
C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 102–114, 2012.
© Springer-Verlag Berlin Heidelberg 2012

CRAW/P: A Workload Partition Method
for the Efficient Parallel Simulation of Manycores

Shuai Jiao1,2, Paolo Ienne3, Xiaochun Ye1, Da Wang1,
Dongrui Fan1, and Ninghui Sun1

1 SKL Computer Architecture, ICT, CAS, Beijing, P.R. China
2 Graduate University of Chinese Academy of Sciences, Beijing, P.R. China

3 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{jiaoshuai,yexiaochun,wangda,fandr,snh}@ict.ac.cn,

Paolo.Ienne@epfl.ch

Abstract. This paper addresses the workload partition strategies in the
simulation of manycore architectures. The key observation behind this paper is
that, compared to traditional multicores, manycores feature more non-uniform
memory access and unpredictable network traffic; these features degrades
simulation speed and accuracy of Parallel Discrete Event Simulators (PDES)
when one uses static workload partition schemes. Based on the observation, we
propose an adaptive workload partition method: Core/Router-Adaptive
Workload Partition (CRAW/P). The method delivers more speedup and
accuracy than static partition schemes by partitioning the simulation of on-chip-
network independently from that of the cores and by synchronizing them
differently. Using a PDES simulator, we evaluate the performance of CRAW/P
in simulating a 256-core general purpose many-core processor. Running
SPLASH2 benchmark applications, the experimental results demonstrate it can
deliver speed improvement by 28%~67% over static partition scheme and
reduces timing errors to <10% in very relaxed simulation (quantum size as 64).

Keywords: Parallel Simulation, Manycore, Multicore, Workload Partition.

1 Introduction

While the “manycore era” approaches, some manycore processors have already arrived
[1, 2, 3, 4, 5]. Thousand-core processors are no longer infeasible, and it is likely that
thousands of cores on a single die will become a commodity [6]. Simulating such
parallel systems is a serious problem. Currently, the majority of simulators available
are sequential [7, 8, 9] and thus run the simulation workload on a single host thread.
When the number of cores increases in a target system, the simulation performance for
each core goes down.

A variety of techniques have been proposed to accelerate simulation. These
techniques include the following: parallel simulation [10, 11, 12, 13, 14, 15], direct
execution [15, 16], and FPGA acceleration [17, 18, 19]. Among these techniques,
parallel simulation speeds simulation by exploiting the parallelism inherent in the
target parallel architecture. Besides, the advent of low-cost SMP computers makes

 CRAW/P: A Workload Partition Method 103

parallel simulation very attractive. Representative works on parallel simulation are
Parallel Discrete Event Simulation (PDES) simulators [21].

State-of-the-art PDES simulators focus on simulating multicores. These simulators
partition the simulation workload in a simple static manner. Examples could be found
in P-mambo [16], SlackSim [14], and Graphite [15]. In these simulators, target cores
are evenly distributed among host threads. These schemes work well in simulating
multicores but are inefficient in simulating manycores. The distinction lies in the
architectural difference between multicores and manycores: manycores feature large
scale on-chip-networks, which produce more non-uniform memory accessses (NUCA)
and unpredictable network traffic.

Based on these observations, this paper proposes a partition method: core/router-
adaptive workload partition (CRAW/P). The essential idea of CRAW/P is that it
partitions the simulation workload adaptively, divides the simulation of on-chip-
network (routers) separately from that of the cores and simulates network more strictly.
The method delivers more speedup and accuracy than static partition schemes.

The main contributions of CRAW/P are 1) how to use adaptive partitions to deliver
speedup and accuracy and 2) how to leverage the core/router partitioning to efficiently
maintain accuracy in terms of (i) reduction of host threads that simulate the network
and (ii) strict synchronization for the network. As far as we can tell, we are the first to
comprehensively discuss the workload partition scheme in manycore simulation and
exploit simulation speedup and accuracy saving from the division of network and cores
in parallel simulating manycores.

The remainder of this paper is structured as follows. Section 2 discusses the
architectural characteristics of manycores and demonstrates the observations. Section 3
discusses the details of CRAW/P. Section 4 illustrates the experimental results. Section 5
discusses some related work. Section 6 offers some concluding remarks.

