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Abstract. Stream cipher ZUC is the core component in the 3GPP con-
fidentiality and integrity algorithms 128-EEA3 and 128-EIA3. In this
paper, we present the details of our differential attacks against ZUC 1.4.
The vulnerability in ZUC 1.4 is due to the non-injective property in the
initialization, which results in the difference in the initialization vector
being cancelled. In the first attack, difference is injected into the first
byte of the initialization vector, and one out of 2'%* random keys re-
sult in two identical keystreams after testing 2'3-3 IV pairs for each key.
The identical keystreams pose a serious threat to the use of ZUC 1.4 in
applications since it is similar to reusing a key in one-time pad. Once
identical keystreams are detected, the key can be recovered with aver-
age complexity 294, In the second attack, difference is injected into the
second byte of the initialization vector, and every key can result in two
identical keystreams with about 2°* TVs. Once identical keystreams are
detected, the key can be recovered with complexity 257. We have pre-
sented a method to fix the flaw by updating the LFSR in an injective way
in the initialization. Our suggested method is used in the later versions
of ZUC. The latest ZUC 1.6 is secure against our attacks.

1 Introduction

Comparing to block ciphers, dedicated stream ciphers normally require less com-
putation for achieving the same security level. Stream ciphers are widely used
in applications. For example, RC4 |10] is used in SSL and WEP, and A5/1 [§] is
used in GSM (the Global System for Mobile Communications). But the use of
RC4 in WEP is insecure [7], and A5/1 is very weak [4]. ECRYPT (2004-2008)
has organised the eSTREAM competition, which stimulated the study on stream
ciphers, and a number of new stream ciphers were proposed [143, |5, ld, (9, [15].
The 3rd Generation Partnership Project (3GPP) was set up for making
globally applicable 3G mobile phone system specifications based on the GSM
specifications. Stream cipher ZUC was designed by the Data Assurance and
Communication Security Research Center of the Chinese Academy of Sciences.
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It is the core component of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3 which were proposed for inclusion in the “4G” mobile
standard LTE (Long Term Evolution). In July 2010, the ZUC 1.4 [11] was made
public for evaluation. We developed two key recovery attacks against ZUC 1.4
[16], and our attacks directly led to the tweak of ZUC 1.4 into ZUC 1.5 [12] in
Jan 2011. (Note that it was reported independently in [14] that the non-injective
initialization of ZUC 1.4 may result in identical keystreams.) The latest version,
ZUC 1.6 |13], was released in June 2011 (ZUC 1.6 and ZUC 1.5 have almost the
same specifications).

In this paper, we present the details of our differential attacks against ZUC
1.4. Our attacks against ZUC is similar to the differential attacks against Py,
Py6 and Pypy [17], in which different IVs result in identical keystreams. In the
first attack against ZUC 1.4, the difference is at the first byte of the IV, and
one in 254 keys results in identical keystreams after testing 2'3-3 IV pairs for
each key. Once identical keystreams are detected, the key can be recovered with
complexity 2°94. In the second attack against ZUC 1.4, the difference is at the
second byte of the IV, and identical keystreams can be obtained after testing
254 TVs. The key can be recovered with complexity 267.

This paper is organized as follows. The notations and the description of ZUC
1.4 are give in Sect. 2. The overview of the attack is is given in Sect. 3. In Section
4 and 5, we present the key recovery attack with difference at the first byte and
the second byte of IV, respectively. We suggest the tweak to fix the flaw in Sect.
6. Section 7 concludes the paper.

2 Preliminaries

2.1 The Notations
In this paper, we follow the notations used in the ZUC specifications |11].

4+  The addition of two integers
@  The bit-wise exclusive-or operation of integers
B  The modulo 2°? addition
ab  The product of integers a and b
allb The concatenation of a and b
a<<<k The k-bit cyclic shift of a to the left
a>>>k The k-bit cyclic shift of a to the right
a>>k The k-bit right shift of integer a
apg  The most significant 16 bits of integer a
ar  The least significant 16 bits of integer a

(a1,az2,...,a,)—(b1,ba,...,b,) It assigns the values of a; to b; in parallel
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0,  The sequence of n bits 0
1,  The sequence of n bits 1

0 The bitwise complement of y
An integer a can be written in different formats. For example,

a=25 decimal representation
= 0219 hexadecimal representation

= 000110012  binary representation

We number the least significant bit with 1 and use A[i] to denote the ith bit of
a A. And use BJi..j] to denote the bit 7 to bit j of B.

