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Abstract. We evaluate four state-of-the-art work-stealing algorithms
for distributed systems with non-uniform communication latenices (Ran-
dom Stealing, Hierarchical Stealing, Cluster-aware Random Stealing and
Adaptive Cluster-aware Random Stealing) on a set of irregular Divide-
and-Conquer (D&C) parallel applications. We also investigate the extent
to which these algorithms could be improved if dynamic load informa-
tion is available, and how accurate this information needs to be. We show
that, for highly-irregular D&C applications, the use of load information
can significantly improve application speedups, whereas there is little
improvement for less irregular ones. Furthermore, we show that when
load information is used, Cluster-aware Random Stealing gives the best
speedups for both regular and irregular D&C applications.

1 Introduction

Work stealing [5], where idle “thieves” steal work from busy “victims”, is one
of the most appealing load-balancing methods for distributed systems, due to
its inherently distributed and scalable nature. Several good work-stealing al-
gorithms have been proposed and implemented for systems with non-uniform
communication latencies, that is for cloud- or grid-like systems [2,4,16,17], and
for high-performance clusters of multicore machines [13]. However, most of these
algorithms are tailored to highly regular applications, such as those using sim-
ple Divide-and-Conquer (D&C) parallelism. This paper considers how work-
stealing can be generalised to irregular parallel D&C applications, so covering
a wide class of real parallel applications. In particular, we compare the effec-
tiveness of different work-stealing approaches for such applications, and describe
improvements to these approaches that provide performance benefits for “more
irregular” parallel applications. This paper makes the following main research
contributions:

– We compare the performance of state-of-the-art work-stealing algorithms for
highly-irregular D&C applications, providing insight into whether the “best”
methods for regular D&C applications also perform well for irregular ones.

– We evaluate how well these algorithms could perform if they had access to
perfect load information, i.e. how much speedup could be improved if this
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information was available. This gives insight into whether load information
can improve work-stealing and also tests the limits to these improvements.

– We investigate how accurate this load information needs to be to provide
some benefit. Since it is impossible to obtain fully-acurate instantaneous
load information for real distributed systems, this gives insight into whether
work-stealing can benefit from less accurate load information.

We address these three issues using high-quality simulations in the SCALES sim-
ulator [8]. The decision to use simulations is driven by our goal of considering the
theoretical limits to improvements that can be obtained by using fully-accurate
load information and also to quantify the extent to which those limits can be
approached using more realistic partial load information. This would not be pos-
sible using a real implementation, since we cannot instantaneously communicate
load information between distributed machines. The general operation of the
simulation has been verified against a real distributed system [8], so we have a
high degree of confidence in its ability to predict scheduling performance. We
stress that, in this paper, unlike other work [16,8,2], we are not concerned with
the question of how to obtain accurate load information. Rather, we are inter-
ested purely in the impact of this information on load-balancing. A comparison
of different heuristics for obtaining load information can be found in [8].

2 Work-Stealing on Systems with Non-uniform Latencies

We consider distributed clusters, where each cluster contains one or more (paral-
lel) machines (that is a cloud- or grid-like server farm). Each machine in a cluster
forms a processing element (PE) that can manage its own set of independent par-
allel tasks (which will normally be evaluated using lightweight multi-threading)
Each PE has its own task pool, which records the tasks that are owned by that
PE. When a PE starts executing a task, it converts it into a thread (which we
will assume is fixed to one PE). Tasks can, however, be migrated between PEs.
In a work-stealing setting, whenever a PE has no tasks in its task pool, that PE
becomes a thief. The thief sends a steal attempt message to its chosen target PE.
If the target PE has more than one task in its task pool, it becomes a victim
and returns one (or more) tasks to the thief. Otherwise, the target can either
forward the steal attempt to some other target or, alternatively, a negative re-
sponse can be sent to the thief, who then deals with it in an appropriate way
(either by initiating another steal attempt or by delaying further stealing). The
main differences between the various work-stealing algorithms that we consider
lie in the way in which thieves select targets, and in the way in which targets
that do not have enough tasks respond to steal attempts. This paper considers
the following four state-of-the-art work-stealing algorithms:

– Random Stealing [4] – Targets are chosen randomly, and targets also forward
steal attempts to random PEs. This is used by e.g. Cilk [3] or GUM [15].

