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Abstract. Wecompare tools forcomplementingnondeterministicBüchi automata
with a recent termination-analysis algorithm. Complementation of Büchi automata
is a key step in program verification. Early constructions using a Ramsey-based ar-
gumenthavebeensupplantedbyrank-basedconstructionswithexponentiallybetter
bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem,
along with both a reduction to Büchi automata and a Ramsey-based algorithm. This
algorithm strongly resembles the initial complementation constructions for Büchi
automata.

We prove that the SCT algorithm is a specialized realization of the Ramsey-
based complementation construction. Surprisingly, empirical analysis suggests
Ramsey-based approaches are superior over the domain of SCT problems. Upon
further analysis we discover an interesting property of the problem space that
both explains this result and provides a chance to improve rank-based tools. With
these improvements, we show that theoretical gains in efficiency are mirrored in
empirical performance.

1 Introduction

The automata-theoretic approach to formal program verification reduces questions
about program adherence to a specification to questions about language containment.
Representing liveness, fairness, or termination properties requires finite automata that
operate on infinite words. One automaton, A, encodes the behavior of the program,
while another automaton, B, encodes the formal specification. To ensure adherence,
verify that the intersection of A with the complement of B is empty. Thus a vital prob-
lem is constructing the complementary automata B. Finite automata on infinite words
are classified by their acceptance condition and transition structure. We consider here
nondeterministic Büchi automata, in which a run is accepting when it visits at least one
accepting state infinitely often.

The first complementation constructions for nondeterministic Büchi automata em-
ployed a Ramsey-based combinatorial argument to partition infinite words into a finite
set of regular languages. Proposed by Büchi in 1962 [3], this construction was shown in
1987 by Sistla, Vardi, and Wolper to be implementable with a blow-up of 2O(n2) [14].
This brought the complementation problem into singly-exponential blow-up, but left a
gap with the 2Ω(n log n) lower bound proved by Michel [11].
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The gap was tightened in 1988, when Safra described a 2O(n log n) construction [13].
Work since then has focused on improving the practicality of 2O(n log n) constructions,
either by providing simpler constructions, further tightening the bound, or improving
the derived algorithms. In 2001, Kupferman and Vardi employed a rank-based analy-
sis of Büchi automata to simplify complementation [9]. Recently Doyen and Raskin
tightly integrated the rank-based construction with a subsumption relation to provide a
complementation solver that scales to automata several orders of magnitude larger than
previous tools [5].

Separately, in the context of of program termination analysis, Lee, Jones, and Ben-
Amram presented the size-change termination (SCT) principle in 2001 [10]. This prin-
ciple states that, for domains with well-founded values, if every infinite computation
contains an infinitely decreasing value sequence, then no infinite computation is pos-
sible. Lee et al. describe a method of size-change termination analysis and reduce
this problem to the containment of two Büchi automata. Stating the lack of efficient
Büchi containment solvers, they also propose a Ramsey-based combinatorial solution
that captures all possible call sequences in a finite set of graphs. The Lee, Jones, and
Ben-Amram (LJB) algorithm was provided as a practical alternative to reducing the ver-
ification problem to Büchi containment, but bears a striking resemblance to the 1987
Ramsey-based complementation construction [14].

In this paper we show that the LJB algorithm for deciding SCT [10] is a specialized
implementation of the 1987 Ramsey-based complementation construction [14]. We then
empirically explore Lee et al.’s intuition that Ramsey-based algorithms are more prac-
tical than Büchi complementation tools on SCT problems. Initial experimentation does
suggest that Ramsey-based tools are superior to rank-based tools on SCT problems.
This is surprising, as the worst-case complexity of the LJB algorithm is significantly
worse than that of rank-based tools. Investigating this discovery, we note that it is nat-
ural for SCT problems to be reverse-deterministic, and that for reverse-deterministic
problems the worst-case bound for Ramsey-based algorithms matches that of the rank-
based approach. This suggests improving the rank-based approach in the face of reverse
determinism. We demonstrate that, indeed, reverse-deterministic automata have a max-
imum rank of 2, dramatically lowering the complexity of complementation to 2O(n).
Revisiting our experiments, we discover that with this improvement rank-based tools
are superior on the domain of SCT problems.

2 Preliminaries

In this section we review the relevant details of the Büchi complementation and size-
change termination, introducing along the way the notation used throughout this paper.
An nondeterministic Büchi automaton on infinite words is a tupleB=〈Σ, Q, Qin, ρ, F 〉,
where Σ is a finite nonempty alphabet, Q a finite nonempty set of states, Qin ⊆ Q
a set of initial states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a
nondeterministic transition relation. We lift the ρ function to sets of states and words of
arbitrary length in the usual fashion.

