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Abstract. We introduce a technique for using conventional predicate
abstraction methods to reduce the state-space of models produced us-
ing game semantics. We focus on an expressive procedural language that
has both local store and local control, a language which enjoys a simple
game-semantic model yet is expressive enough to allow non-trivial exam-
ples. Our compositional approach allows the verification of incomplete
programs (e.g. libraries) and offers the opportunity for new heuristics
for improved efficiency. Game-semantic predicate abstraction can be em-
bedded in an abstraction-refinement cycle in a standard way, resulting
in an improved version of our experimental model-checking tool Mage,
and we illustrate it with several toy examples.

1 Introduction

The most important technical challenge for automatic software verification is
the so-called state-explosion problem, the fact that the state-complexity of the
model checking problem is exponential in the size of the program. As a direct
consequence of this, automatic verification is said not to scale, i.e. only rather
small programs can be handled.

A variety of techniques are used to handle the systems with very large state
spaces that occur in automatic verification. Taken together, they can lead to
surprisingly effective tools, which can handle fully automatically an impressive
range of programs [1,2]. But in a series of papers [3,4,5,6] we have argued that
while such techniques are very effective on small to medium sized programs, in
order for automatic verification to scale up to large and very large programs it
is necessary to be based on compositional methods, i.e. have the ability to verify
fragments of programs, then make correctness judgements about the whole based
on correctness judgements about the parts. We believe game semantics [7,8]
provides a solid theoretical foundation on which such methods can be developed.

In this paper we develop a predicate abstraction [9] from game-based models.
The technical challenge is combining the compositional and semantic-directed
model construction of game semantics with the syntactic constructs of predi-
cate abstraction and its essential use of global state. In the paper we formulate
predicate abstraction for games, prove relevant technical results (decidability,
soundness of approximation), discuss new heuristics stemming from this style of
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predicate abstraction and illustrate it with some examples. The implementation
is based on our existing experimental tool Mage.1

2 The Language

The technique that we present here can be used to abstract any programs writ-
ten in a language that has a game-semantic model. To have a focused presen-
tation we will select a fragment of the language that is expressive enough to
allow interesting examples, yet simple enough to allow a concise presentation.
We call this language IAl. The starting point is IA [10], a well studied language
which combines lambda calculus with the simple imperative language. We will
use an enhanced variant of a language that in addition to local variables also
uses block-structured control, a generalisation of C’s break and continue oper-
ations. A similar language, IAx, was studied by Laird [11]. IA-like languages are
supposed to use lambda-abstraction uniformly over all types, but this, in con-
junction with the call-by-name procedural mechanism, leads to confusing phe-
nomena such as interference or bad variables [12]. To avoid such issues, which
raise the complexity of our presentation but are ultimately irrelevant to the mat-
ter of predicate abstraction, we impose some restrictions on the way variables
and labels can be used in the language by disallowing variable and label-typed
terms in the language. Variables and labels are “named constants” rather than
programming language identifiers [13]. We disallow recursion and higher-order
functions because they introduce infinite-state models in a way that is not re-
lated to the store. Finally to further focus the presentation on store abstraction
rather than functional aspects, we only allow a very simple function-definition
mechanism, similar to that of C, where all functions are defined in global scope.
This language is in general quite close to a large subset of C and we are building
up towards real code in the near future.

2.1 Syntax and Operational Semantics

IAl has a discrete set of labels L and a discrete set of locations C. The base types
T of the language are commands com, booleans bool and integers int. Function
types are defined by the grammar U ::= T1 × · · · × Tk → T . For each type T
there is a discrete set of identifiers of that type FT . We use a distinct type prog
for programs. The type rules of the language are given in Fig. 1, where by L(M)
and C(M) we mean the set of labels and locations, respectively, used in M and
by V(M) the set of (free) variables of a term.

The rules for new, break, continue perform the introduction of a fresh loca-
tion or label name x. This is apparently syntactically restrictive, e.g. the term
new x.new x.!x does not type-check, but any such term can be alpha-converted
to a legal term, i.e. new x.new y.!y.