2 Observation

This section explains why static workload partition scheme is far from an optimal
choice for simulating manycores and demonstrates the observation that motivates the
adaptive partitioning and the core/router partitioning. Some experimental examples are
given using the experimental platform later described in Section 4.

Fig. 1 shows how static partition schemes are used to simulate typical multicores
and manycores. The partition scheme in Fig. 1(a) represents the scheme used, for
instance, by SlackSim [14] while the partition scheme in Fig. 1(b) represents what
used in Graphite [15]. The static scheme may work well in these multicore simulators
but it is inefficient for manycores. The key is the large-scale on-chip-network, which
is widely used in modern manycore architectures to provide better scalability. A large
on-chip-network enlarges the following phenomenon on manycores: non-uniform
cache accesses and unpredictable network traffic.

Non-uniform cache access (NUCA) produces an obvious workload imbalance. On
large scale networks, NUCA accesses might produce very non-uniform on-chip traffic
due to topology and routing. The situation is worsened if hot spotting appears on the
network. The non-uniform traffic results in some cores being busy running ahead due
to short off-core latency, while other cores are stalling for reply. In a typical PDES
simulator, simulating a busy core/router results in a large workload while simulating a

104 S. Jiao et al.

Fig. 1. A typical multicore S
static partition schemes. The M
CMP has a L1 instruction and
L2 (or even L3) cache banks
private or shared to each cor
manycore processors (e.g., Inte
These processors present com
DRAM controllers at the perip

waiting core/router involv
distribution when simulati
kernel. The arrows and cir
main reason of non-uniform

If the simulation workloa
imbalance would slowdown
synchronizing their local clo
method), clock skew is mo
shows a example of stati
simulation speed and timin
per Second) is the measure
the simulator achieves durin
is the measure of the dynam
average cycle deviation of
Workload imbalance is
synchronization overhead
presents opposite variation
similarly with the imbalanc

Unpredictable network
sensitive to accuracy. The
predict the on-chip traffic p
cycle latency between nei
(SlackSim) for any router-
asynchronously simulated b
threads would easily produc

Further examining the n
router is less frequent and m
Router-Router (RR) link w
messages into the network
interacting cores. The C

MP and manycore processor simulated by 5 host threads u
Multi-core architecture is typical CMP architecture. Each core
d coherent data cache. The lower level cache hierarchy is mad
s, which are accessed in a NUCA [21] manner. Banks can
re. The manycore architecture is extracted from state-of-the
el SCC [1], Polaris [2], Tile64/Pro/Gtx [3, 4], and Godson-T [
mmon features such as distributed caches, mesh network,
pheral of the chip.

ves practically no activity. Fig. 2 shows the workl
ing a 256-core architecture running the matrix_mult
rcles indicate that on-chip cache-access hot spotting is

m workload distribution.
ad is statically partitioned among host threads, the workl
n simulation speed because host threads spend more time
ocks. Besides, in cases of relaxed simulation (e.g., quant
re likely to happen, resulting in more timing errors. Fig
ic partition scheme which demonstrates the relation
ng error with workload imbalance. MCPS (Million Cyc
e of simulation speed: it indicates how many target cyc
ng one wall-clock second. ECPE (Error Cycles per Eve

mic timing error during simulation run time: it indicates
an event timestamp from the cycle it actually takes eff
measured by the Standard Deviation (SD) of
for all host threads. As illustrated, simulation sp

n against workload imbalance while timing error va
e. The relation is more obvious in the region of 130–150
k traffic makes parallel simulation of network q
network connects so many interacting tiles that we can

pattern. Besides, most modern on-chip routers achieve o
ighboring tiles; as a result, there is no “critical-laten
to-router link. In this situation, if neighboring routers

by different threads, even a limited clock skew between h
ce timing errors.
network traffic, we find that the traffic between core
more deterministic than that between router and router.