A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence of states
q0q1... ∈ Qω such that q0 ∈ Qin and, for every i ≥ 0, we have qi+1 ∈ ρ(qi, wi). A run
is accepting iff qi ∈ F for infinitely many i ∈ IN . A word w ∈ Σω is accepted by B if
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there is an accepting run of B on w. The words accepted by B form the language of B,
denoted by L(B). A path in B from q to r is a finite subsection of a run beginning in q
and ending in r. A path is accepting if some state in the path is in F .

A Büchi automaton A is contained in a Büchi automaton B iff L(A) ⊆ L(B), which
can be checked by verifying that the intersection of A with the complement B of B is
empty: L(A)∩L(B) = ∅. We know that the language of an automaton is non-empty iff
there are states q ∈ Qin, r ∈ F such that there is a path from q to r and an accepting
path from r to itself. The initial path is called the prefix, and the combination of the
prefix and cycle is called a lasso [16]. Further, the intersection of two automata can
be constructed, having a number of states proportional to the product of the number
states of the original automata [4]. Thus, the most computationally demanding step is
constructing the complement of B. In the formal verification field, existing work has
focused on the simplest form of containment testing, universality testing, where A is
the universal automaton [5,15].

2.1 Ramsey-Based Universality

When Büchi introduced these automata in 1962, he described a complementation con-
struction involving a Ramsey-based combinatorial argument. We describe an improved
implementation presented in 1987. To construct the complement of B, where Q =
{q0, ..., qn−1}, we construct a set ˜QB whose elements capture the essential behavior
of B. Each element corresponds to an answer to the following question. Given a finite
nonempty word w, for every two states q, r ∈ Q: is there a path in B from q to r over
w, and is some such path accepting?

Define Q′ = Q × {0, 1} × Q, and ˜QB to be the subset of 2Q′
whose elements do

not contain both 〈q, 0, r〉 and 〈q, 1, r〉 for any q and r. Each element of ˜QB is a {0, 1}-
arc-labeled graph on Q. An arc represents a path in B, and the label is 1 if the path is
accepting. Note that there are 3n2

such graphs. With each graph g̃ ∈ ˜QB we associate a
language L(g̃), the set of words for which the answer to the posed question is the graph
encoded by g̃.

Definition 1. Let g̃ ∈ ˜QB and w ∈ Σ+. Then w ∈ L(g̃) iff, for all pairs of states
q, r ∈ Q:

(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w.
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w.

The languages L(g̃), for the graphs g̃ ∈ ˜QB, form a partition of Σ+. With this partition
of Σ+ we can devise a finite family of ω-languages that cover Σω. For every g̃, ˜h ∈ ˜QB,
let Ygh be the ω-language L(g̃) · L(˜h)ω. We say that a language Ygh is proper if Ygh

is non-empty, L(g̃) · L(˜h) ⊆ L(g̃), and L(˜h) · L(˜h) ⊆ L(˜h). There are a finite, if
exponential, number of such languages. A Ramsey-based argument shows that every
infinite string belongs to a language of this form, and that L(B) can be expressed as the
union of languages of this form.

Lemma 1. [3,14]
(1) Σω =

⋃{Ygh | Ygh is proper}
(2) For g̃,˜h ∈ ˜QB, either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B).
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(3) L(B) =
⋃{Ygh | Ygh is proper and Ygh ∩ L(B) = ∅}.

To obtain the complementary Büchi automaton B, Sistla et al. construct, for each g̃ ∈
˜QB, a deterministic automata on finite words, Bg, that accepts exactly L(g̃). Using the
automata Bg, one can then construct the complementary automatonB [14]. We can then
use a lasso-finding algorithm on B to prove the emptiness of B, and thus the universality
of B. We can avoid an explicit lasso search, however, by employing the rich structure
of the graphs in ˜QB. For every two graphs g̃,˜h ∈ ˜QB, determine if Ygh is proper. If Ygh

is proper, test if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a
cycle in ˜h. B is universal if every proper Ygh is so contained.

Lemma 2. Given an Büchi automaton B and the set of graphs ˜QB,

(1) B is universal iff, for every proper Ygh, Ygh ⊆ L(B).
(2) Let g̃,˜h ∈ ˜QB be two graphs where Ygh is proper. Ygh ⊆ L(B) iff there exists

q ∈ Qin, r ∈ Q, a ∈ {0, 1} where 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ ˜h.

Lemma 2 yields a PSPACE algorithm to determine universality [14]. Simply check each
g̃,˜h ∈ ˜QB. If Ygh is both proper and not contained in L(B), then the pair (g̃,˜h) provide
a counterexample to the universality of B. If no such pair exists, the automaton must be
universal.