The “big-step” operational semantics are standard for an IA-like language.
Let V be the set of values, including natural numbers, booleans and skip, V =

1 http://www.cs.bham.ac.uk/research/projects/mage

http://www.cs.bham.ac.uk/research/projects/mage
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x ∈ FT

x : T n : int true : bool false : bool skip : com

M : com N : T

M ; N : T

M : int N : int

M ⊕ N : int

B : bool Mi : T

if B then M1 else M2 : T

x ∈ C M : int

x:=M : com

x ∈ C
!x : int

x ∈ L
goto x : com

f ∈ FT1×···×Tk→T Mi : Ti

f(M1, . . . , Mk) : T

M : T x �∈ C \ C(M)

new x.M : T

M : com x �∈ L \ L(M)

break x.M : com

M : com x �∈ L \ L(M)

cont x.M : com

M : T

M : prog

V(M) = {x1, . . . , xk} f ∈ FT1×···×Tk→T M : T N : prog

let f(x1, . . . , xk) = M in N : prog

Fig. 1. Typing rules for IAl

M, Σ ⇓ skip, Σ′ N, Σ′ ⇓ E, Σ′′

M ; N, Σ ⇓ E, Σ′′
M, Σ ⇓ G, Σ′

M ; N, Σ ⇓ G, Σ′′

M, Σ ⇓ m, Σ′ N, Σ′ ⇓ G, Σ′′

M ⊕ N, Σ ⇓ G, Σ′′
M, Σ ⇓ G, Σ′

M ⊕ N, Σ ⇓ G, Σ′′

M, Σ ⇓ m, Σ′ N, Σ′ ⇓ n, Σ′′ p = m ⊕ n

M ⊕ N, Σ ⇓ p, Σ′′

B, Σ ⇓ b, Σ′ Mb, Σ′ ⇓ E, Σ′′

if B then Mtrue else Mfalse, Σ ⇓ E, Σ′′
B, Σ ⇓ G, Σ′

if B then Mtrue else Mfalse, Σ ⇓ G, Σ′

M, Σ ⇓ m, Σ′

x:=M, Σ ⇓ skip, Σ′[x �→ m]

M, Σ ⇓ G, Σ′

x:=M, Σ ⇓ G, Σ′ !x, Σ ⇓ Σ(x), Σ

M, Σ ⊗ (x �→ 0) ⇓ E, Σ′ ⊗ (x �→ n)

new x.M, Σ ⇓ E, Σ′
M, Σ ⇓ goto x, Σ′

break x.M, Σ ⇓ skip, Σ′
M, Σ ⇓ skip, Σ′

break x.M, Σ ⇓ skip, Σ′

M, Σ ⇓ goto x, Σ′ cont x.M, Σ′ ⇓ E, Σ′′

cont x.M, Σ ⇓ E, Σ′′
M, Σ ⇓ skip, Σ′

cont x.M, Σ ⇓ E, Σ′

P,U ⊗ (f �→ F ), Σ ⇓ E, Σ′

let f(x1, . . . , xk) = F in P, U , Σ ⇓ E, Σ′
U(f) = F F [Mi/xi],U , Σ ⇓ E, Σ′

f(M1, . . . , Mk),U , Σ ⇓ E, Σ′

Fig. 2. Operational semantics for IAl

N + B + 1. Let G = {goto x | x ∈ L} be the set of non-local jumps. Let
the set of final forms be E = V + G. We assume V ∈ V, G ∈ G, etc. We
also use an environment U which is a map from function-identifiers to terms.
Let Σ : C → Z be a store, let Σ ⊗ (x �→ n) represent the extension of Σ
to domain C + {x} such that Σ ⊗ (x �→ n)(x) = n, and let Σ[x �→ n] be a
store equal to Σ except that Σ[x �→ n](x) = n. The operational semantics of
the language are relations of the form M,U , Σ ⇓ E, Σ′, meaning term M in
environment U and state Σ evaluates to final form E ∈ E and final state Σ′.
If the environment is not used in the rule it will be omitted, for simplicity. The
operational semantics is given in Fig. 2. Note that continue is expressive enough
to encode iteration: while M do N ≡ cont y.if M then N ; goto y else skip.
Also note that a notion of abnormal termination can be encoded with goto
abort, where abort is a reserved label. With abort, assertions can be encoded
as assert(M) ≡ if M then skip else goto abort.
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2.2 Game Semantics

In this section we will present a game-like model along the lines of [14], but with
the important distinction that state will be modelled explicitly in a way rather
similar to [15] and [16]. We can do this because of the greatly simplified role
that locations can play in the language. The absence of var-type terms makes
interference and bad variables impossible and supports a global store model.

