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Abstract. This paper addresses the workload partition strategies in the 
simulation of manycore architectures. The key observation behind this paper is 
that, compared to traditional multicores, manycores feature more non-uniform 
memory access and unpredictable network traffic; these features degrades 
simulation speed and accuracy of Parallel Discrete Event Simulators (PDES) 
when one uses static workload partition schemes. Based on the observation, we 
propose an adaptive workload partition method: Core/Router-Adaptive 
Workload Partition (CRAW/P).  The method delivers more speedup and 
accuracy than static partition schemes by partitioning the simulation of on-chip-
network independently from that of the cores and by synchronizing them 
differently. Using a PDES simulator, we evaluate the performance of CRAW/P 
in simulating a 256-core general purpose many-core processor. Running 
SPLASH2 benchmark applications, the experimental results demonstrate it can 
deliver speed improvement by 28%~67% over static partition scheme and 
reduces timing errors to <10% in very relaxed simulation (quantum size as 64). 
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1 Introduction 

While the “manycore era” approaches, some manycore processors have already arrived 
[1, 2, 3, 4, 5]. Thousand-core processors are no longer infeasible, and it is likely that 
thousands of cores on a single die will become a commodity [6]. Simulating such 
parallel systems is a serious problem. Currently, the majority of simulators available 
are sequential [7, 8, 9] and thus run the simulation workload on a single host thread. 
When the number of cores increases in a target system, the simulation performance for 
each core goes down.  

A variety of techniques have been proposed to accelerate simulation. These 
techniques include the following: parallel simulation [10, 11, 12, 13, 14, 15], direct 
execution [15, 16], and FPGA acceleration [17, 18, 19]. Among these techniques, 
parallel simulation speeds simulation by exploiting the parallelism inherent in the 
target parallel architecture.  Besides, the advent of low-cost SMP computers makes 
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parallel simulation very attractive. Representative works on parallel simulation are 
Parallel Discrete Event Simulation (PDES) simulators [21].  

State-of-the-art PDES simulators focus on simulating multicores. These simulators 
partition the simulation workload in a simple static manner. Examples could be found 
in P-mambo [16], SlackSim [14], and Graphite [15].  In these simulators, target cores 
are evenly distributed among host threads. These schemes work well in simulating 
multicores but are inefficient in simulating manycores. The distinction lies in the 
architectural difference between multicores and manycores: manycores feature large 
scale on-chip-networks, which produce more non-uniform memory accessses (NUCA) 
and unpredictable network traffic. 

Based on these observations, this paper proposes a partition method: core/router-
adaptive workload partition (CRAW/P). The essential idea of CRAW/P is that it 
partitions the simulation workload adaptively, divides the simulation of on-chip-
network (routers) separately from that of the cores and simulates network more strictly. 
The method delivers more speedup and accuracy than static partition schemes. 

The main contributions of CRAW/P are 1) how to use adaptive partitions to deliver 
speedup and accuracy and 2) how to leverage the core/router partitioning to efficiently 
maintain accuracy in terms of (i) reduction of host threads that simulate the network 
and (ii) strict synchronization for the network. As far as we can tell, we are the first to 
comprehensively discuss the workload partition scheme in manycore simulation and 
exploit simulation speedup and accuracy saving from the division of network and cores 
in parallel simulating manycores. 

The remainder of this paper is structured as follows. Section 2 discusses the 
architectural characteristics of manycores and demonstrates the observations. Section 3 
discusses the details of CRAW/P. Section 4 illustrates the experimental results. Section 5 
discusses some related work. Section 6 offers some concluding remarks. 

2 Observation 

This section explains why static workload partition scheme is far from an optimal 
choice for simulating manycores and demonstrates the observation that motivates the 
adaptive partitioning and the core/router partitioning. Some experimental examples are 
given using the experimental platform later described in Section 4. 