2.2 Rank-Based Complementation

If a Büchi automaton B does not accept a word w, then every run of B on w must
eventually cease visiting accepting states. The rank-based construction uses a notion
of ranks to track the progress of each possible run towards fair termination. A level
ranking for an automaton B with n states is a function f : Q → {0...2n,⊥}, such that
if q ∈ F then f(q) is even or ⊥. Let a be a letter in Σ and f, f ′ be two level rankings
f . Say that f covers f ′ under a when for all q and every q′ ∈ ρ(q, a), if f(q) �= ⊥ then
f ′(q′) ≤ f(q); i.e. no transition between f and f ′ on a increases in rank. Let Fr be the
set of all level rankings.

If B = 〈Σ, Q, Qin, ρ, F 〉 is a Büchi automaton, define KV (B) to be the automaton
〈Σ, Fr × 2Q, 〈fin, ∅〉, ρ′, Fr × {∅}〉, where

– fin(q) = 2n for each q ∈ Qin, ⊥ otherwise.
– Define ρ′ : 〈Fr × 2Q〉 × σ → 2〈Fr×2Q〉 to be

• If o �= ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, o′ \ d〉 | f covers f ′ under σ, o′ = ρ(o, σ), d = {q | f ′(q) odd}}.

• If o = ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, f ′ \ d〉 | f covers f ′ under a, d = {q | f ′(q) odd}}.

Lemma 3. [9] For every Büchi automaton B, L(KV (B)) = L(B).

An algorithm seeking to refute the universality of B can look for a lasso in the state-
space of KV (B). The strongest algorithm performing this search takes advantage of
the presence of a subsumption relation in the KV construction: one state 〈f, o〉 sub-
sumes another 〈f ′, o′〉 iff f ′(x) ≤ f(x) for every x ∈ Q, o′ ⊆ o, and o = ∅ iff
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o′ = ∅. When computing the backward-traversal lasso-finding fixed point, it is suffi-
cient to represent a set of states with the maximal elements under this relation. Further,
the predecessor operation over a single state and letter results in at most two incompa-
rable elements. This algorithm has scaled to automata an order of magnitude larger than
other approaches [5].

2.3 Size-Change Termination

In [10] Lee et al. proposed the size-change termination (SCT) principle for programs:
“If every infinite computation would give rise to an infinitely decreasing value sequence,
then no infinite computation is possible.” The original presentation concerned a first-
order pure functional language, where every infinite computation arises from an infinite
call sequence and values are always passed through a sequence of parameters.

Proving that a program is size-change terminating is done in two phases. The first
extracts from a program a set of size-change graphs, G, containing guarantees about the
relative size of values at each function call site. The second phase, and the phase we
focus on, analyzes these graphs to determine if every infinite call sequence has a value
that descends infinitely along a well-ordered set. For a discussion of the abstraction of
language semantics, refer to [10].

Definition 2. A size-change graph (SCG) from function f1 to function f2, written
G : f1 → f2, is a bipartite {0, 1}-arc-labeled graph from the parameters of f1 to the

parameters of f2, where G ⊆ P (f1) × {0, 1} × P (f2) does not contain both x
1→ y

and x
0→ y.

Size-change graphs capture information about a function call. An arc x
1→ y indicates

that the value of x in the function f1 is strictly greater than the value passed as y to

function f2. An arc x
0→ y indicates that x’s value is greater than or equal to the value

given to y. We assume that all call sites in a program are reachable from the entry points
of the program1.

A size-change termination (SCT) problem is a tuple L = 〈H, P, C,G〉, where H is a
set of functions, P a mapping from each function to its parameters, C a set of call sites
between these functions, and G a set of SCGs for C. A call site is written c : f1 → f2

for a call to function f2 occurring in the body of f1. The size-change graph for a call
site c : f1 → f2 is written as Gc. Given a SCT problem L, a call sequence in L is a
infinite sequence cs = c0, c1, . . . ∈ Cω , such that there exists a sequence of functions
f0, f1, . . . where c0 : f0 → f1, c1 : f1 → f2 . . .. A thread in a call sequence c0, c1, . . .

is a connected sequence of arcs, x
a→ y, y

b→ z, . . ., beginning in some call ci such that

x
a→ y ∈ Gci , y

b→ z ∈ Gci+1 , . . .. We say that L is size-change terminating if every
call sequence contains a thread with infinitely many 1-labeled arcs. Note that a thread
need not begin at the start of a call sequence. A sequence must terminate if any well-
founded value decreases infinitely often. Therefore threads can begin at any function
call, in any parameter. We call this the late-start property of SCT problems, and revisit
it in Section 3.2.