A state Σ : A → Z maps a set of names A to integer values. Given an alphabet
A and a set of names A, a stateful sequence sΣΣ′

consists of a sequence s ∈ A∗

and two states Σ, Σ′ : A → Z. If s = ε, the empty sequence, we require Σ = Σ′.
We define the following operations on sets of stateful sequences, i.e. stateful
languages: S · T =

{
(s · t)ΣΣ′′ | sΣΣ′ ∈ S, tΣ

′Σ′′ ∈ T
}
. Also,

S(0) = {εΣ,Σ | Σ : A → Z}, S(k) = S · S(k−1), S∗ =
⋃

k∈N

S(k).

If t, u are stateless sequences then we define t · sΣΣ′ · u = (t · s · u)ΣΣ′
.

With every type U of the language we associate an alphabet �U�:

�int� = {q} ∪ Z, �bool� = {q, t, f}, �com� = {q, a}.
For function types we have

�T1 × · · · × Tn → T � =
∑

i=1,n

�Ti� + �T �. (1)

Terms M : T are modelled by languages over alphabet

AM = �T � +
∑

U s.t.
V(M)∩FU �=∅

�U� +
∑

y∈L(M)

goy. (2)

To make the disjoint sum more explicit, we syntactically tag elements of
�U� with the identifier x. The symbols in the alphabet are the so-called game-
semantic “moves”. They represent the observable actions that a term can per-
form. Every language that denotes a meaning of a term has a certain form, given
by all its possible initial and final moves, called bracketing moves. If the final
action belongs to the normal alphabet associated with the type, the trace is a
complete computation leading to value a, and we denote it by �M�a. Another
possible final action is gox for some label x and it denotes an attempt to jump
out of the scope of the term; we denote such traces {|M |}. The meaning of terms
at ground type can be decomposed as:

�M : com� = q · �M�a · a + q · {|M |}
�M : bool� = q · �M�t · t + q · �M�f · f + q · {|M |}
�M : int� =

∑

n∈Z

q · �M�n · n + q · {|M |}.
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�skip� = εΣΣ , {|skip|} = ∅
�n�n = εΣΣ , �m�n = ∅ if m �= n, {|u|} = ∅
�M1; M2�p = �M1� · �M2�p, {|M1; M2|} = {|M1|} + �M1� · {|M2|}
�M1 ⊕ M2�p =

∑

m,n,p∈Z

m⊕n=p

�M1�m · �M2�n, {|M1 ⊕ M2|} = {|M1|} +
∑

m∈Z

�M1�m · {|M2|}

�x:=M� =
∑

n∈Z

(
�M�ΣΣ′

n

)ΣΣ′[x �→n]
, {|x:=M |} = {|M |}

�!x�n = εΣΣ if Σ(x) = n, �!x�n = ∅ if Σ(x) �= n, {|!x|} = ∅
�new x.M�=

(
�M�Σ⊗(x �→0),Σ′⊗(x �→n))Σ,Σ′

, {|new x.M |}=
({|M |}Σ⊗(x �→0),Σ′⊗(x �→n))Σ,Σ′

�if M then M1 else M2�a = �M�t · �M1�a + �M�f · �M2�a,

{|if M then M1 else M2|} = {|M |} + �M�t · {|M1|} + �M�f · {|M2|}
�goto x�a = ∅, {|goto x|} = (gox)ΣΣ

�break x.M�a = �M�a + {|M |}x, {|break x.M |} = {|M |}y · goy , x �= y

�cont x.M�a = {|M |}∗x · �M�a, {|cont x.M |} = {|M |}∗x · {|M |}y · goy, x �= y.

Fig. 3. Game-semantic evaluations

Intuitively, �M�a, {|M |} are the observable effects of the actual computation that
M carries out in order to produce a or jump, respectively.

For a term M we define a pattern-matching operator that extracts traces with
a given initial and final states �M�ΣΣ′ Δ= {s | sΣΣ′ ∈ �M�} and similarly for
{|M |}. We also use the notation {|M |} Δ= {|M |}x · gox and we implicitly sum over
all states Σ. Most of the semantic valuations are given in Fig. 3.

Note that constants have no observable side-effects and cannot jump. For
break, normal termination is either the normal termination of M or a jump to
the breaking label x; any other termination can only be a jump. For continue,
any jump to x causes a restart of M , until it terminates normally or until it
jumps to a different location than x.

As in [14] we only give a game-semantic definition for function application of
a free function identifier, i.e. a function where the definition is not known. We
choose not to present function application in general because it is too complex for
this presentation, unrelated to the issue of predicate abstraction. In the absence
of recursion β-redexes (i.e. function calls with known definitions) can be reduced
operationally. It is fair to say that the entire apparatus of game semantics and
the entire development to this point is necessary only insofar as it allows the
formulation of this rule:

�f(M1, . . . , Mn)�k = qf ·
⎛

⎝
n∑

i=1

∑

a∈�Ti�

qfi ·�Mi�a ·afi

⎞

⎠

∗

· kf
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{|f(M1, . . . , Mn)|} = qf ·
⎛

⎝
n∑

i=1

∑

a∈�Ti�

qfi ·�Mi�a ·afi

⎞

⎠

∗

·
(

n∑

i=1

qfi · {|Mi|}
)

.