2.2 The General Structure of ZUC 1.4

ZUC is a word-oriented stream cipher with 128-bit secret key and a 128-bit initial
vector. It consists of three main components: the linear feedback shift register
(LFSR), the bit-reorganization (BR) and a nonlinear function F. The general
structure of the algorithm is illustrated in Fig. [l
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Fig. 1. General structure of ZUC

Linear Feedback Shift Register(LFSR). It consists of sixteen 31-bit regis-
ters sg, s1, . . ., S15, and each register is an integer in the range {1,2,...,231 —1}.
During the keystream generation stage, the LFSR, is updated as follows:
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LFSRUpdate():

1. S16 — (215815 + 217813 + 221810 —|— 22084 + (1 + 28)80)m0d(231 — 1),
2. If 516 = 0 then set 516 = 231 — 1;
3. (s1,82,...,515,516) — (50,51,...,514,515)-

Bit-Reorganization Function. It extracts 128 bits from the state of the LFSR
and forms four 32-bit words Xy, X; X2 and X3 as follows:

Bitreorganization():
1. Xo = s15m||s14L;
2. X1 = s11Ll|som;
3. Xo = s71||85mH;
4. X3 = sar||son;

Nonlinear Function F'. It contains two 32-bit memory words R; and Rs. The
description of F'is given below. In function F', S is the Sbox layer and L; and
L, are linear transformations as defined in |11]. The output of function F is a
32-bit word W. The keystream word Z is given as Z =W & X3.

f?()(o7 Xl, XQ)Z

1. W = (Xo@® Ry) B Ry;
2. W1 = Rl HﬂXl,

3. Wo = Ry @ Xo;

4. Ry = S(Li(Whp||Wam));
5. R2 :S(LQ(WQLHW1H));

2.3 The Initialization of ZUC 1.4

The initialization of ZUC 1.4 consists of two steps: loading the key and IV into
the register, and running the cipher for 32 steps with the keystream word being
used to update the state.

Key and IV Loading. Denote the 16 key bytes as k; (0 < i < 15), the
16 IV bytes as iv; (0 < i < 15). We load the key and IV into the register
as: s; = (k;||d;||iv;). The values of the constants d; are given in [11]. The two
memory words Ry and Ry in function F' are set as 0.

Running the Cipher for 32 Steps. At the initialization stage, the keystream
word Z is used to update the LFSR as follows:
LFSRWithlInitialisationMode(u):

v = (2515 + 27513 + 22570 + 22954 + (1 + 28)s0)mod (23! — 1);
If v = 0 then set v = 23! — 1;

S16 =V D u;

If s16 = 0 then set s16 = 23" — 1;

(s1,52,...,515,516) — (50,51, -,514,515).

Cuk LN
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The cipher runs for 32 steps at the initialization stage as follows:
InitializationStage():
for i =0 to 31 {

1. Bitreorganization();
2. Z=F(Xo,X1,X2)® X3;
3. LFSRWithInitialisationMode(Z >>1) .

3 Overview of the Attacks

We notice that the LFSR in ZUC is defined over GF(23! —1), with the element
0 being replaced with 23! —1. To the best of our knowledge, it is the first time
that GF(23! —1) is used in the design of stream cipher. In the initialization of
ZUC 1.4, we notice that XOR is involved in the update of LFSR (s16 = v ® u).
When XOR is applied to the elements in GF(23! —1), we obtain the following
undesirable property:

Property 1. Suppose that a and a’ are two elements in GF(231 —1), a # d,
and @ =a'. If b =a or b= a, then a®b mod (231—1) = a’® b mod (23'-1) = 0.

The above property shows that the difference between a and a’ can get eliminated
with an XOR operation! In the rest of this paper, we exploit this property to
attack ZUC 1.4 by eliminating the difference in the state.

In our attacks, we try to eliminate the difference in the state without the
difference in the state being injected into the nonlinear function F'. The reason
is that if a difference is injected into F', then Sboxes would be involved, and the
difference would remain in F until additional difference being injected into F,
thus the probability that the difference in the state being eliminated would get
significantly reduced.

We now investigate what are the IV differences that would result in the dif-
ference in the state being eliminated with high probability. The IV differences
are classified into the following three types:

Type 1. Aiv; # 0 for at least one value of ¢ (7 < ¢ < 15).

After loading this type of IVs into LFSR, the difference would appear at the
least significant byte of at least one of the LFSR elements s7, sg, -+, s15. Note
that the least significant byte of s; is part of X5 in the Bit-reorganization func-
tion since Xo = s7r||ssm, and Xz is an input to function F. Due to the shift
of LFSR, the difference at the least significant byte of s7, sg, - -+, s15 would be
injected into F'. Thus we would not use this type of IV difference in our attacks.

Type 2. Aiv; =0 for 7 < i < 15, Aiv; # 0 for at least one value of i (2 < i < 6).
After loading this type of IVs into LFSR, the difference would appear at the least
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significant byte of at least one of the LFSR elements sz, s3, ---, sg. Note that
the least significant byte of sy is part of X3 in the Bit-reorganization function
since X3 = sar||som, X3 is XORed with the output of F' to generate keystream
word Z, and Z is used to update the LFSR. T'wo steps later, the difference in ivq
would appear in the feedback function to update LFSR. It means that if there is
difference in ivy, the difference in so would be used to update the LFSR twice,
and the probability that the difference would be eliminated is very small. Due to
the shift of LFSR, the difference at ss, s3, - -+, s7 would be eliminated with very
small probability. Thus we did not use this type of IV difference in our attacks.

Type 3. Aiv; =0 for 2 < i <15, Aivg # 0 or Aivy # 0.