– Hierarchical Stealing – The PEs are organised into a tree (based on com-
munication latencies). A thief first attempts to steal from all of its children
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(which may recursively attempt to steal from their children); only if no work
is found will it ask its parent for work. This algorithm is used by the Atlas [2]
and Javelin [11] runtime systems for distributed Java.

– Cluster-Aware Random Stealing (CRS) – Local stealing (within a cluster)
and remote stealing (outside of a cluster) are done in parallel. That is, a
thief will attempt to steal from a random PE within its own cluster, and,
in parallel, will attempt to steal from a remote PE. Targets always forward
the steal attempt to a PE in its own cluster if they have no work. A very
similar algorithm is used in the Satin [18] extension to Java, which provides
primitivies for divide-and-conquer and master-worker parallelism1.

– Adaptive Cluster-Aware Random Stealing (ACRS) – An improvement to the
CRS algorithm, where thieves prefer to steal remote tasks from clusters that
are nearer to them [17].

Note that the focus of these algorithms is on the selection of potential victims.
This is the main issue for distributed systems with potentially high communica-
tion latencies, so that thieves obtain work quickly. Following the usual practice
in work-stealing for divide-and-conquer applications, we assume that the oldest
task from the task pool is sent to the thief in response to the steal attempt, and
that the youngest task from the PE’s task pool is chosen for local execution. This
allows locality to be preserved, while large tasks are transferred over the network.
Many other factors may also influence speedups, such as task queue locking [10]
and identifying termination conditions [13,14]. A comparison of several other
policies for task pool management can be found in [9].

3 Irregular Divide-and-Conquer Applications

This paper focuses on the irregularity in parallelism that arises from an un-
balanced task tree, i.e. where some of the tasks created by a parallel task are
sequential, but where others are themselves parallel. This kind of irregularity
arises in many benchmarks for load imbalance as well as in many realistic appli-
cations that deal with irregular or unbalanced data-structures. For example, the
Unbalanced Tree Search benchmark dynamically creates highly-unbalanced trees
and then processes their nodes [12]; in the Bouncing Producer and Consumer
benchmark [6], a producer creates a set of consumer subtasks, and then nomi-
nates one of these consumers as a new producer. Unbalanced task trees arise, for
example, in real applications that trace particles through a 3D scene (e.g. the
Monte Carlo Photon Transport algorithm [7], where the input data determines
how unbalanced the task tree is). Implementations of the Min-Max algorithm,
which prune a tree of game positions, also exhibit irregularity of this kind.

We have previously introduced a formal statistical measure for the degree
of irregularity for such an application [8]. Intuitively, the more unbalanced the

1 In Satin, a target that has no tasks to send to the thief returns a negative response,
rather than forwarding the steal attempt, as here. We have found that our version
performs much better in our context.
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Fig. 1. Task graph for an example DCFixedPar(6,3,5ms,T)

task tree of such an application is, the more irregular is the application. Due to
space constraints, we will use this intuitive “measure” of the irregularity of an
application, without defining it rigorously here. Our main focus is on divide-and-
conquer applications with fixed parallelism, denoted by DCFixedPar(n,k,S,t). In
such an application, every nested-parallel task creates n subtasks, where every
k-th subtask is itself nested-parallel (and the others are sequential). Below some
threshold t, all tasks are sequential with size S. Such applications are examples
of irregular D&C applications, where k determines the degree of irregularity, and
n determines the number of tasks. The larger k is, the more unbalanced is the
task tree, and, therefore, the more irregular is the application. Figure 1 shows
the task tree of an example DCFixedPar(6,3,5ms,t) application.

4 Using Load Information

For the work-stealing algorithms presented in Section 2, we can observe that the
methods they use for selecting targets are partially (or, in the case of Hierarchical
Stealing, fully) based on knowledge of the underlying network topology. They do
not, however, depend on information about PE loads. Choosing targets in this
way is acceptable for applications where the majority of tasks create additional
parallelism (for example, DCFixedPar(n, k, S, t), where k is small). During the
execution of such applications a thief that steals a task will itself become a
potential victim for some other thief. This means that there are a large number
of potential victims in most execution phases. This makes locating victims easy,
even when it is done randomly. Indeed, Nieuwpoort et al. [16] show that very
good performance can be obtained using these work-stealing algorithms, with
CRS giving the best speedups for simple D&C applications (those corresponding
to DCFixedPar(2,1,S,t) applications). This is because thieves can usually obtain
work locally, and remote prefetching of work (via wide-area stealing) essentially
comes for free, because the latency is hidden by executing locally obtained work.