Moves qf , kf are markers delineating the overall beginning and end of compu-
tation. Moves qfi, afi are markers delineating the beginning and execution of
each argument. A normal execution of a function is an arbitrary sequence of
executions of its arguments. If one of the arguments causes a non-local jump
then the function call terminates with that non-local jump. The locality of the
jumps ensures that all jumps from Mis are either local or outside of the scope.
It is not possible for arguments to cause jumps to each other.

Finally, for completeness, if x : T is a base-type free variable then �x�a = x
and {|x|} = ∅: its meaning is an unspecified action labelled with the variable.

We are mainly interested in proving safety properties. Suppose that there is
a special label called abort. A term is abort-free if it has no occurrence of goto
abort. We say that a term M is safe if for any abort-free context with a hole C[−]
and for any state Σ we have C[M ], Σ ⇓ E, Σ′, E 
= goto abort. The connection
between the operational and game semantics is given by:

Theorem 1. A term of IAl M is safe if and only if {|M |}abort = ∅.
The proof of this result is routine, similar to that in [4].

Example 1. Show new x.f(c; x := !x + 2, assert (!x % 2 <> 0)) is safe.
This example illustrates the uniqueness of the game-semantic approach, be-

cause it requires reasoning about a non-trivial interaction between non-local
function f, non-local procedure c and the store. The set of locations is L = {x}
and the state is Σ : {x} → Z. For simplicity we denote the function (x �→ n)
simply as n. Following simple calculations we have

�c;x:=!x+2� = c · εn,n+2 = cn,n+2 �c;x:=!x+2� = ∅
�assert(!x%2!=0)� = ε2k,2k {|assert(!x%2!=0)|} = (goabort)2k+1,2k+1.

Applying f gives:

�f(c;x:=!x+2,assert(!x%2<>0))�

= qf ·
(
∑

n

qf1 · cn,n+2 · af1 +
∑

k

qf2 · ε2k,2k · af2

)∗
· af

{|f(c;x:=!x+2,assert(!x%2<>0))|}

=qf ·
(
∑

n

qf1 · cn,n+2·af1+
∑

k

qf2·ε2k,2k·af2

)∗
·
(
∑

k

qf2·(goabort)2k+1,2k+1

)

.

By a simple inductive argument,
(∑

n qf1 · cn,n+2 · af1 +
∑

k qf2 · ε2k,2k · af2
)∗

always produces traces of the form sn,n+2k, therefore

�new x.f(c;x:=!x+2,assert(!x%2<>0))�=qf · (qf1 · c · af1 + qf2 · af2
)∗ · af

{|new x.f(c;x:=!x+2,assert(!x%2<>0))|}=∅,
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since the rule for new forces the initial state to be 0 and removes the (only)
location x from the state. According to Thm. 1 this means the term is safe. Note
that if we take the set of integers to be finite the set of state annotations is also
finite and the formula can be mechanically verified.

3 Predicate Abstraction

The key problem of automatic software verification is that the set of all possible
states Σ is very large. If we restrict IAl to finite k-bit integers, then a set
of states over n variables has, obviously, 2nk elements. Predicate abstraction in
game semantics is about reducing the size of this set, in a way that is compatible
with the compositional (denotational) structure of the semantics and which can
still model the subtle interplay between store and procedural behaviour. To
further simplify the presentation we will only consider predicate abstraction for
assignments that only use pure expressions on the RHS, i.e. expressions that do
not change the state while returning a value. This is not a substantial restriction,
as all programs can be converted to that form using assignment to intermediate
values.

We abstract a state Σ in the standard way (e.g. [9]) by representing it as a
set of predicates over dom(Σ). If σ is approximated by p predicates then the
number of possible values is 2p, which can be far smaller than 2nk. We denote
an abstracted state by Ψ .

We introduce the following notations. Given a set of states S = {Σ | Σ : L →
Z} over locations L, let PL be the set of all predicates definable using its locations
as variables, and let PL ∈ P

∗
L a (finite) list of its elements, constituting the

predicate abstraction of S. The predicates Ψ ∈ PL are called abstract states. A set
of abstract states is satisfiable written sat(Ψ0, . . . , Ψk) if there is an assignment
of their variables that makes each Ψi true; we call such predicates that are
simultaneously satisfiable compatible.