The focus of our attacks is on this type of IV differences. In order to increase
the chance of success, we consider the difference at only one byte of the IV. We
discuss below how the difference in the state can be eliminated when there is
difference in sg (the analysis for the difference in s; is similar). At the first step
in the initialization,

s0 = (ko|dollivo) ,
v=20g15 + 27513 + 221510 + 2295, + 1+ 28)50 mod (231 -1),

Sig=VvDu.

N /N
[N
- —

Suppose that the difference is only at vy, and vy — iv = Aivg > 0. From ()
and ([2) we know that

v—2" = (1+42%)(ivg —ivy) mod (2% — 1)
= Advg || Aivo . (4)

If we need to eliminate the difference in si6, from Property 1 and (@), the fol-
lowing condition should be satisfied:

v@B v =13 (5)

u=v or u=1v (6)

According to (), v and v" have XOR difference in the left-most 15 bits (i.e.v[17..31]
and v'[17..31]), while according to (@), the subtraction difference of those bits are 0.
The only possible reason is that the 15 bits, v[17..31], are all affected by the carries
from the addition of Aivg to v’. After testing all the one-byte differences, we found
that v must be in one of the following four forms (the values of v and v’ can be
swapped):

v=11111111111111115 |y || 12 || v
or w=01111111111111115 || y || 02 || »
or v = 00000000000000002 || 7 || 02 || 7 (7)
or v = 1000000000000000 || 7 || 12 || 7
(y is a T-bit integer.)
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There are 510 possible values of v (v = 137 and v = 031 are excluded since one
of v and ¥ cannot be 0). All the (v, v’) pairs and their differences are given in
Table Dlin Appendix [Al Notice that we ignored the order of v and v’ as they are
exchangeable. We have obtained all the possible values of v and w for generating
identical keystreams.

We highlight the following property in the table: the difference between v
and v’ uniquely determines the value of pair (v,v’) in the table. As a result, if
we know the difference of IVs that results in the collision of the state, we can
determine the value of (v,v’) immediately.

By eliminating the difference in the state as illustrated above, we developed
two attacks against ZUC 1.4. The first attack is to exploit the difference at iv,
and the second attack is to exploit the difference at iv;. The details are given in
the following two sections.

4 Attack ZUC 1.4 with Difference at v,

In this section, we present our first differential attack on the initialization by
using IV difference at ivy and generating identical keystream. The keys that
generate the same keystream are called weak keys in this attack. We will show
that a weak key exists with probability 2714, and a weak key can be detected
with about 233 chosen IVs. Once a weak key is detected, its effective key size
is reduced from 128 bits to around 100 bits.

4.1 The Weak Keys for Aivg

We will show that when there is difference at ivg, about one in 2% keys would
result in identical keystream. For a random key, we will check whether there
exists a pair of IVs such that (), [@) and (@) can be satisfied.

We start with analyzing how keys and I'Vs are involved in the expression of u
and v in the first step of initialization. From the specifications of the initializa-
tion, we have

u=7>1=(Xo® X3)> 1= ((s15m[s142) ® (s2|50m)) >>1 ®)

=((k15 || tv2 || ko || tv14) @® 0x6b819a89) >> 1
In @) and (), there are 5 bytes of key, {ko, k4, k10, k13, k15}, and 7 bytes of IV,
{ivg, v, iv4, iv10, i013, V14, 1015 } being involved in the computation of u and v.
The complexity would be very high if we directly try all possible combinations
of the keys and IVs. However, with analysis on the expressions of u and v, we
can reduce the search space from 2% to around 226-3,
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Solve (@), (@), (@) and (&), we obtain the following four groups of solutions:

Group 1.

Group 2.

Group 3.

Group 4.

u=v=11111111111111115 ||y || 12 | ¥
k15 = 0x94
vy = 0x70
ko = 0x9a @ (y || 12)
w14>>1=0x44 D y

w=v=01111111111111115 || y | 02 || »
k‘15 = 0x14
vy = 0x70

ko = 0x9a @ (y || 02)
w14>>1=0x44 D y

u = v = 00000000000000002 || || 02 || ¥
k15 = 0x6b
iUy = Ox8f
ko = 0x9a @ (7 || 02)
iv14>>1 =0xbb Dy

u = v = 10000000000000002 || g || 12 || ¥
k15 = Oxeb
iUy = Ox8f
ko =0x9 @ (7 || 12)
iv14>>1 =0xbb Dy

(11)

Furthermore, from (Z) we compute v as follows (note that the property 2Fs;
mod (23! — 1) = 5, <<<k):

v=(1+2%)ko + 27k15 + 2° (k13 + 2%ka + 2'k10) + (1 + 2%)ivg

+ 2% (jv15 4 2%iv13 + 259wy + 2%0v10) + 0x451bfelb  mod (23! — 1)

(13)