would be quite busy even if all cores inject infrequen
k because a router-router link may be shared by m
Core-Router (CR) link, however, demonstrates so

sing
of a

de of
n be
e-art
[5]).
and

load
tiply

the

load
e on
tum
g. 3

n of
cles
cles
ent)
the

fect.
the

peed
aries
0s.
uite

nnot
one-
ncy”

are
host

and
 A
ntly

many
ome

Fig. 2. Relation between on-c
distribution (bottom) during s
manycore processor running m
every L2$. Workload is measu
mini blocks) represents a snap
the pane indicates a target tile
heavy workload while lighter f

Fig. 3. Simulation speed (M
imbalance (Standard Deviation
section of matrix-multiply by 8
of workload imbalance is obse

determinism. For example,
continuous Cache-Misses o
between a Cache-Miss even
because the L2$ (Level 2 ca
request. Although these e
between two CR link events

To demonstrate the dif
distribution of RR link and
the cycles between two con
idle-cycle of 4 for a CR li
previous one on that CR
matrix_multiply and lu. Ma
little inter-core communicat
Lu is among the applicatio
core communication. Most
Both simulations show tha
example, in matrix_multipl

CRAW/P: A Workload Partition Method

Simulation Run Time

chip hot spotting in accessing shared cache (top) and workl
simulation. Data is collected from the simulation of a 256
matrix-multiply. Hot spotting is measured as the busy cycle
ured by the time spent in simulating each tile. Each pane (16
shot of simulation workload distribution. Each gray mini bloc
e. The shade of gray indicates the workload level: darker is
for light workload.

MCPS) and timing error (ECPE) are influenced by workl
n) during simulation run-time. Data is collected from a simula
8 host threads with a relaxed quantum of 16. An obvious epis

erved in the region of 130–150s.

, we can predict the most probable interval between
on a CR link. Also, we can determine the minimum inter
nt and the corresponding Cache-Refill event on a CR l
ache) has the minimum processing cycles for a Cache-M
events may happen concurrently and result in less cyc
s, the CR link still present more determinism than RR lin
fference between RR link and CR link, the idle-cy

d CR link is presented in fig. 4. An idle-cycle is defined
ntinuous traffic events on a specific link. For example,
ink indicates that a link event happens 4 cycles after
link. Two simulation cases are demonstrated in Fig

atrix_multiply is a highly parallel application and conta
tion. Most network traffic events are Cache-Misses/Ref
ns of the SPLASH2 benchmark which contain most in
of the on-chip traffic is coherence traffic between cach

at router-router link is busier than core-router link.
ly, the idle-cycles equal to 2 accounts for a proportion

105

load
6-tile
es of
6x16
ck in
s for

load
ation
sode

two
rval
link

Miss
cles

nk.
ycle
d as
, an
the

. 4:
ains
fills.
nter-
hes.
For

n of

106 S. Jiao et al.

(a) matrix_mu

Fig. 4. Idle-cycles distribution i
and lu. Idle-cycles larger than 1

20%. The idle-cycles for
determined by the least pr
latency). In lu, idle-cycles m
minimum processing cycles

3 CRAW/P

This section discusses the
schemes are also described
examples of these three part
distributed onto multiple h
Implementation details of th

Fig. 5. Workload partitioning
Simple-Adaptive use one sync
two different quantum sizes: co

The described Static par
simply partitions the target
scheme is a very straightforw
workload balance between a
synchronization, resulting in
skew between host threads, r

R R

RR

RR

RR

R R
C

RR
C

RR
C

RR
C

C

C

C

C

C

C

C

C

C

C

C

C

R

R

R

R

C

C

C

C

R

R

R

R

C

C

C

C

R

R

R

R

C

C

C

C

R
C

R
C

R
C

R
C

Host Threa

Synchronizatio
point

ultiply (b) lu

in the simulation of a 256-core architecture running matrix_mult
28 is ignored.

the CR link, however, mostly falls beyond 8, which
rocessing cycles of Cache-Miss message in L2$ (L2$
mainly fall in the region of 4–10, which is determined by
s of Cache-Invalidation message in the core.

e proposed partition scheme, CRAW/P. Two partit
for comparison: Static and Simple-Adaptive. Fig. 5 sho

tition schemes. In these schemes, simulation of the targe
ost threads. Host threads run in a relaxed PDES mann

he used PDES method in this paper could be referred in [2

for Static, Simple-Adaptive, and CRAWP. Note that Static
chronization quantum among all host threads while CRAWP u
ore thread quantum (large) and router thread quantum (small).

rtition scheme is exactly the scheme used in Graphite
t tiles evenly onto all host threads. The Simple-Adap
ward manner to create adaptive partitions: It tries to main
all host threads. As a result, host threads spend less time
n some speedup. Besides, better balance produces less clo
reducing timing errors in a relaxed simulation.