Fig. 1 shows how static partition schemes are used to simulate typical multicores 
and manycores. The partition scheme in Fig. 1(a) represents the scheme used, for 
instance, by SlackSim [14] while the partition scheme in Fig. 1(b) represents what 
used in Graphite [15]. The static scheme may work well in these multicore simulators 
but it is inefficient for manycores. The key is the large-scale on-chip-network, which 
is widely used in modern manycore architectures to provide better scalability. A large 
on-chip-network enlarges the following phenomenon on manycores: non-uniform 
cache accesses and unpredictable network traffic. 

Non-uniform cache access (NUCA) produces an obvious workload imbalance. On 
large scale networks, NUCA accesses might produce very non-uniform on-chip traffic 
due to topology and routing. The situation is worsened if hot spotting appears on the 
network. The non-uniform traffic results in some cores being busy running ahead due 
to short off-core latency, while other cores are stalling for reply. In a typical PDES 
simulator, simulating a busy core/router results in a large workload while simulating a 
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Fig. 6. Adaptive workload partition in Simple-adaptive and 
CRAW/P 

Fig. 6 shows how 
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PDES simulator. During 
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partitioning thread assembles the summary workload and redistributes the tiles to each 
thread, assuring workload balance. The idea of adaptive partition is to use the workload 
distribution in the near history to guide the workload partition in the near future and 
achieve better balance. In practical simulation, the partition interval should be set to a 
proper value: a big interval would result in bad partition efficiency while a small one 
would introduce considerable synchronization overhead. In this paper, the interval is 
set dynamically during simulation to ensure the partition overhead is less than a 
constant (e.g. 2%).   

CRAW/P is essentially an adaptive partition scheme and has the same basic 
mechanism as Simple-Adaptive. However, it goes further; it partitions the network 
apart from the cores and allows the simulation of network and cores to use different 
synchronization strategies. To implement the network/core partition and different 
synchronization strategies, CRAW/P divides the host threads into two types: core 
thread and router thread. Core threads simulate cores (processing pipeline, L1$, and 
L2$) and synchronize with a coarse quantum; on the other hand, router threads 
simulate routers and synchronize with a fine quantum. The idea of CRAW/P could be 
defined through the following constraints on the simulator: 
 

1. Workload balance must be maintained between all host threads (core 
threads + router threads). Since workload balancing is the basic mechanism 
to reduce synchronization overhead and clock-skew, it is a must for parallel 
simulation. 
 

2. Network must be simulated by router threads. Since the network is quite 
sensitive to parallelism, the network should be simulated by as few threads as 
possible. Because the router is a light weight module compared to core module 
(functional model and core timing model), this constraint will largely reduce 
the number of router threads.  
 

3. Cores should be simulated by core threads with higher priority than by 
router threads. Ideally, cores are simulated only by core threads. However, in 
cases of serious workload imbalance between router threads and core threads, 
workload balance should be achieved by migrating cores to router threads 
other than routers to core threads. Fig. 5(c) shows an example where a core 
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migrates to a router thread. This decision still obeys constraint 2 that the 
network must be simulated by router threads.   
 

4. Synchronization between router threads must be strict to increase 
accuracy. Since RR link is highly-interactive, if synchronization between 
router threads is relaxed, the clock-skew between router threads will easily 
produce timing errors. So, for the sake of accuracy, router threads must 
synchronize very strictly. In our CRAW/P scheme, the router thread quantum 
is set as 1 by default. The small router thread quantum requires router threads 
to frequently synchronize with each other. However, the synchronization 
overhead is not much because the number of router thread is small. 
 

5. Synchronization between core threads and router threads should be 
relaxed to a reasonable extent to enable speedup. The only synchronization 
requirement for simulating cores derives from the CR interaction. The CR 
links, however, are observed to be less interactive links. So, relaxing the core-
core and core-router synchronization to a reasonable extent will improve the 
simulation speed at the expense of a moderate accuracy loss.  

