
Topology-Aware Mappings

for Large-Scale Eigenvalue Problems

Hasan Metin Aktulga1, Chao Yang1, Esmond G. Ng1,
Pieter Maris2, and James P. Vary2

1 Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
2 Iowa State University, Ames IA 50011, USA

Abstract. Obtaining highly accurate predictions for properties of light
atomic nuclei using the Configuration Interaction (CI) approach requires
computing the lowest eigenvalues and associated eigenvectors of a large
many-body nuclear Hamiltonian matrix, Ĥ. Since Ĥ is a large sparse
matrix, a parallel iterative eigensolver designed for multi-core clusters
is used. Due to the extremely large size of Ĥ , thousands of compute
nodes are required. Communication overhead may hinder the scalability
of the eigensolver at such scales. In this paper, we discuss how to reduce
such overhead. In particular, we quantitatively show that topology-aware
mapping of computational tasks to physical processors on large-scale
multi-core clusters may have a significant impact on efficiency. For typ-
ical large-scale eigenvalue calculations, we obtain up to a factor of 2.5
improvement in overall performance by using a topology-aware mapping.

1 Introduction

High fidelity scientific simulations are nowadays carried out on multi-core ma-
chines that consist of thousands or tens of thousands of nodes. Hopper, a Cray
XE6 machine at the National Energy Research Scientific Center (NERSC), has
6,384 nodes and 24 cores per node. Kraken, a Cray XT5 platform at the National
Institute for Computational Sciences (NICS), has 9,408 nodes and 12 cores per
node. These nodes and cores are connected by a sophisticated communication
network that has a limited bandwidth. The bandwidth per flop ratio (BPF) of
these machines has exhibited a declining trend. For the successive Cray models
XT4, XT5 and XE6, the BPF ratios are 1.36, 0.23 and 0.10 bytes per flop, re-
spectively [2,3]. On exascale platforms, the BPF ratio is anticipated to be much
lower. This trend puts enormous pressure on scientific software developers to
devise new algorithms and implementations that have minimal communication
overhead. One way to achieve this goal is to develop algorithms that have a
lower communication volume and fewer number of messages. Another strategy,
which we will focus on in this paper, is to change the way processes are mapped
to physical processors so that the load on the interconnection network, which is
characterized by a number of metrics such as the average link dilation, traffic
and congestion, can be reduced. With this strategy, it is possible to reduce the
communication overhead in large-scale parallel computations [1].

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 830–842, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Topology-Aware Mappings for Large-Scale Eigenvalue Problems 831

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

ch
em

e 
ba

si
s 

sp
ac

e 
di

m
en

si
on

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

nu
m

be
r o

f n
on

ze
ro

 m
at

rix
 e

le
m

en
ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 1. The dimension and the number of non-zero matrix elements of the nuclear
Hamiltonian with respect to Nmax and the number of particles A

In this paper, we show that changes in task-to-processor mapping can have
a drastic effect on the performance of large sparse eigenvalue calculations for
predicting nuclear structures. We explain the observed effects quantitatively by
reporting various load metrics associated with different mappings. Our results
confirm the need to seek a topology-aware mapping to reduce communication
overhead for large-scale parallel computations.

2 Eigensolver for the CI Approach

The key problem to be solved in nuclear structure calculations is the nuclear
many-body Schrödinger’s equation Hψ = Eψ, where ψ is a many-body wave-
function and H is a nuclear many-body Hamiltonian. One way to solve the
problem is to expand ψ in terms of Slater determinants of single-particle basis
functions that satisfy a number of contraints. A particular choice of single-
particle basis suitable for nuclear structure calculation is the harmonic oscillator
basis. The representation ofH under this basis expansion, which is often referred
to as the configuration interaction (CI) approach, is a sparse symmetric matrix
Ĥ . The dimension of Ĥ , which we denote by n, is defined by the number of
Slater determinants used in the expansion, which is in turn determined by the
number of nucleons A and a constraint on the harmonic oscillator quanta, which
is often denoted by Nmax. Higher Nmax values yield more accurate results for
the same nucleus, but at the expense of an exponential growth in problem size,
see Fig. 1.