Let sumi = ki3 + 23k4 + 2%k10, sumeo = ivis + 2%iv13 + 2%ivy + 2%4v19. The value
of sumy ranges from 0 to 6375, and the value of sums ranges from 0 to 25755.
We developed Algorithm 1 to search for weak keys.
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Algorithm 1. Find weak keys for Aivg

for (kis, iv2) in each of the 4 groups of solutions (@), (I0), (1), (I2) do
for y =0 to 127 do
determine fv14 >>1 and ko
for sumi = 0 to 6375 do
for jvg = 0 to 255 do
keySum < 27k1s + (22 + 1)ko 4+ 2°sum;1 mod (23! — 1)
suma + (u — keySum — (1 + 2%)ivg — 0x451bfelb)/2'® mod (2% — 1)
if sumg is less than 25756 then
v=u; v =u® lao;
if (v — ') mod (2% — 1) is a multiple of 1 + 2% then
Aivg = (v —2v") mod (2% —1)/(1 + 2°);
ivh = vy — Advp;
else
Aivg = (v —v) mod (2% —1)/(1 + 2°);
ivh = g + Advp;
end if
output u, ko, kis, sumai, ivo, vy, ive, iv1a >> 1, sumsz
end if
end for
end for
end for
end for

Each output from Algorithm 1 gives the value of (kis, ko, sumy, ivg, v},
ivg, V14, Sumsg) that results in identical keystreams. Running Algorithm 1,

we found 9934 = 21328 different outputs. We note that on average, each
sumy from the output of the algorithm represents 224/6376 = 21136 possible
choices of (ky, k10, k13). Thus there are 2133 x 2114 = 2247 weak values of

(ko, k4, k10, k13, k15). Hence, there are 2247 weak keys out of 24° possible values

of the 5 key bytes. The probability that a random key is weak for IV differ-
ence at ivg is 27 %4, The complexity of Algorithm 1 is 4 x 128 x 6376 x 256 = 2263,

Identical Keystreams. We give below a weak key and an IV pair with differ-
ence at ivp that result in identical keystreams.

key = 87,4,95,13,161,32,199,61,20,147,56,84,126,205,165,148
1V = 166,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5
IV' =116,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

For both IV and IV’  the identical keystreams are: Oxbfe800d5 0360a22b
6c4554c8 6700672 2ce94f3f f94d12ba 11¢382b3 cbafdb3l. . ..

4.2 Detecting Weak Keys for Aivg

We have shown above that a random key is weak with probability 271%4. In the
attack against ZUC, we will first detect a weak key, then recover it. To detect
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a weak key, our approach is to use the IV pairs generated from Algorithm 1 to
test whether identical keystreams are generated. Note that for a particular value
of sumsz, we can always find a combination of (ivy,iv10,4v13, 1015} that satisfies
suma = ivis + 2%iv13 + 2%wvs + 2%w10. Thus a pair of IVs (ivg, 1va, TV, 1010,
113, V14, 1015) and (v, ive, 14, 1010, 1013, 9014, 7015) can be determined by each
output of Algorithm 1. Using this result, we developed Algorithm 2 to detect
weak keys for Aivg.

Algorithm 2. Detecting weak keys for Aivg

1. Choose one of the 2'32® outputs of Algorithm 1.

2. Find the pair of IVs determined by this output (if iv; does not appear in the first

initialization step, set it as some fixed constant).

Use the IV pair to generate two key steams.

If the keystreams are identical, output the IVs and conclude the key is weak.

5. If all outputs of Algorithm 1 have been checked, and there are no identical
keystreams, we conclude that the key is not weak.

-

In Algorithm 2, we need to test at most 23 pairs of IVs to determine if a key
is weak for difference at ivg.

4.3 Recovering Weak Keys for Aivg

After detecting a weak key, we proceed to recover the weak key. Once a key is
detected as weak (as given from Algorithm 2), from the IV pair being used to
generate identical keystreams, we immediately know the value of kg, k15 and
sumy. Note that sum; = (ki3 + 23ky + 24k10). In the best situations, the sum
is 0 or 25755, then we can uniquely determine k4, k19 and ki3. In the worst
situation, there are 2'2 possible choices for k4, k1o and ki3, and therefore, we
need 2'? tests to determine the correct values for k4, k1o and k3. On average,
for each value of sumi, we need to test 214 combinations of (kq, k10, k13).

Since there are only five key bytes being recovered in our attack, the remaining
11 key bytes should be recovered with exhaustive search. Hence, the complexity
to recover all key bits is 2%% x 2114 = 2994, From the analysis above, we also
know that the best complexity is 288 and the worst complexity is 2190,

5 Attack ZUC 1.4 with Difference at v,

In this section, we present the differential attack on ZUC 1.4 for IV difference at
vy . Different from the attack in Section 4, we need to consider the computation
of u and v in the second step of the initialization. For this type of IV difference,
for every key, there are some IV pairs that result in identical keystreams since
more IV bytes are involved. Once we found such an IV pair, we can recover the
key with complexity around 267.
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5.1 Identical Keystreams for Aiv,

The computation of u and v in the second initialization step involves more key
and IV bytes. The v in the second initialization step is computed as:

= (28516 + 27514 + 221511 + 2055 + (1 + 2%)s1) mod (23! — 1),
S16 = ((215815 + 217813 =+ 221810 + 22084 =+ (1 + 28)80) mod (231 — 1)) (14)
@b (((k15 H U2 || ko || ’ZU14) D 0X6b8f9&89) >> 1)

And u is given as:

= (((Xo ® R1) + R2) & X3)>>1
XO — (s1621||10101100s]iv15)
X3 — (010111104||dv3||k1]|01001101) (15)
= S(L1(som||s7r)) = fi(ive, ko)
= S(L2(ssrl[s110)) = fa(ivi1, ks)

where f; and fy are some deterministic non-linear functions.