We define pa-traces similar to stateful traces, sΨΨ ′
, with concatenation of

pa-languages defined as S · T = {(st)ΨΨ ′ | sΨΨ0 ∈ S, tΨ
′
0Ψ ′ ∈ T, sat(Ψ0, Ψ

′
0)}.

Note that concatenation of pa-traces is non-deterministic, due to the possible
choices for Ψ0, Ψ

′
0, unlike stateful trace concatenation which is deterministic.

Exponentiation and iterated closure are defined similarly to stateful traces.
Let EN and EB be the languages of integer and boolean expressions con-

structed from constants, arithmetic and logic operators and uninterpreted vari-
ables. The predicate-abstracted semantics is defined in terms of pa-traces and
is structurally similar to that of the original game semantics. �int� = {q} ∪
EN , �bool� = {q} ∪ EB, �com� = {q, a}. Function-type and term alphabets are
analogously to Eqns. 1 and 2. Note that the sub-alphabet of result moves is
expanded from the set of all values of a given type to the set of all syntactic
expressions over L of a given type. Trace decompositions are analogous to game
semantics: �M : com� = q · �M�a · a + q · {|M |}, and so on for the other types.
The semantic rules for constants, sequential composition, control and function
application are also analogous to those of the original game semantics. We only



Compositional Predicate Abstraction from Game Semantics 69

present the rules that are substantially different: branching, arithmetic and logic,
assignment and dereferencing, local variable.

We introduce the notation �M�
〈Ψ0Ψ1〉
B

Δ=
(
�M�

Ψ0Ψ1

B

)Ψ0Ψ1 to identify particular

traces. Note that �−�
Ψ0,Ψ1 is a trace-selection operator whereas (−)Ψ0,Ψ1 is an

annotation. The pa-semantics of branching is:

�if M then M1 else M2�a

=
∑

B∈EB

sat(Ψ1,B)

�M�
〈Ψ0Ψ1〉
B · �M1�a +

∑

B′∈EB

sat(Ψ ′
1,¬B′)

�M�
〈Ψ ′

0Ψ ′
1〉

B′ · �M2�a

{|if M then M1 else M2|}
= {|M |} +

∑

B∈EB

sat(Ψ1,B)

�M�
〈Ψ0Ψ1〉
B · {|M1|} +

∑

B′∈EB

sat(Ψ ′
1,¬B′)

�M�
〈Ψ ′

0Ψ ′
1〉

B′ · {|M2|},

Note that the guard M evaluates to a syntactic expression B, rather than a
value. The branch to be executed is chosen depending on whether the expression
is compatible with the state or whether its negation is. Note that it is possible
that both conditions are satisfied, case in which the branching becomes non-
deterministic. Arithmetic and logic operators evaluate to a syntactic expression
rather than a value:

�M1 ⊕ M2�E1⊕E2
= �M1�E1

· �M2�E2
,

{|M1 ⊕ M2|} = {|M1|} + �M1� · {|M2|}.
The rule for assignment is:

�x:=M� =
∑

E∈EN

(
�M�

ΨΨ ′

E

)ΨΨ ′′
, {|x:=M |} = {|M |},

where sat(Ψ ′′, Ψ ′[E/x]).
Note that after assignment a new pa-state Ψ ′′ must be chosen, which is com-

patible to the old state in which x has become E. Note that the choice of Ψ ′′

can introduce non-determinism in the interpretation. The pa-semantics of as-
signment is non-deterministic, unlike the game-semantic interpretation.

Dereferencing returns x, seen as a syntactic expression:

�!x�x = εΨΨ , �!x�E = ∅ if E 
= x, {|!x|} = ∅.
Local variable introduction must cope with the fact that the bound variable
cannot appear outside of its context, therefore the pa-states inside the block
must come from a different set than that used outside the block, which uses a
smaller set of locations.

�new x.M� =
(
�M�

Ψ0Ψ1)Ψ ′
0,Ψ ′

1 ,

{|new x.M |} =
({|M |}Ψ0Ψ1)Ψ ′

0,Ψ ′
1 .
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where Ψ ′
0, Ψ

′
1 ∈ PL, Ψ0, Ψ1 ∈ PL+{x}, sat(Ψ0, Ψ

′
0, x = 0), sat(Ψ1, Ψ

′
1). As in the

case of assignment, the choice of updated state is not necessarily deterministic.
It is assumed that local variables are initialized to zero.