1 The implementation provided by Lee et al. [10] also make this assumption, and in the presence
of unreachable functions size-change termination may be undetectable.
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Every call sequence can be represented as a word in Cω, and a SCT problem re-
duced to the containment of two ω-languages. The first language Flow(L) = {cs ∈
Cω | cs is a call sequence}, contains all call sequences. The second language, Desc(L)
= {cs ∈ Flow(L) | some thread in cs has infinitely many 1-labeled arcs}, contains only
call sequences that guarantee termination. A SCT problem L is size-change terminating
if and only if Flow(L) ⊆ Desc(L).

Lee et al. [10] describe two Büchi automata, AFlow(L) and ADesc(L), that accept
these languages. AFlow(L) is simply the call graph of the program. ADesc(L) waits
in a copy of the call graph and nondeterministically chooses the beginning point of a
descending thread. From there it ensures that a 1-labeled arc is taken infinitely often. To
do so, it keeps two copies of each parameter, and transitions to the accepting copy only
on a 1-labeled arc. Lee et al. prove that L(AFlow(L)) = Flow(L), and L(ADesc(L)) =
Desc(L).

Definition 3. 2

AFlow(L) = 〈C, H, H, ρF , H〉, where
– ρF (f1, c) = {f2 | c : f1 → f2}

ADesc(L) = 〈C, Q1 ∪ H, H, ρD, F 〉, where
– Q1 = {〈x, r〉 | f ∈ H, x ∈ P (f), r ∈ {1, 0}},
– ρD(f1, c) = {f2 | c : f1 → f2} ∪ {〈x, r〉 | c : f1 → f2, x ∈ P (f2), r ∈ {0, 1}}
– ρD(〈x, r〉, c) = {〈x′, r′〉 | x r′→ x′ ∈ Gc},
– F = {〈x, 1〉 | f ∈ H, x ∈ P (f)}

Using the complementation constructions of either Section 2.1 or 2.2 and a lasso-finding
algorithm, we can determine the containment of AFlow(L) in ADesc(L). Lee et al. pro-
pose an alternative graph-theoretic algorithm, employing SCGs to encode descent in-
formation about entire call sequences. A notion of composition is used, where a call
sequence c0...cn−1 has a thread from x to y if and only if the composition of the SCGs
for each call, Gc0 ; ...; Gcn−1 , contains the arc x

a→ y. The closure S of G under the
composition operation is then searched for a counterexample describing an infinite call
sequence with no infinitely descending thread.

Definition 4. Let G : f1 → f2 and G′ : f2 → f3 be two SCGs. Their composition
G; G′ is defined as G′′ : f1 → f3 where:

G′′ = {x 1→ z | x a→ y ∈ G, y
b→ z ∈ G′, y ∈ P (f2), a = 1 or b = 1}

∪ {x 0→ z | x 0→ y ∈ G, y
0→ z ∈ G′, y ∈ P (f2), and

∀y′, r, r′ . x
r→ y′ ∈ G ∧ y′ r′→ z ∈ G′ implies r = r′ = 0}

Theorem 1. [10] A SCT problem L = 〈H, P, C,G〉 is not size-change terminating iff
S, the closure of G under composition, contains a SCG graph G : f → f such that

G = G; G and G does not contain an arc of the form x
1→ x.

2 The original LJB construction [10] restricted edges from functions to parameters to the 0-
labeled parameters. This was changed to simplify Section 3.3. The modification does not
change the accepted language.
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Theorem 1, whose proof uses a Ramsey-based argument, yields an algorithm that de-
termines the size-change termination of an SCT problem L = 〈H, P, C,G〉 by ensuring
the absence of a counterexample in the closure of G under composition. First, use an it-
erative algorithm to build the closure set S: initialize S as G; and for every G : f1 → f2

and G′ : f2 → f3 in S, include the composition G; G′ in S. Second, check every
G : f1 → f1 ∈ S to ensure that if G is idempotent, i.e. G = G; G, then G contains an

arc of the form x
1→ x.

3 Size-Change Termination and Ramsey-Based Containment

The Ramsey-based test of Section 2.1 and the LJB algorithm of Section 2.3 bear a
more than passing similarity. In this section we bridge the gap between the Ramsey-
based universality test and the LJB algorithm, by demonstrating that the LJB algorithm
is a specialized realization of the Ramsey-based containment test. This first requires
developing a Ramsey-based framework for Büchi -containment testing.

3.1 Ramsey-Based Containment with Supergraphs

To test the containment of a Büchi automaton A in a Büchi automaton B, we could
construct the complement of B using either the Ramsey-based or rank-based construc-
tion, compute the intersection automaton of A and B, and search this intersection au-
tomaton for a lasso. With universality, however, we avoided directly constructing B by
exploiting the structure of states in the Ramsey-based construction (see Lemma 2). We
demonstrate a similar test for containment.