There are 10 IV bytes involved in the expression of v, i.e. (ivg, iv1, iva, iv4, Vs,
110, 1011, 1013, 1V14, 1015) and 8 IV bytes involved in the expression of u, i.e. (ivg,
s, 1y, 107, 1010, 1011, 1013, 1015). In total, there are 12 IV bytes being involved
in the computation of u and v, and every bit of u and v can be affected by IV.
We conjecture that for every key, the conditions (@) and (@) can be satisfied, and
identical keystreams can be generated. To verify it, we tested 1000 random keys.
Our experimental results show that there is always an IV pair for each key that
results in identical keystreams.

In the attack, a random key and a random ¢v pair with difference at
vy, the probability that v and u satisfy the conditions () and (@]
2731 x 2731 x 2 = 2761, Choosing 28 jvs with difference at iv;, we have around
215 pairs. The identical keystream pair appears with probability 2761115 = 246
with 28 IVs. We thus need about 246 x 28 = 2%% IVs to obtain identical
keystreams.

Identical Keystreams. We give below a key and an IV pair with difference at
iv1 that result in identical keystreams. The algorithm being used to find the IV
pair is given in Appendix [Bl The algorithm is a bit complicated since a number
of optimization tricks are involved. The explanation of the optimization details
is omitted here since our focus is to develop a key recovery attack.

key = 123,149,193,87,42,150,117,4,209,101,85,57,46,117,49,243
1V =92,80,241,10,0,217,47,224,48,203,0,45,204,0,0,17
IV’ =92,182,241,10,0,217,47,224,48,203,0,45,204,0,0,17

The identical keystreams are: 0xf09cc17d 41f12d3f 453ac0c3 cadcef9f f98fb964
cabeb76e b48b813 6c43da22 .. ..
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5.2 Key Recovery for Aiv,

After identical keystreams are generated from an IV pair with difference at vy,
we proceed to recover the secret key. From Table [lin Appendix [A] we know the
value of (v,v’) since we know the difference at v, of the chosen IV pair, and we
also know the value of u since u = v or u = v’. In the following, we illustrate a
key recovery attack after identical keystreams have been detected.

1. In the expression of u in (&), (k1, ks, ko, S16x) is involved. Note that there
are only two possible values of the 31-bit u. We try all the possible values
of (ki1, ks, kg, 5167 ), then there would be 28*3+16 » 2731 x 2 = 210 possible
values of (ki1, ks, kg, s16m) that generate the two possible values of u. The
complexity of this step is 240.

2. Next we use the expression of s16 in (I4]). For each of the possible values
of (k1, ks, ko, s16m), we try all the possible values of (ko, k4, k10, k13, k15)
and check whether the values of s16y is computed correctly or not. There
would be 28%5 x 2716 = 224 pogsible values of (kg, k4, k10, k13, k15) left.
Considering that there are 210 possible values of (k1, ks, ko, s161), about
210 X 224 = 234 possible values of (k(), ]{71, ]{74, ]{75, kg, klo, k?lg, ]{715,816}[)
remain. The complexity of this step is 28%% x 210 = 250,

3. Then we use the expression of v in ([[4]). For each of the possible values
of (ko, k1, k4, ks, ko, k10, k13, k15,8168 ), we try all the possible values of
(k11, k14) and check whether the value of v is correct or not. A random
value of (ki1, k14) would pass the test with probability 28%2 x 2731 = 215
Considering that there are 234 possible values of (ko, k1, k4, ks, ko, k10, k13,
k15, 816 ), about 234 x 2715 = 219 possible values of (ko, k1, k4, ks, ko, k10,
k11, k13, k14, k15) remain. The complexity of this step is 28%2 x 234 = 250,

4. For each of the 219 possible values of (ko, k1, k4, ks, ko, k10, k11, k13, K14,
k15), we recover the remaining 6 key bytes (ko,ks,kes,k7,ks,k12) by exhaustive
search. The complexity of this step is 219 x 28%6 = 267,

210

234

The overall computational complexity to recover a key is 240 4250 4-250 4 967 ~
267, And we need about 2°4 IVs in the attack. Note that the complexity in the
first, second and third steps can be significantly reduced with optimization since
we are dealing with simple functions. For example, meet-in-the-middle attack
can be used in the first step, and the sum of a few key bytes can be considered
in the second and third steps. However, the complexity of those three steps has
little effect on the overall complexity of the attack, so we do not present the
details of the optimization here.

6 Improving ZUC 1.4

From the analysis in Sect. 3, the weakness of the initialization comes from the
non-injective update of the LFSR. To fix the flaw, we proposed the tweak in
the rump session of Asiacrypt 2010. Instead of using the XOR operation, it is
better to use addition modulo operation over GF (23! — 1). More specifically,
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the operation s16 = v @ u is changed to s16 = v + u mod (23! — 1). With this
tweak, the difference in v would always result in the difference in sig if there
is no difference in w, and the attack against ZUC 1.4 can no longer be applied.
In the later versions ZUC 1.5 and 1.6 (ZUC 1.5 and 1.6 have almost the same
specifications), the computation of si6 is modified using our suggested method.