The performance of these algorithms for irregular D&C applications is, how-
ever, not well understood. In these applications, most of the tasks may be
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sequential. This means that it is no longer true that almost every successful thief
becomes a potential victim. Furthermore, in some execution phases the number
of potential victims may be low, and high load imbalances may then exist. Locat-
ing the victims in a potentially large system can be hard if it is done randomly,
and a thief may send many fruitless steal attempts over high-latency networks be-
fore it manages to locate a victim. Therefore, for irregular D&C applications, the
CRS algorithm may not perform the best, and might indeed be outperformed by
methods that do some kind of systematic search for targets, from closer to further
ones (as with Hierarchical Stealing). In order to obtain good speedups, it may be
essential to have some information about target loads, to minimise the time that
thieves spend obtaining work. In order to investigate these issues, we first evalu-
ate how basic work-stealing algorithms perform on highly irregular D&C applica-
tions, determining which of them gives the best speedups. We then investigate the
extent to which these speedups could be increased if fully accurate load informa-
tion is present and used in these algorithms; that is, if each thief, at the moment
where it needs to select the stealing target, knows precisely how many tasks are in
each PE’s task pool. We, therefore, consider the following “perfect” work-stealing
algorihms:

– Perfect Random Stealing. A target with non-zero load is chosen randomly.
– Perfect Hierarchical Stealing. A set of all PEs is organised into a tree. A thief

checks the load of all of its children (where the load of a PE is the aggregate
load of all of the PEs in its subtree). If a child with non-zero load exists,
the steal attempt is sent to it. Otherwise, a thief tries to steal from its own
parent. Whenever a target receives a steal attempt, if it has no work to send,
it forwards the steal attempt using the same procedure.

– Perfect Cluster-aware Random Stealing (Perfect CRS). A thief attempts to
steal in parallel from random local and remote PEs with non-zero load.

– Perfect Adaptive Cluster-aware Random Stealing (Perfect ACRS). This al-
gorithm is similar to Perfect CRS, except that during the remote stealing,
thieves prefer to steal from closer targets with non-zero load.

– Closest-Victim Stealing (CV). The closest target with work is chosen.
– Highest-Loaded-Victim Stealing (HLV). A thief steals from a target with the

largest number of tasks.

Note that the last two algorithms do not have “basic” equivalents, since they
depend on the presence of load information. We include them here because they
represent fairly intuitive methods for selecting stealing targets in the presence of
load information. We assume that a thief steals only one task at a time from a
victim. While stealing more than one task may be beneficial where many tasks
are sequential, for more regular D&C applications this can result in unnecessarily
large amounts of work being transferred from the victim to the thief. Finally,
we evaluate how the accuracy of load information relates to the performance of
algorithms. In other words, we evaluate what happens if the load information is
not completely accurate. This enables us to observe whether the load information
needs to be fully accurate (which is impossible to obtain in the real word), or
whether some approximation (which can be obtained by a heuristic) is enough.



160 V. Janjic and K. Hammond

5 Experiments

All experiments were conducted using the SCALES simulator [8], which was
developed for the sole purpose of testing the performance of work-stealing algo-
rithms on parallel systems with non-uniform communication latencies. SCALES
supports several popular parallelism models, such as divide-and-conquer, data
parallel and master-worker. It independently simulates the load-balancing events
for each PE, such as sending/forwarding steal attempts and the transfer of
tasks between PEs. It also simulates the overheads for individual load-balancing
events (such as sending steal attempts, packing and unpacking of tasks, exe-
cuting tasks). SCALES has been shown to accurately estimate speedups under
various work-stealing algorithms for realistic runtime systems [8].