Due to the large dimension and the sparsity of Ĥ, an iterative algorithm such
as the Lanczos algorithm is preferred to solve the eigenvalue problem described
above. The basic steps of the Lanczos algorithm are outlined in Alg. 1. The
computational cost of the algorithm is generally dominated by the first two
steps within the while loop: (i) multiplication of the sparse matrix Ĥ with the
most recent Lanczos vector v, (ii) orthogonalization of the new vector w with
respect to previous Lanczos vectors stored in V (a renormalization step may also
be desirable). In this section, we discuss how these two tasks are decomposed
into subtasks and how the subtasks are mapped to processing units for achieving
a load balanced parallel implementation of Alg. 1.



832 H.M. Aktulga et al.

Algorithm 1. The basic steps of the Lanczos Algorithm

Input: Ĥ, v0;
Output: ψ and E such that ‖Ĥψ − ψE‖F is small.
v ← v0/‖v0‖;
V ← (v);
while not converged do
w← Ĥv;
w← w − V V Tw;
v ← w/‖w‖;
V ← (V, v);
T ← V T ĤV ;
Diagonalize T to obtain (U,E);
Check convergence;

end while
ψ = V U ;

2.1 Sparse Matrix Vector Multiplication (SpMV)

On a distributed memory machine, the SpMV multiplication w ← Ĥv can be
carried out in parallel by partitioning the rows and columns of Ĥ and distributing
the nonzero elements of Ĥ among different processing units. This is the strategy
taken by the state-of-the-art nuclear CI calculation software package MFDn
(Many-body Fermion Dynamics for nuclear physics) [6,7]. An even distribution
of non-zero matrix elements over all processors is crucial for optimizing the use
of available memory and achieving good load-balance. This is accomplished in
MFDn by an appropriate matrix reordering through row/column permutation.

Since Ĥ is symmetric, we store only its lower triangular part to reduce memory
usage. Consequently, it is natural to organize processing units into an nd × nd

triangular grid over the Ĥ matrix, as shown in Fig. 2. Each processing unit,
which stores the (i, j)th portion of the sparse matrix Ĥ , can be labeled by its
row and column positions on the grid. The total number of processing units np

in this triangular grid is nd(nd+1)/2, where nd is also the number of processing
units along the diagonal.

A simple way to perform the SpMVmultiplication in parallel is to partition the
vector v by rows into {vi}, where i = 1, 2, ..., nd. in a way that is conformal with
the column partitioning of Ĥ as shown in Fig. 2. Row and column communication
groups, labeled by the communicator Crow and Ccol respectively, are set up to
allow vi to be broadcast among processing units that lie on the ith row or column
of the triangular grid. If we denote the submatrix of Ĥ assigned to the (i, j)th
processing unit by Ĥi,j , each processing unit performs two SpMVs of the form

wi = Ĥi,jvj and wj = ĤT
i,jvi. Two reductions are required (one along the

row communication groups and one along the column communication groups)
to merge local products wi and wj to form the global result vector w.



Topology-Aware Mappings for Large-Scale Eigenvalue Problems 833

lower triangle

�
�
�
�
�

�
�
�

�
��

BCast(x)

�
�
�
�
�

�
�
�
�

�
�
�

�
��

y ← Ax

�
�
�
�
�

�
�

�

Reduce(y)

upper triangle

�
�
�
�
�

���
��

�

BCast(xT )

�
�
�
�
�

�
�
�
�

�
�
�

�
��

yT ← ATxT

�
�
�
�
�

�
�

�

Reduce(yT )

Fig. 2. A visual illustration of the communication pattern for the distributed SpMV
procedure, as implemented in MFDn

If n is the dimension of Ĥ, the length of each distributed Lanczos vector is
roughly n/nd. The communication volume associated with the broadcast and
reduction operations required for SpMV multiplication is O(nnd) along the Ccol

and Crow groups. The dependence of the communication volume on the number
of diagonal processors nd suggests that a multi-threaded (hybrid MPI/OpenMP
parallel) implementation running on the same number of cores as a pure MPI
implementation would have less communication overhead. To be precise, a multi-
threaded implementation with t threads would generate

√
t times less com-

munication volume compared to the pure MPI version. Because in the hybrid
MPI/OpenMP implementation with t-way thread parallelism, nd decreases by a
factor of

√
t, while n does not change.