Core Thread Router Thread

R R

RR

RR

RR

R R
C

RR
C

RR
C

RR
C

C

C

C

C

C

C

C

C

C

C

C

C

R R

RR

RR

RR

R RC

RRC

RRC

RRC

C

C

C

C

C

C

C

C

C

C

C

C

ad

on

Router Thread
Quantum

Core Thread
Quantum

tiply

h is
 hit

y the

tion
ows
et is
ner.

22].

and
uses
.

e. It
ptive
ntain
e on
ock-

 CRAW/P: A Workload Partition Method 107

Fig. 6. Adaptive workload partition in Simple-adaptive and
CRAW/P

Fig. 6 shows how
adaptive partition works
in a quantum based
PDES simulator. During
the simulation, host
threads record the
simulation time for each
tile; all host threads
barrier twice after a
period of T cycles;
between every barrier-
pair, only one host thread
runs the repartition work
while other threads are
simply waiting. The

partitioning thread assembles the summary workload and redistributes the tiles to each
thread, assuring workload balance. The idea of adaptive partition is to use the workload
distribution in the near history to guide the workload partition in the near future and
achieve better balance. In practical simulation, the partition interval should be set to a
proper value: a big interval would result in bad partition efficiency while a small one
would introduce considerable synchronization overhead. In this paper, the interval is
set dynamically during simulation to ensure the partition overhead is less than a
constant (e.g. 2%).

CRAW/P is essentially an adaptive partition scheme and has the same basic
mechanism as Simple-Adaptive. However, it goes further; it partitions the network
apart from the cores and allows the simulation of network and cores to use different
synchronization strategies. To implement the network/core partition and different
synchronization strategies, CRAW/P divides the host threads into two types: core
thread and router thread. Core threads simulate cores (processing pipeline, L1$, and
L2$) and synchronize with a coarse quantum; on the other hand, router threads
simulate routers and synchronize with a fine quantum. The idea of CRAW/P could be
defined through the following constraints on the simulator:

1. Workload balance must be maintained between all host threads (core
threads + router threads). Since workload balancing is the basic mechanism
to reduce synchronization overhead and clock-skew, it is a must for parallel
simulation.

2. Network must be simulated by router threads. Since the network is quite
sensitive to parallelism, the network should be simulated by as few threads as
possible. Because the router is a light weight module compared to core module
(functional model and core timing model), this constraint will largely reduce
the number of router threads.

3. Cores should be simulated by core threads with higher priority than by
router threads. Ideally, cores are simulated only by core threads. However, in
cases of serious workload imbalance between router threads and core threads,
workload balance should be achieved by migrating cores to router threads
other than routers to core threads. Fig. 5(c) shows an example where a core

108 S. Jiao et al.

migrates to a router thread. This decision still obeys constraint 2 that the
network must be simulated by router threads.

4. Synchronization between router threads must be strict to increase
accuracy. Since RR link is highly-interactive, if synchronization between
router threads is relaxed, the clock-skew between router threads will easily
produce timing errors. So, for the sake of accuracy, router threads must
synchronize very strictly. In our CRAW/P scheme, the router thread quantum
is set as 1 by default. The small router thread quantum requires router threads
to frequently synchronize with each other. However, the synchronization
overhead is not much because the number of router thread is small.

5. Synchronization between core threads and router threads should be
relaxed to a reasonable extent to enable speedup. The only synchronization
requirement for simulating cores derives from the CR interaction. The CR
links, however, are observed to be less interactive links. So, relaxing the core-
core and core-router synchronization to a reasonable extent will improve the
simulation speed at the expense of a moderate accuracy loss.