Consider two automata, A = 〈Σ, QA, Qin
A , ρA, FA〉 and B=〈Σ, QB, Qin

B , ρB, FB〉.
When testing the universality of B, any word not in L(B) is a sufficient counterexample.
To test L(A) ⊆ L(B) we must restrict our search to the subset of Σω accepted by A.
In Section 2.1, we defined a set ˜QB, which provides a family of languages that covers
Σω (see Lemma 1). We now define a set, ̂QA,B, which provides a family of languages
covering L(A).

We first define Q̄A = QA × QA to capture the connectivity in QA. An element
ḡ = 〈q, r〉 ∈ Q̄A is a single arc asserting the existence of a path in A from q to r. With
each arc we associate a language, L(ḡ). Given a word w ∈ Σ+, say that w ∈ L(〈q, r〉)
iff there is a path in A from q to r over w. Define ̂QA,B as Q̄A × ˜QB. The elements
of ̂QA,B, called supergraphs, are pairs consisting of an arc from Q̄A and a graph from
˜QB. Each element simultaneously captures all paths in B and a single path in A. The
language L(〈ḡ, g̃〉) is then L(ḡ)∩L(g̃). For convenience, we implicitly take ĝ = 〈ḡ, g̃〉,
and say 〈q, a, r〉 ∈ ĝ when 〈q, a, r〉 ∈ g̃.

The languages L(ĝ), ĝ ∈ ̂QA,B, cover all finite subwords of L(A). With them we
define a finite family of ω-languages that cover L(A). Given ĝ, ̂h ∈ ̂QA,B, let Zgh

be the ω-language L(ĝ) · L(̂h)ω. Zgh is called proper if: (1) Zgh is non-empty; (2)
ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin

A and r ∈ FA; (3) L(ĝ) · L(̂h) ⊆ L(ĝ) and
L(̂h) · L(̂h) ⊆ L(̂h). We note that Zgh is non-empty if L(ĝ) and L(̂h) are non-empty,
and that, by the second condition, every proper Zgh is contained in L(A).



Büchi Complementation and Size-Change Termination 23

Lemma 4. Let A and B be two Büchi automata, and ̂QA,B be the corresponding set of
supergraphs.

(1) L(A) =
⋃{Zgh | Zgh is proper}

(2) For all proper Zgh, either Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B)
(3) L(A) ⊆ L(B) iff every proper language Zgh ⊆ L(B).
(4) Let ĝ,̂h be two supergraphs such that Zgh is proper. Zgh ⊆ L(B) iff there exists

q ∈ Qin
B , r ∈ QB, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ̂h.

In an analogous fashion to Section 2.1, we can use supergraphs to test the containment
of two automata, A and B. Search all pairs of supergraphs, ĝ,̂h ∈ ̂QA,B for a pair that
is both proper and for which there does not exist a q ∈ Qin

B , r ∈ QB, a ∈ {0, 1} such
that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ̂h. Such a pair is a counterexample to containment. If
no such pair exists, then L(A) ⊆ L(B). We call this search the double-graph search, to
distinguish from later algorithms for which a counterexample is a single graph.

The double-graph search faces difficulty on two fronts. First, the number of potential
supergraphs is very large. Secondly, checking language nonemptiness is an exponen-
tially difficult problem. To address these problems we construct only supergraphs with
non-empty languages. Borrowing the notion of composition from Section 2.3 allows
us to use exponential space to compute exactly the needed supergraphs. We start with
graphs corresponding to single letters and compose them until we reach closure. The re-
sulting subset of ̂QA,B, written ̂Qf

A,B, contains exactly the supergraphs with non-empty
languages. In addition to removing the need to check for emptiness, composition al-
lows us to test the sole remaining aspect of properness, language containment, in time
polynomial in the size of the supergraphs.

3.2 Strongly Suffix Closed Languages

Theorem 1 suggests that, for some languages, a cycle implies the existence of a lasso.
For Büchi automata of such languages, it is sufficient, when disproving containment,
to search for a graph ̂h ∈ ̂QB, where ̂h;̂h = ̂h, with no arc 〈r, 1, r〉. This single-graph
search reduces the complexity of our algorithm significantly. What enables this in size-
change termination is the late-start property: threads can begin at any point. We here
define the class of automata amenable to this optimization, beginning with universality
for simplicity.

In size-change termination, an accepting cycle can start at any point. Thus the arc
〈r, 1, r〉 ∈ ˜h does not need an explicit matching prefix 〈q, a, r〉 in some g̃. In the context
of universality, we can apply this method when it is safe to add or remove arbitrary
prefixes of a word. To describe these languages we extend the standard notion of suffix
closure. A language L is suffix closed when, for every w ∈ L, every suffix of w is in L.

Definition 5. A language L is strongly suffix closed if it is suffix closed and for every
w ∈ L, w1 ∈ Σ+, we have that w1w ∈ L.