2.2 Basis Orthogonalization

In MFDn, the orthogonalization of a new basis vector w against a previously
constructed orthonormal basis contained in the matrix V is parallelized on a
nd×(nd+1)/2 2D grid reconfigured from the nd×nd triangular grid as shown in
Fig. 3. To maximize the amount of parallelism while minimizing communication
volume, we distribute V by using a hierarchical 1D distribution scheme. A basis
vector v is first divided into nd subvectors vj , j = 1, 2, ..., nd, each associated with
the jth row group of the 2D grid. Each subvector vj is then further partitioned
into (nd + 1)/2 parts and distributed among the processing units in the same
row group of the 2D grid.

After the SpMV multiplication w = Ĥv is completed, a scattering operation
is required to distribute wj conforming to the distribution of the vj subvectors
among the jth row group of the 2D grid for j = 1, 2, ...nd. Once w has been
distributed among all processing units, an all-reduce operation is required to
complete the orthogonalization w − V V Tw. Communication volume associated
with this all-reduce operation is typically small, when V does not contain too



834 H.M. Aktulga et al.

Fig. 3. Reconfiguring a nd×nd lower triangular processing grid (left) into a nd× (nd+
1)/2 rectangular grid (right) for basis orthogonalization

many basis vectors. Finally, since the next SpMV in our iterative eigensolver
requires the new basis vector vi to be available on all processing units within the
same column (or row) communication group, a gathering operation is required.
The scattering and gathering operations involve a communication volume of
O(n) only. Therefore, when the basis vectors are partitioned hierarchically in
1D, the total communication volume of the basis orthogonalization part is O(n),
which is considerably smaller than that of the SpMV part.

3 Estimating the Communication Overhead

While the communication volume often provides a good estimate of the efficiency
of a parallel program, the actual performance of the program will depend on
other factors. The mapping between computational tasks and physical processing
units has a strong influence, too. Therefore we need additional metrics that can
capture the effect of process topology on the actual performance of the parallel
program.

3.1 Network Load Model

We use a simplified version of the framework suggested by Hoefler and Snir [1].
A communication graph G = (VG , EG) is a directed graph, where VG is the set
of processes and an edge e = {u, v} ∈ EG denotes a message sent from process
u ∈ VG to v ∈ VG . We define two communication graphs, Gcol and Grow, which
are associated with the column and row communication groups of the triangular
grid, respectively.

Similarly, the physical interconnection network is represented as a directed,
weighted graph H = (VH, EH, cH), where VH is the set of compute nodes, EH is
the set of links between these nodes, and cH(e) corresponds to the bandwidth
of a link e = {u, v}. We assume that messages are routed between nodes using
the shortest path. We denote such a path by p(u, v), the set of links connecting
nodes u and v. Since there is usually more than one such shortest path, P(u, v)
is used to refer to the set of all shortest paths between u and v. We assume
that each path in P(u, v) is used with equal probability for sending a message.



Topology-Aware Mappings for Large-Scale Eigenvalue Problems 835

We also assume static routing, i.e., messages are not redirected when congestion
is detected on certain parts of the network.

Under the model described above, we define Γ : VG → VH as a function that
maps the vertices of a communication graph to the physical nodes in the network
graph. Three quality measures can be defined for a mapping Γ : (average) dilation
D(Γ ), (average) traffic T (Γ ) and (maximum) congestion X (Γ ). These definitions
are similar to those given by Hoefler and Snir [1], but slightly simpler due to the
assumptions stated above. D(Γ ) is the average number of links traveled by a
message:

D(Γ ) =
∑

{u,v}∈EG |p(Γ (u), Γ (v))|
|EG |

(1)

Dilation is a measure of the total communication work that needs to be per-
formed by the interconnection network. As dilation increases, the load on the
interconnection network also increases.

We define traffic on a link TΓ (e) as the number of messages that passes through
the link e. Network traffic is the average traffic over all the links in an intercon-
nect:

TΓ (e) =
∑

{u,v}∈EG

|S = {p : p ∈ P(Γ (u), Γ (v)) ∧ e ∈ P}|
|P(Γ (u), Γ (v))| (2)

T (Γ ) =
∑

e∈EH TΓ (e)
|EH|

(3)

Finally, congestion on a link is defined as X (e) = TΓ (e)/cH(e) and network con-
gestion is defined in terms of the maximum congestion on any of the network
links, X (Γ ) = maxe∈EH X (e). Since a communication graph G does not contain
any time related information, X (Γ ) may not be a good approximation to the
actual network congestion, in general. However, both Gcol and Grow capture the
communication happening in a small time window which begins and ends with
a single collective call. Therefore, X (Γ ) is a good approximation to the net-
work congestions during the column and row communications of the eigensolver
described in Sect. 2.