In summary, compared to a Static scheme, CRAW/P should present a better speedup
and accuracy: Simulation speedup comes from 1) workload balancing between host
threads and 2) synchronization relaxation between core threads. The accuracy
improvement comes from several features: 1) it partitions the workload adaptively,
achieving accuracy improvements from the workload balance; 2) it requires the
network to be simulated by dedicated router threads, which limits the number of host
threads that simulate the network; 3) it requires tight synchronization between router
threads (small router thread quantum).

4 Results

This section presents the evaluation results that demonstrate the simulation speed and
accuracy of our partition scheme compared to our two references. Section 4.1 describes
the host and target configurations. Section 4.2 compares the performance of Static,
Simple-Adaptive, and CRAW/P.

4.1 Experimental Setup

The multi-core host has four quad-core Intel(R) Xeon(R) E7420 CPUs running at
2.13GHZ and 128GB of DRAM. The OS is Red Hat SMP Linux with kernel version
2.6.18. Each of the experiments in this section uses the target architecture parameters
summarized in Table 1 unless otherwise noted. The 256-core many-core architecture is
similar with that in Fig. 1(b). The cache coherency used in the target is directory
based MESI, which is similar with that of TilePro [3]. We ported representative
applications from the SPLASH2 benchmark suite. Table 2 lists the problem size of
these applications. All applications are threaded with 256 threads.

Tab

Feature Value
Clock 1GHz

L1 Cache Private,
L2 Cache Shared,
Coherence Directo

DRAM 64GB/s
Interconnect Mesh n

4.2 Simulation Perform

Case Study. Fig. 7 (abc) il
error of the three partition
(Simple-Adaptive and CRA
~20% to <10%. Meanwhile
CRAW/P is slightly worse t
because of the higher pa
introduced by the stricter
simulation speed and tim
Adaptive improves the s

Fig. 7. The top graphs show th
imbalance) for Static (a), Simp
simulation speed (MCPS) and
CRAW/P (g). Data are collect
For Static and Simple-Adapti
core thread quantum is 8 and th

Table 2. Parameters of Targe

application Proble
fft 64M p
radix 256M
lu 1024x
fmm 4k
barnes 2048
cholesky Input

CRAW/P: A Workload Partition Method

ble 1. Parameters of Target Architecture

, 32 KB, 32-byte line size, 4-way associative, and LRU replacement.
, 128KB, 64-byte line size, 8-way associative, and LRU replacement.

ory based MESI.
s = (8 Controllers * 8 GB/s each).
network 16x16; wormhole routing;

The experiment platform is
quantum [13] based PDES simulato
QMill. QMill derives from the G
[22] simulator, which is an accur
simulator for the Godson-T Many-c
architecture [5]. We use QMill beca
it can conveniently simulate hundr
core general purpose manyc
architectures described in fig. 1(b).

mance

llustrates the average synchronization overhead and tim
schemes during a simulation run. The adaptive schem

AW/P) largely reduce the synchronization overhead fr
e, the deviation is reduced from ~23% to <5%. Note t
than Simple-Adaptive in synchronization reduction. Thi
rtitioning overhead and extra synchronization overh
r inter-router synchronization. Fig. 7 (efg) shows

ming error of three schemes during simulation. Simp
speed from ~0.011MCPS to >0.015 MCPS. CRAW

he average synchronization overhead and the deviation (workl
ple-Adaptive (b), and CRAW/P (c). The bottom graphs show
d timing error (ECPE) for Static (e), Simple-Adaptive (f),
ted from the matrix_multiply kernel simulated by 8 host thre
ive, the synchronization quantum is set to 8. For CRAW/P,
he router thread quantum is 1.

et Applications

em size
points

M keys
x1024

set tk15.O

109

a
or—
GAS

rate
core
ause
red-
core

ming
mes
rom
that
is is

head
the

ple-
W/P

load
w the

and
eads.
 the

110 S. Jiao et al.

improves the speed to >0.014 MCPS, which is slightly less than that achieved by
Simple-Adaptive. However, CRAW/P reduces the timing error (ECPE) from ~0.016
(Static) to <0.002, which is far less than ~0.01 of Simple-Adaptive.