In order to keep the number of experiments manageable, we use the same
simulated system in all of our experiments. A number of experiments on other
simulated systems can be found in [8], which confirm the conclusions found here.
Our system consists of 8 clusters of PEs, with 8 PEs in each cluster. Clusters are
split into two continents of 4 clusters each, with an inter-continental latency of
80ms. Each continent is split into two countries, with an inter-country latency
of 30ms. Finally, each country is split into two sites, with an inter-site latency of
10ms. In the remainder of the paper, the PE that executes the main application
task is the main PE; the cluster containing the main PE is the main cluster ;
and all other clusters are remote clusters.

5.1 Performance of the Basic Algorithms

For our first set of experiments with irregular D&C applications, we focus on the
DCFixedPar(40,k,5ms,4) applications. The size of sequential subtasks is set to
5ms to produce an application with fine-grained tasks. Note that, as k increases,
the applications become more irregular. Figure 2 shows the speedups that we
obtained under the basic algorithms. We observe that the CRS and ACRS al-
gorithms give the best speedups for more regular applications. However, as the
applications become more irregular (for k > 6), we observe that Hierarchical
Stealing starts to outperform both CRS and ACRS. The reason for this is that
Hierarchical Stealing gives much more uniform work distribution than CRS,
where most of the tasks are executed by PEs from the main cluster, and where
PEs in the remote clusters are mostly idle. For highly irregular applications we
observe that CRS and ACRS deliver poor speedups of 10-12, whereas Hierar-
chical Stealing still manages to deliver good speedups of 25-30. This experiment
reveals two things. Firstly, it shows that the situation for irregular applications is
less clear cut than for regular ones, where the CRS algorithm constantly delivers
the best speedups. We can see that for less irregular applications, CRS is still
the best choice. For highly-irregular ones, however, Hierarchical Stealing is bet-
ter. Secondly, as the irregularity of the applications increases, speedups decrease
sharply for most of the algorithms. The exception is Hierarchical Stealing, which
still manages to deliver good speedups, even for highly-irregular applications. A
similar situation exists for other DCFixedPar applications. If we increase the
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Fig. 2. Speedups under the basic algorithms for the DCFixedPar(40,k,5ms,4) applica-
tions (above) and DCFixedPar(100,k,5ms,4) applications (below)

number of subtasks from 40 to 100, as shown in the bottom of Figure 2, we
obtain similar results. Since all the DCFixedPar(100,k,5ms,4) applications are
highly irregular, Hierarchical Stealing gives the best speedups.

5.2 Performance of the Perfect Algorithms

We now consider the perfect algorithms. Figure 3 shows the corresponding
speedups and relative improvements for the DCFixedPar(40,k,5ms,4) applica-
tions. It is clear that CRS and ACRS give the best speedups. Since all thieves
know exactly where to look for work, thieves from remote clusters manage to
steal a lot of work, so Perfect CRS does not suffer from the same problem as the
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Fig. 3. Speedups (above) and relative Improvements in speedups (below) using perfect
load information for the DCFixedPar(40,k,5ms,4) applications

basic version of CRS. CV and Hierarchical Stealing perform similarly to CRS
and ACRS for more irregular applications, but are consistently worse. Random
Stealing and HLV are considerably worse than these four algorithms. The bot-
tom half of Figure 3 shows the improvement in speedup for the perfect versions.
We observe small improvements for less irregular applications, but very good im-
provements (70%-120%) for highly-irregular applications for Random Stealing,
CRS, and ACRS. For Hierarchical Stealing, we only observe very small improve-
ments. In some cases, Hierarchical Stealing without load information is actually
better than with fully accurate load information. Finally, Figure 4 shows cor-
responding speedups for the DCFixedPar(100,k,5ms,4) applications. We once
again observe that CRS and ACRS give the best speedups.
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5.3 How Accurate Does Load Information Need to Be?

In the previous section we have seen that the use of fully-accurate load informa-
tion brings significant speedup benefits when using the Random, CRS and ACRS
algorithms for highly-irregular D&C applications. With fully accurate load in-
formation, CRS and ACRS give the best speedups both for less irregular and
for more irregular applications. Coupled with the fact that these algorithms are
also the best for regular applications, it seems that they are the algorithms of
choice for work stealing on distributed systems, provided we can obtain a good
approximation of PE loads during the execution of the application.