7 Conclusion

In this paper, we developed two chosen IV attacks against the initialization of
ZUC 1.4. In our attacks, identical keystreams are generated from different IVs,
then key recovery attacks are applied. Our attacks are independent of the number
of steps in initialization. The lesson from this paper is that when non-injective
functions are used in cipher design, we should pay special attention to ensure
that the difference cannot be eliminated with high probability.
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A The List of Possible v and v’ for Collision

Index

-

© 0N G W N

v
0x3f f £8000
0x3fff8101
0x3f f £8202
0x3f f 8303
0x3f f £8404
0x3f f 8505
0x3f f £8606
0x3f f f8707
0x3f f £8808
0x3f f £8909
03§ f f8a0a
03 f f f8b0b
0x3f ff8cOc
0x3f f f8d0d
0z3f f f8e0e
0xz3fff8f0f
0z3f f£9010
0x3ffF9o111
0x3f ff9212
0x3ff£9313
0x3fff9414
0x3fff9515
0x3fff9616
0x3ff o717
0x3fff9818
0x3f f 9919
0x3fff9ala
0x3f ff9b1b
0x3fff9cle
0a3fffodld
0x3fff9ele
0x3fffof1f
0x3f f fa020
0x3fffal2l
0x3f f fa222
03 f fa323
0x3f ffad24
03 f fa525
0x3f f fa626
0x3fffa727
03 f fa828
0x3f f fa929
0x3fffaa2a
0x3f ffab2b
0x3fffac2e
0x3f ffad2d
0x3ff fae2e
0z3fffaf2f
0x3f f £b030
0x3ffFb131
0x3f ffb232
0x3fffb333
0x3f ffba34
0x3f f£b535
0x3f f£b636
0x3f fFb737
0x3f fFb838
0x3f f 6939
0x3fffba3a
0x3f ffbb3b
0x3fffbe3e
0x3f f fbd3d
0a3f ffbe3e
0x3fffbf3f
0x3f f fc040
0x3fffclal
0x3f f fc242
03 f fe343
0x3f f fcadd
0x3f f fc545
03§ f fc646
0x3f f feT4T
03 f fc848
0x3f f fc949
0x3ff fcada
0x3f f fecbdb
0x3fffecde
0x3ff feddd
0x3f f feede
0x3fffefaf
0x3f f fd050
0x3fffdi51
0x3f f fd252
0x3fffd353
0x3fffda54

Table 1. The list of possible v, v’

!

0240007 f f f
0240007e fe
0240007df d
0240007cfc
0240007b fb
0240007afa
02400079 9
0240007818
02400077 f7
02400076 16
024000755
02400074 f4
024000733
02400072 f2
02400071 f1
02400070 f0
0240006 f e f
0240006ece
0240006ded
0240006cec
0x40006beb
0z40006aea
02400069¢9
02400068¢8
024000677
024000666
02400065¢5
02400064 ¢4
02400063¢3
02400062¢2
02400061el
024000600
0240005 f df
0240005¢de
0240005ddd
0240005cdc
0x40005bdb
0240005ada
0x400059d9
02400058d8
02400057d7
0x400056d6
0x400055d5
02400054d4
02400053d3
02400052d2
02400051d1
0240005040
0240004 fc f
0z40004ece
0240004dcd
0z40004ccc
0240004bcb
0z40004aca
02400049¢9
02400048¢8
02400047c7
024000466
02400045¢5
02400044c4
02400043¢3
02400042¢2
02400041c1
024000400
0x40003fb f
0240003ebe
0240003dbd
0240003cbe
0240003bbb
0240003aba
0240003959
02400038b8
02400037b7
02400036b6
02400035b5
02400034b4
02400033b3
0240003262
02400031b1
040003050
0240002 fa f
0z40002¢eae
0240002dad
0240002cac
0240002bab

Aiv Index
ozff 86
Oxfd 87
Oxfb 88
0zf9 89
0xf7 90
0zf5 91
0xf3 92
ozfl 93
Ozef 94
Ozed 95
Ozeb 96
0xe9 97
Oze7 98
Oze5 99
Oze3 100
Ozel 101
Oxdf 102
Ozdd 103
Oxdb 104
0xd9 105
0xd7 106
0xd5 107
0xd3 108
0xzdl 109
Ozecf 110
Ozed 111
Owchb 112
Oxc9 113
Oze? 114
Oxe5 115
Oze3 116
Ozcl 117
Oxbf 118
Ozbd 119
Oxbb 120
0zb9 121
0xb7 122
0zb5 123
0xb3 124
Oxbl 125
Ozaf 126
Ozad 127
Owab 128
0xa9 129
0xa7 130
Oza5 131
Oza3 132
Ozal 133
0x9f 134
0x9d 135
0x9b 136
0299 137
0097 138
0295 139
0293 140
0091 141
Oz8f 142
0x8d 143
0z8b 144
0x89 145
0287 146
0085 147
0083 148
0x81 149
0x7f 150
0x7d 151
0x7b 152
0x79 153
0x77 154
0x75 155
0273 156
0x71 157
0z6f 158
0x6d 159
0z6b 160
0c69 161
0267 162
0265 163
0063 164
0x61 165
0xz5f 166
0x5d 167
0x5b 168
059 169
057 170