Example 2. We reconsider the Example 1 program, using pa-semantics to show
that new x.f(c; x := !x + 2, assert (!x % 2 <> 0)) is safe.

Assume the singleton predicate set P{x} = {even(x)}, so the only possible ab-
stracted states are e = even(x) and o = ¬even(x). Following simple calculations
we have

�!x+2�x+2 = εo,o + εe,e, {|!x+2|}x+2 = ∅, �!x+2�
o,o

x+2 = ε, �!x+2�
e,e

x+2 = ε

�x:=!x+2� =
(
�!x+2�

o,o

x+2

)o,Ψ +
(
�!x+2�

e,e

x+2

)e,Ψ ′
,

where sat(¬even(x + 2), Ψ), sat(even(x + 2), Ψ ′), so Ψ = e, Ψ ′ = o. Therefore
�x:=!x+2� = εo,o + εe,e. Also, {|x:=!x+2|} = ∅. The two arguments are

�c;x:=!x+2� = q · �c;x:=!x+2� · a + q · {|c;x:=!x+2|} = qcao,o + qcae,e

�assert(!x%2<>0)� = q · ae,e + (q · goabort)o,o.

Applying f gives:

�f(c;x:=!x+2,assert(!x%2<>0))�

= qf · (qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2
)∗ · af

{|f(c;x:=!x+2,assert(!x%2<>0))|}
=qf · (qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2

)∗ · (qf2 · (goabort)o,o
)
.

Obviously the iteration
(
qf1 · ce,e · af1 + qf1 · co,o · af1 + qf2 · εe,e · af2

)∗ always
produces either traces of the form se,e or so,o, therefore

�new x.f(c;x:=!x+2,assert(!x%2<>0))� =qf · (qf1 · c · af1 + qf2 · af2
)∗ · af

{|new x.f(c;x:=!x+2,assert(!x%2<>0))|} =∅,
since the rule for new forces the initial state to be compatible with x = 0 (i.e.
Ψ = e); the outer set of predicates is defined over the empty set of locations and
is omitted. Note that in this (not typical) case the pa-semantics and the game
semantics give the same interpretation.

3.1 Formal Properties

The technical hurdle is formulating the pa-semantics; with the definitions in
place proving the relevant technical properties is a routine exercise.

This ancillary result is important towards proving decidability.

Proposition 1. For any M : T , T ∈ {bool, int} there is only a finite set of
syntactic expressions E such that �M : T �E 
= ∅.
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Proposition 2 (Decidability). If PL is finite then {|M |} = ∅ is decidable.

The proof relies on the fact that, given a finite set of pa-state annotations Ψ ,
and considering the finitary encoding of the alphabet (from Prop. 1) the pa-
semantics accepts a regular-language formulation. Let us write {|M |}〈P〉 when
we need to emphasise that a pa-semantics is over predicate set P .

Proposition 3 (Monot.). If P ⊆ P ′ and {|M |}〈P〉 = ∅ then {|M |}〈P′〉 = ∅

The contra-positive has an immediate proof; if {|M |}〈P′〉 has a trace then remov-
ing a predicate does not invalidate any of the satisfiablity conditions, therefore
{|M |}〈P〉 will have a trace. The monotonicity property states that “improving”
the abstraction does not remove any possible failure traces.

Proposition 4 (Correctness). If P = {x = n | x ∈ L, n ∈ Z} then {|M |} = ∅
iff {|M |} = ∅.
The proof is immediate, as the Ψ ’s are a precise predicate representations of the
state Σ in the stateful formulation of the game semantic model.

From Correctness and Monotonicity, along with Thm. 1 it follows that

Theorem 2 (Soundness). If {|M |} = ∅ then M is safe.

Thm. 2 and Prop. 2 state that any finite PA semantics is a sound and effective
approximation for the concrete semantics, and it can be used for automatic
proving of safety properties of IAl terms.

4 Heuristics

Our experimental model checker Mage implements automatic verification algo-
rithms within the framework described in previous sections. We use a finite set
of predicates of form Ψ =

∧
P∈P δi(P ) where each δi is either the identity or the

negation operation and each P is a proposition over the set of locations. Such
predicates can be efficiently represented as bit-vectors.