In this section, we will focus on the CRS algorithm, since it gives similar
results to ACRS, and is easier to implement. The natural question to ask is how
accurate load information needs to be for the load-based CRS algorithm to obtain
good speedup improvements over the basic version. It is obvious that obtaining
perfect load information (where each PE has fully accurate information about
the load of all other PEs) is simply impossible in real systems. We, therefore,
now investigate the extent to which an application’s speedup changes when load
information becomes outdated to some extent.

Let us denote the set of all PEs by {P1, . . . , Pn}, and the load of PE P at
time t by L(P, t). The load information I(Q, t) that a PE Q has at time t can
then be represented as a set {(Pi, L(Pi, ti)|Pi ∈ {P1, . . . , Pn}} of PE-load pairs,
where the load of Pi was accurate at time ti. For perfect information (denoted
by PI), ti = t for all PEs, so PI(Q, t) = {(Pi, L(Pi, t)|Pi ∈ {P1, . . . , Pn}}. We
introduce the idea of outdated information with a delay of k time units by

OI(Q, t, k) = {(Pi, L(Pi, t− lat(Q,Pi)− k)|Pi ∈ {P1, . . . , Pn}},
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where lat(Q,Pi) is the communication latency between PEs Q and Pi. This
represents a more realistic setup, where the age of the load information that PE
Q has about PE P depends on the communication latency between P and Q,
and also on the fixed delay k (in time units) of the delivery of such information.
In an even more realistic setup, k could be a function, rather than a constant,
so this delay could be different for different PEs.

Figure 5 shows the speedups of the DCFixedPar(40,k,5ms,4) applications
under the CRS algorithm using outdated load information with various delays
(in ms). As expected, speedups decrease as the load information become more
outdated. However, we can still observe good speedups when the information
is relatively recent (with a delay of up to 100ms). With a delay of 500ms, the
information is still usable (i.e. speedups are notably better with than without
load information). For large delays of 1000ms and 2000ms, the load informa-
tion becomes practically unusable. Note that the load information delays in our
experiments are rather high with respect to the sizes of sequential tasks. In ap-
plications with coarser-grained tasks, load information with the same delay will
have less impact on the application’s speedup, since PE loads will change more
slowly. We therefore conclude that significant speedup improvements can be
achieved for the CRS algorithm not only with perfect information, but also with
relatively recent load information (which it is possible to obtain in real systems).
Only if load information is completely outdated does it becomes unusable.

6 Conclusions and Future Work

In this paper, we have investigated the performance of four state-of-the-art
distributed work-stealing algorithms (Random Stealing, Hierarchical Stealing,
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Cluster-aware Random Stealing and Adaptive Cluster-aware Random Stealing)
for irregular Divide-and-Conquer parallel applications. We have shown that, sur-
prisingly, for highly-irregular applications Hierarchical Stealing delivers the best
speedups. This differs from regular D&C applications, where previous work [16,8]
has shown that CRS delivers the best speedups.

We have also investigated the speedup improvements that can be made if ac-
curate system load is available. Our results show that perfect load information
brings significant speedup benefits for highly-irregular D&C applications. Sur-
prisingly, for less irregular ones, the availability of perfect load information is
not too significant. Our results show that if some load information is available,
then the CRS and ACRS algorithms deliver the best speedups for irregular D&C
applications. We have, moreover, shown that in order to obtain good speedups
with these algorithms, it is not necessary for the load information to be perfect: a
good approximation also suffices. This clearly indicates that the CRS and ACRS
algorithms are the best ones to choose for work-stealing on distributed systems
with non-uniform and potentially high communication latencies.

In future, we plan to extend the CRS algorithm with mechanisms for
approximating load information. Several good mechanisms for obtaining good
approximations of load information already exist, e.g. Grid-GUM [1] uses a fully-
distributed mechanism of load information propagation, and Atlas uses a Hier-
archical mechanism [2]. We intend to consider a combination of fully-distributed
and fully-centralised approaches, where load information is centralised within
the low-latency networks, and distributed over high-latency ones. We also in-
tend to investigate heuristics for estimating the number of tasks that should be
transferred in one steal operation and the impact that sending more than one
steal attempt has on various algorithms.
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