v
0x3fffd555
0x3f f fd656
0x3f ffd757
0x3fffd858
0x3f f fd959
0x3f ffda5a
0x3f ffdb5b
0x3fffdcse
0x3f ffddsd
0x3ff fde5e
0x3fffdf5f
0a3f f fe060
0x3fffel6l
0x3f f fe262
0x3fffe363
0a3f f fed64
0x3fffe565
0x3f f fe666
0x3ff feT67
0x3fffe868
0x3f f fe969
0x3fffeaba
0x3f f feb6b
0x3fffecbe
0x3fffed6d
0x3f f feebe
023fffef6f
0x3ffff070
0x3ffff171
0x3ffff272
0x3fffF373
0x3ffffa74
0x3ffff575
0x3ffff676
0x3fffFTTT
0x3fffF878
0x3ffffo79
0x3ffffaTa
0x3ffffbTb
0x3ffffeTe
0x3ffffdrd
0x3ffffeTe
0x3ffFFF7f
0a7f f £8080
0x7fff8181
0a7f f £8282
0x7ff 8383
0x7f ff8484
0a7f f f8585
0x7f f £8686
0x7f f fR787
0x7f f£8888
0a7f f £8989
0x7f f f8a8a
0x7f f f8b8b
0x7fff8c8c
0x7f f f8d8d
0a7f f f8e8e
0x7fff8f8f
0a7f f £9090
0x7ff£9191
0a7f f £9292
0a7f f£9393
0x7f f£9494
0a7f f £9595
0x7f f £9696
0x7f f 9797
0x7f f 9898
0a7f f £9999
0x7f f f9a9a
027 f f fOb9b
0x7fff9c9c
07 fff9d9od
0a7f ff9e9e
07 ffFOFOF
0x7f f fa0a0
0x7fffalal
0x7fffa2a2
0x7fffa3a3
0x7fffadad
0x7fffa5ab
0x7fffa6ab
0x7fffaTaT
0x7fffa8a8
027 f fa9a9

!

0x40002aaa
02400029a9
02400028a8
02400027a7
02400026a6
02400025a5
02400024a4
02400023a3
02400022a2
02400021al
02400020a0
0240001 f9f
0240001c9e
0240001d9d
0240001c9c
0240001b9b
0240001a9a
0240001999
0240001898
0240001797
0240001696
0240001595
040001494
0240001393
0240001292
0240001191
0240001090
02400008 f
0240000e8e
0240000d8d
0240000c8c
0240000b8b
0240000a8a
0240000989
0240000888
0240000787
0240000686
0240000585
0240000484
0240000383
0240000282
0240000181
040000080
0xTfTf
0xTeTe
0a7d7d
0zTcTe
0x7b7b
OxTaTa
027979
027878
0x7777
027676
027575
027474
027373
027272
027171
027070
0616 f
0x6ebe
0c6d6d
0x6c6e
0x6b6b
Ox6aba
026969
026868
026767
026666
026565
026464
026363
026262
026161
026060
0a5f5f
Ox5e5e
0x5d5d
Ox5c5e
0z5b5b
Ox5a5a
025959
025858
025757
025656

Aiv
0255
0x53
051
Ox4f
Ox4d
0w4b
049
047
0x45
043
Ox4l
0x3f
0x3d
0x3b
0239
037
0235
0233
031
ox2f
0x2d
0x2b
029
027
0225
0x23
021
oxlf
oxld
Oxlb
019
0x17
0x15
0213
011

oz f

Oxd

Oxb

0z9

0z7
0x5
0z3
ozl
Oz fe
Oz fe
Oz fa
0z f8
0z f6
Ox f4
Oz £2
0x fO
Oxzee
Oxzec
Owea
Oxze8
0xe6
Owed
Oxe2
0xe0
Oxde
Oxdc
Oxda
0xd8
0xd6
Oxd4
0xd2
0xd0
Oxce
Ozce
Ozca
Oxc8
0xc6
Owc4
0xc2
0xcO
Owbe
Owbe
Oxba
0xbs
0xb6
Owb4
0wb2
0xb0
Owae
Ozac