3.2 Practical Considerations

The performance results presented in Sect. 5 were obtained using the Hopper
super-computer, which is a Cray XE6 machine at NERSC. Each compute node
on Hopper contains 2 twelve-core AMD “MagnyCours” processors (24 cores per
node) with 32GBs of memory. Hopper uses the Cray “Gemini” interconnect for
internode communication. The interconnection network has a 3D torus topology
with dimensions 17×8×24. Two nodes share a single Gemini Network Interface
Card (NIC), which has a total of 10 network connections, two each in +x, -x, +z,
-z, and one +y and one -y links [3]. Consequently, the capacity of a link (cH) in
+y or -y direction is half the capacity of a link in other directions.

In order to compute the distance between two processing units, the physical
coordinates of these units must be known. This machine-specific information can



836 H.M. Aktulga et al.

be obtained through xtprocadmin and xtdb2proc utilities available in the Cray
Linux Environment (CLE). Since Hopper’s network has a 3D torus topology,
there is a physical link between a node and its 6 neighbors located at +x, -x,
+y, -y, +z and -z directions. So the number of links that a message needs to
hop through is simply the Manhattan distance 1 (in 3D) between the physical
coordinates of its start and destination nodes. On Hopper, a message is routed
from the start node to the destination node through the unique shortest path
using the links in the x dimension first, then the links in the y dimension, and
finally those in the z dimension.

In Cray’s MPICH2-based MPI library on Hopper, the collective operations of
MPI_Bcast and MPI_Reduce are implemented using a binomial tree algorithm [5].
EGcol

and EGrow are constructed by identifying the the binomial trees associated
with the column and row communication groups of the triangular grid.

On Hopper, multiple processes would be mapped to the same physical node.
As a result, Γ is a many-to-one function in this case. We assume that the intra-
node communication bandwidth is infinite. Therefore, we do not include edges
that correspond to intra-node communications in our model.

4 Heuristic for Task-to-Processor Mapping

Given a communication graph G and a physical interconnection network H,
the problem of finding a mapping Γ : VG → VH that minimizes the effective
load on the network measured in terms of D(Γ ), T (Γ ) and X (Γ ) is an NP-
hard problem [1]. If we label the vertices in VG by 1, 2,..., np, constructing Γ
is equivalent to assigning these numbers to processors placed on a triangular
grid. For example, we may assign 1, 2, ..., nd to the diagonal processors first,
and continue the assignment for each of the subdiagonals until all processors on
the grid are labeled. This gives what we call the diagonal-major (DM) ordering
of the processors. Alternatively, we may go through the triangular processor
grid column by column. This gives the column-major (CM) ordering. Row and
column groups are created by grouping the numbered processing units based on
their column and row positions. A clear drawback of this type grouping scheme
is that the number of processing units in each row/column communication group
is different, and the difference can be quite large. For example, while the largest
Ccol group contains nd processing units, the smallest Ccol group contains a single
processing unit. As a result, there is a significant amount of imbalance in terms
of communication volume among different communication groups.

To create a better mapping and grouping strategy, we extend the triangular
grid to a square grid (note that Ĥ is symmetric), but require each processing
unit to take either the (i, j)th grid point or the (j, i)th grid point, but not both.
We modify the DM and CM orderings by limiting the number of processing
units in each row or column of the grid to (nd+1)/2. If assigning a task number
to the (i, j)th grid point violates this rule, we map the task to the (j, i)th grid
point in the modified DM scheme which we refer to as balanced diagonal major

1 See http://en.wikipedia.org/wiki/Manhattan_distance for a definition.

http://en.wikipedia.org/wiki/Manhattan_distance


Topology-Aware Mappings for Large-Scale Eigenvalue Problems 837

Fig. 4. Process orderings from left to right: DM, CM, BDM and BCM. Tasks mapped
to the same column (row) of the grid belong to the same column (row) communication
groups. Tasks with the same fill patterns belong to the same groups created for basis
orthogonalization

(BDM) ordering. In the modified CM scheme, which we refer to as balanced
column major (BCM) ordering, we start from the diagonal grid point in each
column and assign a task to (i− nd, j)th grid point when i > nd. Figure 4 gives
a schematic illustration of how DM, CM, BDM and BCM look for a 5× 5 grid.