Lemma 5. Let B be an Büchi automaton where every state in Q is reachable and L(B)
is strongly suffix closed. B is not universal iff the set of supergraphs with non-empty
languages, ˜Qf

B, contains a graph ˜h = ˜h;˜h with no arc of the form 〈r, 1, r〉.
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To extend this notion to handle containment questions L1 ⊆ L2, we restrict our focus
to words in L1. Instead of requiring L2 to be closed under arbitrary prefixes, L2 need
only be closed under prefixes that keep the word in L1.

Definition 6. A language L2 is strongly suffix closed with respect to L1 when L2 is
suffix closed and, for every w ∈ L1 ∩ L2, w1 ∈ Σ+, if w1w ∈ L1 then w1w ∈ L2.

Lemma 6. Let A and B be two Büchi automata where Qin
A = QA,3 every state in QB is

reachable, and L(B) is strongly suffix closed with respect to L(A). Then L(A) �⊆ L(B)
iff ̂Qf

A,B contains a supergraph ̂h = 〈〈s, s〉,˜h〉 where s ∈ FA, ̂h;̂h = ̂h and there is no

arc 〈r, 1, r〉 ∈ ̂h.

Lemma 6 provides a simplified test for the containment ofA in B when L(B) is strongly
suffix closed with respect to L(A). Search all supergraphs in ̂QA,B for an supergraph
̂h where ̂h;̂h = ̂h that does not contain an arc of the form 〈r, 1, r〉. The presence of
this counterexample refutes containment, and the absence of such a supergraph proves
containment. We call this search the single-graph search.

3.3 From Ramsey-Based Containment to Size-Change Termination

We can now delve into the connection between the LJB algorithm for size-change ter-
mination and the Ramsey-based containment test. SCGs of the LJB algorithm are di-
rect analogues of supergraphs in the Ramsey-based containment test of AFlow(L) and
ADesc(L).

Noting that the LJB algorithm examines single SCGs G where G = G; G, we show
that for an SCT problem L = 〈H, P, C,G〉 the conditions of Lemma 6 are met. First,
every state in AFlow(L) is an initial state. Second, every function in L is reachable,
and so every state in ADesc(L) is reachable.4 Finally, the late-start property is precisely
Desc(L) being strongly suffix closed with respect to Flow(L). Therefore we can use
the single-graph search.

Consider supergraphs in ̂QAF low(L),ADesc(L) . The state space of AFlow(L) is the set
of functions H , and the state space of ADesc(L) is the union of H and Q1, the set of

all {0, 1}-labeled parameters. A supergraph in ̂QAF low(L),ADesc(L) thus comprises an
arc 〈q, r〉 in H and a {0, 1}-labeled graph g̃ over H ∪ Q1. The arc asserts the existence
of a call path from q to r, and the graph g̃ captures the relevant information about
corresponding paths in ADesc(L).

These supergraphs are almost the same as SCGs, G : q → r. Aside from notational
differences, both contain an arc, which asserts the existence of a call path between two
functions, and a {0, 1}-labeled graph. There are vertices in both graphs that correspond
to parameters of functions, and arcs between two such vertices describe a thread be-
tween the corresponding parameters. The analogy falls short, however, on three points:

(1) In SCGs, vertices are always parameters of functions. In supergraphs, vertices
can be either parameters of functions or function names.

3 With a small amount of work, the restriction that Qin
A = QA can be relaxed to the requirement

that L(A) be suffix closed.
4 In the original reduction, 1-labeled parameters may not have been reachable.
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(2) In SCGs, vertices are unlabeled. In supergraphs, vertices are labeled either 0 or 1.
(3) In SCGs, only vertices corresponding to parameters of two specific functions are

present. In supergraphs, vertices corresponding to every parameters of every functions
exist.

We show, in turn, that each difference is an opportunity to specialize the Ramsey-
based containment algorithm.

(1) No functions in H are accepting for ADesc(L), and once we transition out of H
into Q1 we can never return to H . Therefore vertices corresponding to function names
can never be part of a descending arc 〈r, 1, r〉. Since we only search ̂J for a cycle
〈r, 1, r〉, we can simplify supergraphs in ̂QAF low(L),ADesc(L) by removing all vertices
corresponding to functions.

(2) The labels on parameters are the result of encoding a Büchi edge acceptance
condition in a Büchi state acceptance condition automaton, and can be dropped from
supergraphs with no loss of information. Consider an arc 〈〈f, a〉, b, 〈g, c〉〉. If b is 1, we
know the corresponding thread contains a descending arc. The value of c tells us if the
final arc in the thread is descending, but which arc is descending is irrelevant. Thus it is
safe to simplify supergraphs in ̂QAF low(L),ADesc(L) by removing labels on parameters.