Simulation Speed. Fig. 8 shows the simulation speedup over the SPLASH2
benchmarks for Static, Simple-Adaptive, and CRAW/P. All applications exhibit better
speed when using Simple-Adaptive or CRAW/P. The improvement of Simple-Adaptive
ranges from a factor 1.37 (choleskey_p16) to 1.74 (radix_p4). The improvement of
CRAW/P ranges from a factor 1.28 (cholesky_p16) to 1.67 (radix_p4).

Fig. 8. Scaling of SPLASH benchmarks across various core counts using the three partition
schemes. The top graph shows the speed-up normalized to a single core (sequential simulation).
The bottom shows the speed improvement of Simple-Adaptive and CRAW/P compared to
Static. The number of cores in the host is denoted by *_p*. In all simulations, the quantum size
is 8 but in CRAW/P router thread quantum is 1. The number of router threads in all the
simulations falls in the region of 1–2.3.

 (a) fft (b) radix

Fig. 9. Simulation speed of (a) fft and (b) radix with different quantum sizes and different
numbers of host threads. The quantum size is denoted by Q*. The thread count is denoted by
P*. For example, Q4P8 indicates that the simulation is run on 8 host threads with a
synchronization quantum of 4.

It is notable that Simple-Adaptive behaves slightly better than CRAW/P. The
difference is more obvious when more host threads are involved. That happens
because CRAW/P introduces more partitioning overhead because it has to consider

0
1
2
3
4
5
6
7
8

Sp
ee

d-
up

 (N
or

m
al

iz
ed

) Static
Simple-Adaptive
CRAWP

0
2
4
6
8

10
12
14
16
18

Sp
ee

d-
up

 (N
or

m
al

iz
ed

)

Static
Simple-Adaptive
CRAWP

 CRAW/P: A Workload Partition Method 111

the workload of core and router respectively. Besides, the router threads in CRAW/P
synchronize in every cycle while in Simple-Adaptive the synchronization between all
host threads is relaxed. The extra synchronization slows down the simulation speed of
CRAW/P but warrants better accuracy.

Another observation in is that the speed improvements of Simple-Adaptive and
CRAW/P generally slowly drop as more host threads are added. The observation
corresponds to the growing synchronization overhead between host threads. The
benefit of workload balancing is gradually reduced as synchronization dominates the
simulation overhead.

To demonstrate the effect of Simple-Adaptive and CRAW/P using different
quantum, the result of fft (the application displaying the worst scaling) and radix (the
application with best scaling) are selected and illustrated in Fig. 9. A general trend
can be observed: adaptive partition schemes provide more improvement in cases of
larger quantum sizes. The reason is the following: in quantum simulation, each host
thread advances quantum cycles without synchronization, and the imbalance in each
quantum is accumulated. The imbalance accumulation will be more significant as the
quantum grows. A bigger workload imbalance will give more chances to adaptive
partition schemes to do workload balancing.

Simulation Accuracy. Fig. 10 shows timing errors of fft and radix with different
quantum sizes and different numbers of host threads. The timing error referred here is
obtained by comparing the timing result with sequential simulation. The first fact to
observe is that the timing error of fft is generally less than radix. This matches the
application behavior of fft that contains a considerable sequential phase (the
sequential phase is sequentially simulated and thus involves no timing error).

As illustrated, in the case of the Static scheme, the timing error grows intensely
with 1) more host threads and 2) larger quantum. The simulation is particularly
inaccurate with large quantum. The timing error in Q64P8 and Q64P16 exceeds 50%
(51.5% in fft and 84.1% in radix), which makes the results simply worthless. Another
notable fact is that timing error grows very significantly from Q16 to Q64. That’s
because a quantum of 64 would more easily yield clock skew of tens of cycles, which
would completely cover the major part of idle-cycle distribution (cf. Fig. 4).

(a) fft (b) radix

Fig. 10. Simulation error of (a) fft and (b) radix in simulation with different quanta across various
numbers of host threads. Quantum size is denoted by Q*. Thread number is denoted by P*.