5 Performance Evaluation

In this section, we compare the mapping schemes described above on a few
nuclear CI test problems involving 10B. Different combinations of truncation
(Nmax) and total magnetic angular momentum (Mj) parameters are used. Ta-
ble 1 gives the size and sparsity characteristics for these problems and the num-
ber of cores used to solve these problems. The size of the problem (indicated by
nnz(Ĥ)) increases roughly by a factor of 4 each time we change the (Nmax,Mj)
parameters. Since we are mainly interested in the weak scaling of MFDn, we
increase the number of cores used by approximately a factor of 4, too.

Table 1. Matrix dimensions n and number of non-zero matrix elements nnz of the
Hamiltonian Ĥ associated with nuclear structure calculations of 10B using different
parameter pairs (Nmax,Mj)

Test Name (Nmax, Mj) n(Ĥ) nnz(Ĥ) np n(Ĥ)/nd nnz(Ĥ)/np

test276 (7,0) 4.66× 107 2.81× 1010 276 2.0× 106 1.1× 108

test1128 (8,1) 1.60× 108 1.24× 1011 1128 3.4× 106 1.1× 108

test4560 (9,2) 4.82× 108 4.62× 1011 4560 5.1× 106 1.0× 108

test18336 (10,3) 1.30× 109 1.51× 1012 18336 6.8× 106 0.9× 108

5.1 Performance Results with Pure MPI Implementation

Our experiments were performed on Hopper. Figure 5 shows the observed com-
munication overhead associated with DM, CM, BDM and BCM ordering schemes
for all four test problems. In each case, the wallclock time spent for communi-
cation in DM (tDM ) is taken as the baseline (shown at 100%), and those asso-
ciated with other ordering schemes are shown as percentages of tDM . Each bar



838 H.M. Aktulga et al.

in Fig. 5 shows three values: tcol, trow, torth. They correspond to the wallclock
times elapsed during communications within the column and row groups of the
SpMV part and communication done for basis orthogonalization, respectively.
We observe that the communication overhead of BDM is surprisingly higher than
that associated with DM. We dropped the BDM scheme from larger test cases
(test4560 and test18336.) Both CM and BCM produce significant reductions in
communication time compared to DM. The reduction ranges from about a factor
of 2 for the smallest test-case to a factor of 5 for larger ones. Although keeping
the same number of processing units in each communication group seems to be
desirable, the improvement of BCM over CM is small in larger test cases.

trow torth tcol 

test276 test1128 test4560 test18336 

Fig. 5. Communication overhead associated with DM, CM, BDM and BCM ordering
schemes with the pure MPI implementation

As discussed in Sect. 2, communication volume required in basis orthogonal-
izaton is relatively small compared to that required in SpMV. Therefore it is
not surprising to see that tcol and trow dominate the communication overhead
in Fig. 5. In the largest test case involving 18,336 cores, running 99 Lanczos it-
erations takes 1,260 seconds when the DM ordering is used. On average 80% (or
1,010 seconds) of the total runtime is spent in communication. As can be seen,
in the DM column of test18336 in Fig. 5, column group communications during
SpMV is responsible for about 50% of the total communication time, and row
group communications of SpMV is responsible for about 40%. The communi-
cation required in orthogonalization accounts for only 10%. Mapping tasks to
processors according to the BCM ordering reduces the communication overhead
by a factor of 5. While the overhead in all communication groups decreases
sharply, the largest gain is seen in the column group, in which communication
time drops from roughly 500 seconds for DM to only 50 seconds in BCM.

Since communication takes a significant portion of the total running time,
the reductions in communication overhead achieved by BCM ordering translate
to considerable speed-ups as summarized in Tab. 2. The last row in this table
shows that the overall impact is as high as a factor of 2.57 speed-up in the total
running time.