4.1 Internal and External Compositionality

Games-based verification tools are compositional in the sense that they can han-
dle open terms (see earlier examples); call this kind of compositionality external.
Additionally, games-based tools are internally compositional, i.e. the model of a
term is built inductively from the models of its sub-terms. This approach is help-
ful because it allows the modification of the abstraction scheme within the term
being constructed; some branches of the syntax tree can be heavily abstracted
while others can be much more precise. This feature has been discussed in the
context of games-based data-abstraction and refinement [4,6], and it can be used
again to great effect with predicate abstraction by changing the predicate set
within the term.
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4.2 Flexibility and Efficiency

The pa-semantics allows the predicate set to change at every composition point
in the program — i.e. between every sub-term and its successor in the parse tree.
This flexibility can be exploited by removing from the pa-state Ψ predicates P
deemed irrelevant and reintroducing them whenever precision needs to be im-
proved. It is well known that minimizing the predicate set size is essential to
avoid a state explosion; moreover, n predicate-bits are typically much more ex-
pensive to maintain than an n-bit state in conventional model checking, because
each bit represents an arbitrarily complex predicate.

Predicate annotations. Running a satisfiability check over a current state and
all possible next-states, and allowing the entire predicate set to change at every
composition is too expensive in general. To make our treatment of variable ab-
straction schemes more perspicuous, we shall use syntactic annotations “newp”
and “endp” to delimit predicate scopes at the level of the source code. This is
important because for any assignment we can track the state-change precisely
by only using two predicates (i.e. a two-bit vector), representing the state before
and after the assignment. For example, in the code fragment below no more
than two predicates are needed at any one time to track the following execution
accurately and validate the assertion (c:com is a free procedure identifier).

newp (x = 0); x := 0; c;
newp (x = 1); x := !x + 1; c; endp (x = 0);
newp (x = 11); x := !x + 10; c; endp (x = 1);
newp (x = 111); x := !x + 100; c; endp (x = 11);
assert(x = 111); endp (x = 111)

Another simplifying restriction we impose is that predicate scopes are well nested
and use instead “letp p in M” annotations. Next-state calculation (which
predicates can change valuation at a given program point), and identification
of relevant predicates for current-state tests become much simpler because the
predicates form a stack that can be mapped into the standard program stack. On
the other hand, a disadvantage of nested scoping is that a series of overlapping
scopes cannot always be kept tight. In the same example the maximum size of
the bit vector used to represent the pa-state is now four:

letp (x = 0) in x := 0; c;
letp (x = 1) in x := !x + 1; c;
letp (x = 11) in x := !x + 10; c;
letp (x = 111) in x := !x + 100; c;
assert(x = 111)

4.3 Predicate Scope

Our experimental tool, Mage resolves satisfiability tests with the external SMT
engine Yices2. Two fully automatic predicate annotation schemes are used, both
in the compositional “letp” style:
2 http://yices.csl.sri.com/

http://yices.csl.sri.com/
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1. All (pure) conditional expressions in the program are predicates in the model,
each given maximal scope to maximize the chance of a successful check (but
expensive in situations where a scope contains many conditionals).

2. Conditionals are made predicates with minimal scope initially; checking is
therefore much faster and much more likely to be inconclusive. A refinement
loop is added to expand the scope of some predicates (see Section 4.4).

It is this issue of predicate scope that the internal compositionality of the game-
based formulation exposes and allows to be manipulated to the advantage of the
verification process: for success the selected predicates must be both adequate
and have sufficient scope; but too many predicates with excessive scope will
make checking infeasible.

Example 3 (Number magic). The magician asks the stooge to think of an n,
double it, add 50, divide by 2, subtract n and add 100. The distract:com
procedure is just that, an irrelevant diversion.

new m.new n.n := stooge(); distract;
m := !n + !n; distract; assert(m = 2 * n);
m := !m + 50; distract; assert(m = 50 + 2 * n);
m := !m / 2; distract; assert(m = 25 + n);
m := !m - !n; distract; assert(m = 25);
m := !m + 100; distract; assert(m = 125)

The checks on magic answer m provide the intermediate invariants needed to
prove the trick by predicate abstraction and the distractions prevent Mage
treating the assignment sequence as a single basic block (which makes the proof
trivial)!

This is easily verified by Mage using maximally scoped predicates. But notice
that with five conditionals and hence five predicates (and no clever optimiza-
tions) the satisfiability of 25 possible next-states must be tested at each compo-
sition point in the pa-model where the state can change. This takes around 250
seconds.

Mage can also verify the term much faster, in about 2 seconds, using min-
imally scoped predicates, widened just enough to include the assignment that
makes it true and the assertion that declares it. This is achieved by preserving
the valuations of predicates from the end of their letp scope until the next as-
signment. For example, in letp (m = 25) in (m := !m - !n; distract();
assert(m = 25)); at the assignment-composition, the valuation m = 25 + n
from the previous scope is compatible only with next-state m = 25, as per the
definition of pa-trace concatenation.