(3) While all parameters are states in ADesc(L), each supergraph describes threads
in a call sequence between two functions. There are no threads in this call sequence be-
tween parameters of other functions, and so no supergraph with a non-empty language
has arcs between the parameters of other functions. We can thus simplify supergraphs
in ̂QAF low(L),ADesc(L) by removing all vertices corresponding to parameters of other
functions.

We can specialize the Ramsey-based containment algorithm for L(AFlow(L)) ⊆
L(ADesc(L)) in two ways. First, by Lemma 6 we know that Flow(L) ⊆ Desc(L)
if and only if ̂QAF low(L),ADesc(L) contains an idempotent graph ĝ = ĝ; ĝ with no arc

of the form 〈r, 1, r〉. Secondly, we can simplify supergraphs in ̂QAF low(L),ADesc(L) by
removing the labels on parameters and keeping only the vertices associated with appro-
priate parameters. The simplifications of supergraphs whose languages contain single
characters are in one-to-one corresponding with G, the initial set of SCGs. As every
state in Flow(L) is accepting, every idempotent supergraph can serve as a counterex-
ample. Therefore Desc(L) ⊆ Flow(L) if and only if the closure of the set of simplified
supergraphs under composition contains an idempotent supergraph with no arc of the
form 〈r, 1, r〉. This is precisely the algorithm provided by Theorem 1.

4 Empirical Analysis

All the Ramsey-based algorithms presented in Section 2.3 have worst-case running
times that are exponentially slower than those of the rank-based algorithms. We now
compare existing, Ramsey-based, SCT tools tools to a rank-based Büchi containment
solver on the domain of SCT problems.

4.1 Towards an Empirical Comparison

To facilitate a fair comparison, we briefly describe two improvements to the algorithms
presented above. First, in constructing the analogy between SCGs in the LJB algorithm
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and supergraphs in the Ramsey-based containment algorithm, we noticed that super-
graphs contain vertices for every parameter, while SCGs contain only vertices corre-
sponding to parameters of relevant functions. These vertices are states in ADesc(L).
While we can specialize the Ramsey-based test to avoid them, Büchi containment
solvers might suffer. These states duplicate information. As we already know which
functions each supergraph corresponds to, there is no need for each vertex to be unique
to a specific function.

The extra states emerge because Desc(L) only accepts strings that are contained
in Flow(L). But the behavior of ADesc(L) on strings not in Flow(L) is irrelevant to
the question of Flow(L) ⊆ Desc(L), and we can replace the names of parameters in
ADesc(L) with their location in the argument list. By using this observation, we can sim-
plify the reduction from SCT problems to Büchi containment problems. Experimental
results demonstrate that these changes do improve performance.

Second, in [2], Ben-Amram and Lee present a polynomial approximation of the LJB
algorithm for SCT. To facilitate a fair comparison, they optimize the LJB algorithm for
SCT by using subsumption to remove certain SCGs when computing the closure under
composition. This suggests that the single-graph search of Lemma 6 can also employ
subsumption. When computing the closure of a set of supergraphs under compositions,
we can ignore elements when they are conservatively approximated, or subsumed, by
other elements. Intuitively, a supergraph ĝ conservatively approximates another super-
graph ̂h when it is strictly harder to find a 1-labeled sequence of arcs through ĝ than
through ̂h. When the right arc can be found in ĝ, then it also occurs in ̂h. If ĝ does
not have a satisfying arc, then we already have a counterexample supergraph. Formally,
given two graphs ĝ,̂h ∈ ̂QA,B where ḡ = h̄, say that ĝ conservatively approximates ̂h,
written ĝ � ̂h, when for every arc 〈q, a, r〉 ∈ ĝ there is an arc 〈q, a′, r〉 ∈ ̂h, where if
a = 1 then a′ = 1. Note that conservative approximation is a transitive relation. In or-
der to safely employ conservative approximation as a subsumption relation, we replace
the search for a single arc in idempotent graphs with a search for a strongly connected
component in all graphs. Extending this relationship to the double-graph search is an
open problem.

4.2 Experimental Results

All experiments were performed on a Dell Optiplex GX620 with a single 1.7Ghz Intel
Pentium 4 CPU and 512 MB. Each tool was given 3500 seconds, a little under one hour,
to complete each task.

Tools: The formal-verification community has implemented rank-based tools in order
to measure the scalability of various approaches. The programming-languages com-
munity has implemented several Ramsey-based SCT tools. We use the best-of-breed
rank-based tool, Mh, developed by Doyen and Raskin [5], that leverages a subsump-
tion relation on ranks. We expanded the Mh tool to handle Büchi containment problems
with arbitrary languages, thus implementing the full containment-checking algorithm
presented in their paper.