Topology-Aware Mappings for Large-Scale Eigenvalue Problems 839

Table 2. Single-threaded performance improvement using different orderings

Ordering Stats test276 test1128 test4560 test18336

DM
ttotal (sec) 211 410 567 1260

tcomm/ttotal 24% 47% 56% 80%

BDM
speed-up 0.93 0.95 – –

tcomm/ttotal 30% 50% – –

CM
speed-up 1.12 1.41 1.57 2.52

tcomm/ttotal 16% 26% 31% 50%

BCM
speed-up 1.18 1.50 1.59 2.57

tcomm/ttotal 12% 21% 30% 49%

Table 3. Communication analysis for test276 and test1128

test276 test1128

Ordering Stats Ccol Crow Ccol Crow

DM
tcomm (sec) 19 21 89 78

{D, T ,X} {0.9, 20, 56} {0.8, 21, 62} {5.5, 24, 148} {5.6, 26, 136}

BDM
tcomm (sec) 26 31 90 97

{D, T ,X} {1.1, 34, 86} {1.1, 34, 86} {7.5, 49, 163} {7.4, 48, 167}

CM
tcomm (sec) 8.5 15 22 39

{D, T ,X} {0.1, 3, 8} {0.7, 20, 56} {0.3, 5, 20} {5.5, 23, 167}

BCM
tcomm (sec) 5.5 10.5 18 32

{D, T ,X} {0.0, 0, 0} {0.8, 14, 44} {0.0, 0, 0} {5.2, 20, 122}

Table 4. Communication analysis for test4560 and test18336

test4560 test18336

Ordering Stats Ccol Crow Ccol Crow

DM
tcomm (sec) 145 125 500 400

{D, T ,X} {2.1, 97, 538} {2.1, 98, 538} {3.7, 121, 1489} {3.6, 120, 1557}

CM
tcomm (sec) 20 75 55 155

{D, T ,X} {0.1, 11, 25} {2.1, 88, 290} {0.1, 15, 48} {3.6, 120, 632}

BCM
tcomm (sec) 15 75 50 150

{D, T ,X} {0.0, 4, 5} {2.4, 81, 330} {0.0, 6, 20} {3.6, 111, 626}

Tables 3 and 4 summarize the wallclock time used for communication within
column and row groups for four different orderings schemes and two test prob-
lems each. All timing figures are accompanied by a triplet of numbers {D, T ,X}
that correspond to the dilation, average traffic and congestion metrics defined
in Sect. 3.1. Note that message sizes vary significantly between test cases (see
Tab. 1). Therefore we take the message size in test276 as our base unit and scale
all metrics reported accordingly by dividing this message size to ensure a fair
comparison across all test cases. A lower {D, T ,X} value indicates lower load on



840 H.M. Aktulga et al.

the network, hence lower communication overhead. For CM and BCM orderings,
the network load due to communication within column groups is considerably
less than that of row groups. This observation explains the lower communica-
tion overhead seen in column groups. In fact, this also indicates that our simple
heuristic of mapping the processes in the same column communication group
into “nearby” nodes actually works well.

In Fig. 5, it is not intuitive at first to see that BDM performs worse than
DM. Even though the BDM ordering balances communication volume over all
groups, Table 3 shows that the dilation associated with BDM is higher than that
of the DM. Consequently, the increased network load in BDM leads to a poor
overall performance. This observation suggests that topology-awareness is more
important than simply keeping communication volume balanced among different
groups when we construct a task-to-processor map.

As discussed above, computational load per processor is roughly the same
across all test cases. However, as seen in Tab. 3 and 4, communication overhead
increases sharply as the test problem becomes larger. This sharp increase is par-
tially caused by a fast increase in communication volume (which is of magnitude
O(nnd)) which exceeds the linear increase in the network bandwidth with re-
spect to np. However, network dilation and, perhaps more importantly, network
congestion increases are also important factors to consider.

We can gauge the severity of the network congestion in the row communication
group by comparing the {D, T ,X} triplets associated with the DM ordering with
that associated with the BCM orderings in test18336. Even though dilation and
average traffic seems to be roughly the same for both orderings, tcomm of DM
ordering is significantly higher than that of BCM (400 vs. 150 seconds). So is its
network congestion (1557 vs. 626).