Index
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

v
0x7f ffaaaa
027ff fabab
027fffacac
0x7fffadad
027fffacae
0xz7fffafaf
027 f f £b0bO
0xz7fffblbl
0x7fffb2b2
0x7f ffb3b3
0x7fffbabd
0x7fffb5b5
0xz7f ffb6b6
0x7fffbTbT
0x7fffb8b8
0x7f f £b9b9
0xz7f ffbaba
0x7f f fbbbb
0z7fffbebe
0x7ff fbdbd
0x7ff fbebe
0xz7fffbfbf
0z7f f fcOcO
0z7fffeclel
0x7fffc2c2
0xz7fffc3e3
0x7fffcdcd
0xz7fffcbes
0z7fffc6c6
0x7fffcTeT
0z7fffc8c8
0x7fffcoc9
027fffecaca
0x7fffebeb
0z7fffececce
0x7fffeded
0x7fffcece
0x7fffcfef
027 f f£d0dO
0x7fffdldl
0x7fffd2d2
0x7fffd3d3
0x7fffdada
0x7fffd5d5
0x7fffd6d6
0x7fffd7dT
0x7fffd8ds
0x7f f fd9d9
0z7fffdada
0x7ff fdbdb
0z7fffdede
0x7fffdddd
0x7fffdede
0x7ff fdf df
0x7f ffe0eO
0z7fffelel
0x7fffe2e2
0z7fffe3e3
0x7ff feded
0z7fffebeb
0x7fffe6e6
0x7fffeTeT
0z7fffeSe8
0x7f ffe9e9
0z7fffeaca
0x7ff febeb
0x7fffecec
0x7fffeded
0x7fffeece
O0z7fffefef
0z7ffffOf0
0z7ffff1f1
0z7ffff2f2
0zTffff3f3
0z7ffffafa
0z7ffff5f5
0z7ffff6f6
0xz7fffFTFT
0z7Tffff8f8
0z7ffffOf9
0z7ffffafa
0x7ffffbfb
O0z7ffffefe
Oz7ffffdfd
Oz7ffffefe

!

025555
05454
05353
025252
05151
025050
Ozdfaf
Oxzdede
Owdddd
Ozdcdc
0x4bdb
Oxdada
024949
04848
024747
004646
024545
Ox4444
04343
0x4242
0x4141
024040
0x3f3f
0x3e3e
0x3d3d
0x3c3c
03b3b
0x3a3a
023939
023838
03737
03636
03535
03434
03333
03232
03131
023030
ox2f2f
0x2e2e
0w2d2d
0x2c2¢
0x2b2b
0x2a2a
022929
02828
022727
022626
022525
0w2424
02323
0x2222
02121
022020
Ozlflf
Ozlele
Owldld
Ozlcle
0x1blb
Ozlala
0x1919
021818
021717
021616
021515
Oxl414
021313
0x1212
0x1111
021010
0x fOf
Owele
0xdod
OxcOc
0xb0b
Ozala
02909
02808
0x707
02606
0x505
0z404
02303
02202
0x101

Aiv
Ozaa
Oxza8
O0xa6
Oza4
Oxza2
0zal
0xz9e
0xz9c
0xz9a
0298
0296
0x94
0292
0x90
Oz8e
0xz8c
0z8a
0288
0x86
0x84
0x82
080
O0x7e
OxTc
Oz7a
0x78
076
0x74
0x72
0x70
Oz6e
0xz6¢c
O0xz6a
0268
0x66
0x64
0x62
060
Oxz5e
0xz5¢c
Oz5a
0x58
0256
0x54
0x52
0x50
Ozde
Oxz4dc
Ozda
0x48
0x46
0x44
0x42
0x40
Oxz3e
0xz3c
0z3a
0x38
036
0x34
0x32
0x30
O0xz2e
0x2c
0xz2a
0x28
0x26
0x24
0x22
0x20
Ozle
Ozlc
Ozla
0x18
0x16
0x14
0xl12
0xz10

Oxe

Ozc

Oxza

0x8

0x6

Ox4

0xz2
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Generating Identical Keystreams for Azv,

Here we describe more details of an algorithm that is used to generate identical
keystreams for the IV difference at iv;:

1.
2.

3.

Initialize v, ivy,...,iv15 with 0. Set iv13 = 64.

Denote (ivg + 8ivis + 16iv10) as sum; and guess sumq with 1 of the 6376
possible values.

Guess iv3[1, 2], and compute v, until the condition v[1..7] — (v>>8)[1..7] < 1
is satisfied. If not possible, go to (2) .

. Guess iv7 and iv11, and compute u, until u[24..31] = 0x£ff is satisfied. We

store the intermediate state s16. If not possible, go to (3).

. Guess iv15 and re-compute u, until u[1..7] = u[9..15] and u[8] = 0 are satis-

fied. If not possible, go to (4).

. Now we compare the current si;g with stored si14 to capture the change. By

properly changing ivy and v;3(this is the reason iv;3 is initialized as 64), we
can always change the current si back to the saved value. Hence, u[24..31]
will remain.
Determine iv; as follows:
— If v[8] # v[16], then if u[1..16] < v[1..16] is satisfied, iv; = 256+u[1..16]—
v[1..16] and update v, otherwise, go to (5).
— If v[8] = v[16], then if u[l..16] >= v[1..16] is satisfied, iv; = wu[l..16] —
v[1..16] and update v, otherwise, go to (5).

. Guess ivg, iv5 and iv14, compute v, until v[16..31] = 0xf£ff. If not possible,

go to (5).

I (udv)[1] =1, let dvg = dvy @ 2. Choose ivs properly to ensure u[16..23] =

0xff. Check if we indeed have v = wu, then output ivg,ivy,...,iv15. Other-
wise, go to (8).

In this algorithm, we restrict the forms of v and u to those starting with 0x7fff
to reduce the search space.
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