Simple-Adaptive does indeed reduce the timing error, but the saving is very
limited. Although it shows better efficiency in cases with more host threads and larger
quantum size, the timing error is still more than half that of Static. CRAW/P is very

51.5%

31.0%

6.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Ti
m

in
g

Er
ro

r(
%

)

Static
Simple-Adaptive
CRAWP

84.1%

48.7%

9.9%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Ti
m

in
g

Er
ro

r(
%

)

Static
Simple-Adaptive
CRAWP

112 S. Jiao et al.

effective in improving accuracy, especially in the cases of Q64*. It reduces the timing
error of fft_Q64P16 from 51.5% to 6.5%, and reduces the timing error of
radix_Q64P16 from 84.1% to 9.9%. Overall, the experiment shows that CRAW/P
behaves much better than both Simple-Adaptive and Static.

5 Related Work

Simulation is an important technique to explore new computer architectures ranging
from micro-processors to parallel computers. A variety of different simulators exist,
most of which are sequential. Sequential simulators run on one host thread, which
limits performance. Various techniques have been studied to accelerate simulation
speed including parallel simulation, direct execution, and FPGA acceleration et.

The best known parallel simulation method, PDES has been studied for decades. In
conventional PDES simulators, host threads must synchronize frequently to maintain
the fidelity of the simulation. Some PDES simulators adopted Quantum [13] or Slack
to relax the synchronization condition.

Static workload partition is widely used in state-of-art parallel simulators. Typical
examples are P-Mambo, SlackSim, and Graphite. Parallel Mambo [16] (P-Mambo) is
a multi-threaded implementation of Mambo where a core based module partition is
proposed to achieve high inter-scheduler parallelism. However, the evaluation only
simulates a relatively small 4-core PowerPC machine.

In SlackSim, there are two types of host threads: core thread and manager thread.
One dedicated thread simulates the centralized lower memory hierarchy while another
set of threads (four in the paper) simulate the cores. The workload imbalance between
core and memory threads can be statically avoided and the minimum L2$ access
latency can be identified as safe quantum (SlackSim).

Graphite [15] uses multi-machine distributed simulation, which provides a better
scalability. The tiled multicore architecture is very similar to the manycore
architecture proposed in this paper. However, the workload partition is still static,
with each host process simulating a set of target tiles, whose number is limited to 32.

6 Conclusion and Future Work

This paper addresses workload partitioning in manycore simulation. We discuss the
architectural characteristics of manycores, present the drawbacks of a static scheme
for manycore simulation, and propose an adaptive workload partition method called
CRAW/P. Experimental results demonstrate that CRAW/P delivers considerable
speedup (28–67%) and accuracy saving (<10% in timing error with a quantum of 64).

Further digging into the mechanisms lying behind the effects of workload
imbalance and network on speed and accuracy can help us better understand
manycore simulation; it can also provide future improvement opportunities. These
opportunities are the focus of our future work. Another possible extension is to
partition the simulation of cores and network onto different machines, seeking better
performance to simulate large-scale manycore architecture containing more cores.

 CRAW/P: A Workload Partition Method 113

Acknowledgment. This work is in part supported by the National Grand
Fundamental Research 973 Program of China under Grant No. 2011CB302501, the
National Science Foundation for Distinguished Young Scholars of China under Grant
No. 60925009, the Foundation for Innovative Research Groups of the National
Natural Science Foundation of China under Grant No. 60921002, the Beijing science
and technology plans under Grant No.2010B058 and the National Natural Science
Foundation of China under Grant No.(61173007，61100013 and 61100015).

References

[1] Howard, J., Dighe, S., Hoskote, Y., et al.: A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In: Proceedings of the International Solid-State Circuits
Conference, ISSCC 2010 (February 2010)

[2] Vangal, S., et al.: An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS. In: IEEE
International Solid-State Circuits Conference, ISSCC 2007. Digest of Technical Papers,
pp. 98–589 (2007)

[3] Bell, S., et al.: TILE64 processor: A 64-core SoC with mesh interconnect. In:
Proceedings of the International Solid-State Circuits Conference, ISSCC 2008 (February
2008)

[4] The TILE-GxTM Processor Family, Tilera (2009),
http://www.tilera.com/products/processors