 

In summary, compared to a Static scheme, CRAW/P should present a better speedup 
and accuracy: Simulation speedup comes from 1) workload balancing between host 
threads and 2) synchronization relaxation between core threads. The accuracy 
improvement comes from several features: 1) it partitions the workload adaptively, 
achieving accuracy improvements from the workload balance; 2) it requires the 
network to be simulated by dedicated router threads, which limits the number of host 
threads that simulate the network; 3) it requires tight synchronization between router 
threads (small router thread quantum). 

4 Results 

This section presents the evaluation results that demonstrate the simulation speed and 
accuracy of our partition scheme compared to our two references. Section 4.1 describes 
the host and target configurations. Section 4.2 compares the performance of Static, 
Simple-Adaptive, and CRAW/P.  

4.1 Experimental Setup  

The multi-core host has four quad-core Intel(R) Xeon(R) E7420 CPUs running at 
2.13GHZ and 128GB of DRAM. The OS is Red Hat SMP Linux with kernel version 
2.6.18. Each of the experiments in this section uses the target architecture parameters 
summarized in Table 1 unless otherwise noted. The 256-core many-core architecture is 
similar with that in Fig. 1(b).  The cache coherency used in the target is directory 
based MESI, which is similar with that of TilePro [3]. We ported representative 
applications from the SPLASH2 benchmark suite. Table 2 lists the problem size of 
these applications. All applications are threaded with 256 threads.  
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improves the speed to >0.014 MCPS, which is slightly less than that achieved by 
Simple-Adaptive. However, CRAW/P reduces the timing error (ECPE) from ~0.016 
(Static) to <0.002, which is far less than ~0.01 of Simple-Adaptive. 

Simulation Speed. Fig. 8 shows the simulation speedup over the SPLASH2 
benchmarks for Static, Simple-Adaptive, and CRAW/P. All applications exhibit better 
speed when using Simple-Adaptive or CRAW/P. The improvement of Simple-Adaptive 
ranges from a factor 1.37 (choleskey_p16) to 1.74 (radix_p4). The improvement of 
CRAW/P ranges from a factor 1.28 (cholesky_p16) to 1.67 (radix_p4).    

 

Fig. 8. Scaling of SPLASH benchmarks across various core counts using the three partition 
schemes. The top graph shows the speed-up normalized to a single core (sequential simulation). 
The bottom shows the speed improvement of Simple-Adaptive and CRAW/P compared to 
Static. The number of cores in the host is denoted by *_p*. In all simulations, the quantum size 
is 8 but in CRAW/P router thread quantum is 1. The number of router threads in all the 
simulations falls in the region of 1–2.3. 

 
      (a) fft                                            (b) radix 

Fig. 9. Simulation speed of (a) fft and (b) radix with different quantum sizes and different 
numbers of host threads. The quantum size is denoted by Q*. The thread count is denoted by 
P*.  For example, Q4P8 indicates that the simulation is run on 8 host threads with a 
synchronization quantum of 4. 
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the workload of core and router respectively. Besides, the router threads in CRAW/P 
synchronize in every cycle while in Simple-Adaptive the synchronization between all 
host threads is relaxed. The extra synchronization slows down the simulation speed of 
CRAW/P but warrants better accuracy. 

Another observation in is that the speed improvements of Simple-Adaptive and 
CRAW/P generally slowly drop as more host threads are added. The observation 
corresponds to the growing synchronization overhead between host threads. The 
benefit of workload balancing is gradually reduced as synchronization dominates the 
simulation overhead.  

To demonstrate the effect of Simple-Adaptive and CRAW/P using different 
quantum, the result of fft (the application displaying the worst scaling) and radix (the 
application with best scaling) are selected and illustrated in Fig. 9. A general trend 
can be observed: adaptive partition schemes provide more improvement in cases of 
larger quantum sizes. The reason is the following: in quantum simulation, each host 
thread advances quantum cycles without synchronization, and the imbalance in each 
quantum is accumulated. The imbalance accumulation will be more significant as the 
quantum grows. A bigger workload imbalance will give more chances to adaptive 
partition schemes to do workload balancing. 

