
piler’s optimization options by exhaustively checking all possible ones.

– The result of BE algorithm is an optimal combination of the compiler’s
optimization options obtained by removing optimization option with the
most negative RIP iteratively.

– OSE algorithm build the combination of compiler optimization options start-
ing from the set with single default optimization combination, then itera-
tively the set is updated by performing the union operation.

– HE algorithm finds the optimal solution (combination of compiler’s opti-
mization options) starting from the initial population contains a number of
combinations of compiler’s optimization options which were initially chosen
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in random manner. Then, each chromosomes (representation of combina-
tions) in the population were evaluated using fitness function to determine
fitter chromosomes to be chosen for the next generation. This process was
performed iteratively until some determined condition satisfied, and the best
combination is obtained.
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