[5] Fan, D., Zhang, H., Wang, D., et al.: High-Efficient Architecture of Godson-T Many-
Core Processor. In: Proceedings of Hot Chips 23. IEEE Computer Society (2011)

[6] Kelm, J.H., Johnson, D.R., Johnson, M.R., et al.: Rigel: An Architecture and Scalable
Programming. In: ISCA 2009 (2009)

[7] Burger, D., Austin, T.: The SimpleScalar tool set, version 2.0. Technical Report TR-1342,
University of Wisconsin-Madison Computer Sciences Department (June 1997)

[8] Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The
M5 Simulator: Modeling Networked Systems. IEEE Micro 26, 4 (2006)

[9] Magnusson, P.S., et al.: Simics: A Full System Simulation Platform. IEEE
Computer 35(2), 50–58 (2002)

[10] Chidester, M.C., George, A.D.: Parallel simulation of chip-multiprocessor architectures.
Proceedings of ACM Trans. Model. Comput. Simul., 176–200 (2002)

[11] Steinman, J.S.: SPEEDES: A Multiple-Synchronization Environment for Parallel
Discrete-Event Simulation. International Journal in Computer Simulation 2, 251–286
(1992)

[12] Chandy, K.: Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs. IEEE Transactions on Software Engineering 5(5), 440–452 (1979)

[13] Mukherjee, S.S., Reinhardt, S.: Wisconsin Wind Tunnel II: A Fast, Portable Parallel
Architecture Simulator. IEEE Concurrency 8(4), 12–20 (2000)

[14] Chen, J., Annavaram, M., Dubois, M.: SlackSim: A Platform for Parallel Simulations of
CMPs on CMPs. SIGARCH Comput. Archit. News 37(2), 20–29 (2009)

[15] Miller, J.E.: Graphite: A distributed parallel simulator for multicores. In: HPCA 2010:
The 16th IEEE International Symposium on High-Performance Computer Architecture
(2010)

[16] Wang, K., Zhang, Y., Wang, H., Shen, X.: Parallelization of IBM mambo system
simulator in functional modes. Operating Systems Review, 71–76 (2008)

114 S. Jiao et al.

[17] Chiou, D., Sunwoo, D.: FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle Accurate Simulators. In: MICRO 2007: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 249–261 (2007)

[18] Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsa, B.: ProtoFlex:
Towards Scalable, Full System Multiprocessor Simulations Using FPGAs. ACM Trans.
Recongurable Technol. Syst. 2(2), 1–32 (2009)

[19] Dave, N.: Implementing a functional/timing partitioned microprocessor simulator with an
FPGA. In: 2nd Workshop on Architecture Research using FPGA Platforms, WARFP
2006 (February 2006)

[20] Monchiero, M., Ahn, J.H., Falcon, A., Ortega, D., Faraboschi, P.: How to simulate 1000
cores. SIGARCH Comput. Archit. News 37(2), 10–19 (2009)

[21] Dybdahl, H.: An Adaptive Shared/Private NUCA Cache Partioning Scheme for Chip
Multiprocessors. In: Proc. of the Int. Symposium on High Performance Architecture
(HPCA), pp. 2–12 (2007)

[22] Huiwei, L., et al.: P-GAS: Parallelizing a Cycle-Accurate Event-Driven Many-Core
Processor Simulator Using Parallel Discrete Event Simulation. In: 24th ACM/IEEE/SCS
Workshop on Principle of Advanced and Distributed Simulation (PADS 2010), Atlanta,
USA (June 2010)

[23] Jefferson, D., Beckman, B., Wieland, F., Blume, L., Diloreto, M.: Time warp operating
system. In: Proceedings of the 11th ACM Symposium on Operating System Principles,
pp. 77–93 (1987)

[24] Das, S.R., Fujimoto, R., Panesar, K.S., Allison, D., Hybinette, M.: GTW: a time warp
system for shared memory multiprocessors. In: Winter Simulation Conference, pp. 1332–
1339 (1994)

	CRAW/P: A Workload Partition Method for the Efficient Parallel Simulation of Manycores
	Introduction
	Observation
	CRAW/P
	Results
	Experimental Setup
	Simulation Performance

	Related Work
	Conclusion and Future Work
	References