5.2 Performance Results with the MPI/OpenMP Implementation

Table 5 compares the communication overhead of the pure MPI and hybrid
MPI/OpenMP implementations of the Lanczos algorithm for the large test cases.
Both implementations use the BCM ordering. Despite the reduction in communi-
cation volume, the communication time used in the column groups is much higher
in the multi-threaded implementation for the test4560 problem. This is due to
the increased dilation between communicating pairs in the column groups of the
multi-threaded implementation. However, this difference is likely to vanish with

Table 5. Comparison of the pure MPI and hybrid MPI/OpenMP implementations for
large testcases using approximately the same number of cores

test4560 test18336

Threading Stats Ccol Crow Ccol Crow

single
tcomm (sec) 15 75 50 150

{D, T ,X} {0.0, 4, 5} {2.4, 81, 330} {0.0, 6, 20} {3.6, 111, 626}

multi
tcomm (sec) 40 60 58 110

{D, T ,X} {0.3, 24, 37} {3.4, 44, 159} {0.4, 29, 100} {4.3, 89, 365}



Topology-Aware Mappings for Large-Scale Eigenvalue Problems 841

increasing problem sizes, as indicated by the test18336 results. Multi-threaded
implementation performs clearly better along the unoptimized Crow communi-
cator, where the reduced number of messages and communication volume results
in less traffic and congestion on the network.

6 Conclusions and Future Work

We developed topology-aware task-to-processor mappings to reduce the commu-
nication overhead in a parallel implementation of the Lanczos algorithm used
to solve the nuclear many-body Schrödinger’s equation. The effectiveness of a
mapping can be assessed by examining the average network dilation (D), aver-
age traffic (T ) and the maximum network congestion (X ) associated with the
mapping. Each mapping corresponds to a particular ordering of the distributed
tasks. We compared several mapping strategies and showed that the balanced
column major (BCM) ordering of tasks gives the best performance through a
number of computational experiments. This observation is consistent with our
network load model which is defined in terms (D, T ,X ). However, even in the
case of BCM ordering, our optimization of the task-to-processor mapping is not
performed globally among all processors. Therefore, we believe further improve-
ment to the BCM ordering scheme is possible by applying topology mapping
techniques described in [1,2] to all three communication groups created in our
implementation of the Lanczos algorithm. We will focus on this approach in the
future. Another factor that may affect the choice of an optimal mapping is the
combination of thread-level parallelism with message passing based parallelism.
This is an important issue for multi-core/many-core platforms.

Acknowledgments. This work was supported in part through the Scientific
Discovery through Advanced Computing (SciDAC) program funded by the U.S.
DOE Office of Advanced Scientific Computing Research and Office of Nuclear
Physics, by U.S. DOE Grants DE-FC02-09ER41582 (SciDAC/UNEDF) and DE-
FG02-87ER40371, and by the US NSF grant 0904782. Computational resources
were provided by NERSC, which is supported by the U.S. DOE Office of Science.

References

1. Hoefler, T., Snir, M.: Generic Topology Mapping Strategies for Large-scale Par-
allel Architectures. In: Proceedings of the 2011 ACM International Conference on
Supercomputing (ICS), Tucson, AZ (June 2011)

2. Bhatele, A., Gupta, G., Kale, L.V., Chung, I.-H.: Automated Mapping of Regular
Communication Graphs on Mesh Interconnects. In: Proceedings of International
Conference on High Performance Computing, HiPC (2010)

3. NERSC, Hopper, NERSC’s Cray XE6 System (January 2012), Web. (February 15,
2012), http://www.nersc.gov/users/computational-systems/hopper/.

4. Demmel, J.: Applied Numerical Linear Algebra, 1st edn. SIAM (1997)

http://www.nersc.gov/users/computational-systems/hopper/


842 H.M. Aktulga et al.

5. MPICH2, MPICH2: High-performance and Widely Portable MPI,
http://www.mcs.anl.gov/research/projects/mpich2

6. Sternberg, P., Ng, E.G., Yang, C., Maris, P., Vary, J.P., Sosonkina, M., Le, H.V.: Ac-
celerating Configuration Interaction Calculations for Nuclear Structure. In: The Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC 2008) (2008)

7. Maris, P., Sosonkina, M., Vary, J.P., Ng, E.G., Yang, C.: Scaling of ab-initio nuclear
physics calculations on multicore computer architectures. Procedia CS 1, 97–106
(2010)

http://www.mcs.anl.gov/research/projects/mpich2

	Topology-Aware Mappings for Large-Scale Eigenvalue Problems
	Introduction
	Eigensolver for the CI Approach
	Sparse Matrix Vector Multiplication (SpMV)
	Basis Orthogonalization

	Estimating the Communication Overhead
	Network Load Model
	Practical Considerations

	Heuristic for Task-to-Processor Mapping
	Performance Evaluation
	Performance Results with Pure MPI Implementation
	Performance Results with the MPI/OpenMP Implementation

	Conclusions and Future Work
	References