Simulation Accuracy. Fig. 10 shows timing errors of fft and radix with different 
quantum sizes and different numbers of host threads. The timing error referred here is 
obtained by comparing the timing result with sequential simulation. The first fact to 
observe is that the timing error of fft is generally less than radix. This matches the 
application behavior of fft that contains a considerable sequential phase (the 
sequential phase is sequentially simulated and thus involves no timing error). 

As illustrated, in the case of the Static scheme, the timing error grows intensely 
with 1) more host threads and 2) larger quantum. The simulation is particularly 
inaccurate with large quantum.  The timing error in Q64P8 and Q64P16 exceeds 50% 
(51.5% in fft and 84.1% in radix), which makes the results simply worthless. Another 
notable fact is that timing error grows very significantly from Q16 to Q64. That’s 
because a quantum of 64 would more easily yield clock skew of tens of cycles, which 
would completely cover the major part of idle-cycle distribution (cf. Fig. 4).  

 

   
(a) fft                                   (b) radix                                

Fig. 10. Simulation error of (a) fft and (b) radix in simulation with different quanta across various 
numbers of host threads. Quantum size is denoted by Q*. Thread number is denoted by P*. 

Simple-Adaptive does indeed reduce the timing error, but the saving is very 
limited. Although it shows better efficiency in cases with more host threads and larger 
quantum size, the timing error is still more than half that of Static. CRAW/P is very 
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effective in improving accuracy, especially in the cases of Q64*. It reduces the timing 
error of fft_Q64P16 from 51.5% to 6.5%, and reduces the timing error of 
radix_Q64P16 from 84.1% to 9.9%. Overall, the experiment shows that CRAW/P 
behaves much better than both Simple-Adaptive and Static. 

5 Related Work 

Simulation is an important technique to explore new computer architectures ranging 
from micro-processors to parallel computers. A variety of different simulators exist, 
most of which are sequential. Sequential simulators run on one host thread, which 
limits performance. Various techniques have been studied to accelerate simulation 
speed including parallel simulation, direct execution, and FPGA acceleration et.  

The best known parallel simulation method, PDES has been studied for decades. In 
conventional PDES simulators, host threads must synchronize frequently to maintain 
the fidelity of the simulation. Some PDES simulators adopted Quantum [13] or Slack 
to relax the synchronization condition.  

Static workload partition is widely used in state-of-art parallel simulators. Typical 
examples are P-Mambo, SlackSim, and Graphite. Parallel Mambo [16] (P-Mambo) is 
a multi-threaded implementation of Mambo where a core based module partition is 
proposed to achieve high inter-scheduler parallelism. However, the evaluation only 
simulates a relatively small 4-core PowerPC machine. 

In SlackSim, there are two types of host threads: core thread and manager thread. 
One dedicated thread simulates the centralized lower memory hierarchy while another 
set of threads (four in the paper) simulate the cores. The workload imbalance between 
core and memory threads can be statically avoided and the minimum L2$ access 
latency can be identified as safe quantum (SlackSim).  

Graphite [15] uses multi-machine distributed simulation, which provides a better 
scalability. The tiled multicore architecture is very similar to the manycore 
architecture proposed in this paper. However, the workload partition is still static, 
with each host process simulating a set of target tiles, whose number is limited to 32. 

6 Conclusion and Future Work 

This paper addresses workload partitioning in manycore simulation. We discuss the 
architectural characteristics of manycores, present the drawbacks of a static scheme 
for manycore simulation, and propose an adaptive workload partition method called 
CRAW/P. Experimental results demonstrate that CRAW/P delivers considerable 
speedup (28–67%) and accuracy saving (<10% in timing error with a quantum of 64).  

Further digging into the mechanisms lying behind the effects of workload 
imbalance and network on speed and accuracy can help us better understand 
manycore simulation; it can also provide future improvement opportunities. These 
opportunities are the focus of our future work. Another possible extension is to 
partition the simulation of cores and network onto different machines, seeking better 
performance to simulate large-scale manycore architecture containing more cores. 
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