Hence the problem of having to nest overlapping scopes is eliminated as the
model of letp p in M1; letp p in M2 can reach exactly the same states as
that of letp p in (M1;M2) because pa-trace concatenation always kicks in at
the boundary between letps.

There is considerable potential for further speed up the implementation by de-
veloping tighter solver integration; the incremental-SMT approach to predicate
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abstraction is fully compatible with our approach and would shrink run-times
by a substantial factor although it cannot in itself avoid the state explosions.

4.4 Counter-Example Guided Scope Refinement

Counterexample certification checks trace feasibility of a pa-trace. Pa-trace con-
catenation offers a local check of compatibility between pa-states, but each such
concatenation point is a source of non-determinism. After several such concate-
nations the global trace from start to end may be actually not possible.

Consider for example the following code, with abstracting predicates written
explicitly as program annotation in letp style:

letp (x > y) in letp (x < y) in letp (z <> 2) in
x := n; y := m;
if !x > !y then z := 1 else z := 0;
if !x < !y then z := !z + 1 else skip;
assert(!z <> 2)

The second assignment to z may go from a pa-state in which z <> 2 to a pa-
state in which z <> 2 or to one in which z = 2. Because these distinctions
cannot be made locally, the feasibility check must involve a global satisfiability
test of the entire concatenation. In this case, we must check whether all predi-
cates x1 = n, y1 = m, x1 <= y1, z1 = 0, x1 < y1, z2 = z1 + 1, z2 = 2
are compatible.

Refinement is realised by modifying the predicate abstraction with the aim
of eliminating some infeasible counterexamples and the guarantee of not intro-
ducing new infeasible counterexamples. In our framework it can be achieved
by adding predicates or extending the scope of existing predicates. Mage in
predicate-scope refinement mode begins by using the guard of each if statement
(implicit in assert) as a tightly-scoped predicate, represented by the annotation:

if B then M else N ⇒ if (letp B in B) then M else N

Note that the unannotated term and the tight annotation have identical models
as the predicates never live long enough to be absorbed into the global state.
So for the simple algorithm in Mage (with no interpolation or other methods
for adding predicates that are not conditionals), refinement now simply means
extending the scope of some letp that appears in an infeasible counterexample!

Example 4. Consider the safe term

new x.new y.new z.
x := !i; y := !i;
if letp (x > y) in !x > !y
then z := !x - !y; assert(letp (z > 0) in !z > 0)
else skip

Checking generates a counterexample that needs to satisfy x1 = i1, y1 = i2,
x1 > y1, z1 = x1 - y1, z1 > 0 which is infeasible. Maximizing the two pred-
icate scopes would eliminate the counterexample in one step, but by expanding
them more gradually we arrive at the following provably safe scopes:
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new x.new y.new z.x := !i; y := !i;
letp (x > y) in if !x > !y
then letp (z > 0) in z := !x - !y; assert(!z > 0)
else skip

The tight scopes require a running time of 0.75 sec. while the loose scope requires
7.5 sec. of execution.

Note that this scheme is guaranteed to terminate and the program will be ver-
ified if it is verifiable when annotated with maximally-scoped conditionals. The
gradual scope expansion creates two problems: more refinement iterations and
the need for heuristics regarding which letp to expand. By a depth-first ex-
pansion scheme the tightest safe annotation will be found. This makes ours an
alternative approach to the idea of predicate minimization used in other tools [17]
so the burden of the expanded predicates on verification in other parts of the
model should be minimized. The problem of more iterations is mitigated if model
checking on the intermediate refinements is restricted to testing for the presence
of the infeasible counterexample.

5 Further Work

We believe we are only beginning to exploit the new possibilities of attacking
state-space explosion through internal compositionality. The next instance of
the tool will incorporate at least a form of refinement by delayed SMT: we will
extend the semantics and tool to allow the precision of a fixed pa to be gradually
improved by delaying SMT tests for up to a specified number of concatenations.
This achieves the same effect as expanding the scope of each predicate without
actually increasing the state, but at the cost of more false counterexamples.

There is now a real potential to combine game-semantic models with more
complex state-representation assertion languages, such as those arising from sep-
aration logic [18] and target heap-oriented programs compositionally. We are
currently examining this, as well as game-semantic models of more realistic pro-
gramming languages.
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