We use two Ramsey-based tools. SCTP is a direct implementation of the LJB al-
gorithm of Theorem 1, written in Haskell [7]. We have extended SCTP to reduce SCT
problems to Büchi containment problems, using either Definition 3 or our improved
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reduction. sct/scp is an optimized C implementation of the SCT algorithm, which uses
the subsumption relation of Section 4.1 [2].

Problem Space: Existing experiments on the practicality of SCT solvers focus on ex-
amples extracted from the literature [2]. We combine examples from a variety of sources
[1,2,7,8,10,12,17]. The time spent reducing SCT problems to Büchi automata never
took longer than 0.1 seconds and was dominated by I/O. Thus this time was not counted.
We compared the performance of the rank-based Mh solver on the derived Büchi con-
tainment problems to the performance of the existing SCT tools on the original SCT
problems. If an SCT problem was solved in all incarnations and by all tools in less than
1 second, the problem was discarded as uninteresting. Unfortunately, of the 242 SCT
problems derived from the literature, only 5 prove to be interesting.

Experiment Results: Table 1 compares the performance of the rank-based Mh solver
against the performance of the existing SCT tools, displaying which problems each tool
could solve, and the time taken to solve them. Of the interesting problems, both SCTP
and Mh could only complete 3. On the other hand, sct/scp completed all of them, and
had difficulty with only one problem.

Table 1. SCT problem completion time by tool

Problem SCTP (s) Mh (s) sct/scp (s)
ex04 [2] 1.58 Time Out 1.39
ex05 [2] Time Out Time Out 227.7
ms [7] Time Out 0.1 0.02
gexgcd [7] 0.55 14.98 0.023
graphcolour2 [8] 0.017 3.18 0.014

The small problem space makes it difficult to draw firm conclusions, but it is clear
that Ramsey-based tools are comparable to rank-based tools on SCT problems: the
only tool able to solve all problems was Ramsey based. This is surprising given the
significant difference in worst-case complexity, and motivates further exploration.

5 Reverse-Determinism

In the previous section, the theoretical gap in performance between Ramsey and rank-
based solutions was not reflected in empirical analysis. Upon further investigation, it
is revealed that a property of the domain of SCT problems is responsible. Almost all
problems, and every difficult problem, in this experiment have SCGs whose vertices
have an in-degree of at most 1. This property was first observed by Ben-Amram and
Lee in their analysis of SCT complexity [2]. After showing why this property explains
the performance of Ramsey-based algorithms, we explore why this property emerges
and argue that it is a reasonable property for SCT problems to possess. Finally, we
improve the rank-based algorithm for problems with this property.

As stated above, all interesting SCGs in this experiment have vertices with at most
one incoming edge. In analogy to the corresponding property for automaton, we call
this property of SCGs reverse-determinism. Given a set of reverse-deterministic SCGs
G, we observe three consequences. First, a reverse-deterministic SCG can have no more
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than n arcs: one entering each vertex. Second, there are only 2O(n log n) possible such
combinations of n arcs. Third, the composition of two reverse-deterministic SCGs is
also reverse-deterministic. Therefore every element in the closure of G under composi-
tion is also reverse-deterministic. These observations imply that the closure of G under
composition contains at most 2O(n log n) SCGs. This reduces the worst-case complex-
ity of the LJB algorithm to 2O(n log n). In the presence of this property, the massive
gap between Ramsey-based algorithms and rank-based algorithms vanishes, helping to
explain the surprising strength of the LJB algorithm.

Lemma 7. When operating on reverse-deterministic SCT problems, the LJB algorithm
has a worst-case complexity of 2O(n log n).

It is not a coincidence that all SCT problems considered possess this property. As
noted in [2], straightforward analysis of functional programs generates only reverse-
deterministic problems. In fact, every tool we examined is only capable of producing
reverse-deterministic SCT problems. To illuminate the reason for this, imagine a SCG
G : f → g where f has two parameters, x and y, and g the single parameter z. If G
is not reverse deterministic, this implies both x and y have arcs, labeled with either 0
or 1, to z. This would mean that z’s value is both always smaller than or equal to x
and always smaller than or equal to y. In order for this to occur, we would need a min
operation that returns the smaller of two elements. For the case of lists, for example,
min would return the shorter of two lists. This is not a common operation, and none of
the size-change analyzers were designed to discover such properties of functions.

We now consider the rank-based approach to see if it can benefit from reverse-
determinism. We say that an automaton is reverse-deterministic when no state has
two incoming arcs labeled with the same character. Formally, an automaton is reverse-
deterministic when, for each state q and character a, there is at most one state p such
that q ∈ ρ(p, a). Given a reverse-deterministic SCT problem L, both AFlow(L) and
ADesc(L) are reverse-deterministic. As a corollary to the above, the Ramsey-based
complementation construction has a worst-case complexity of 2O(n log n) for reverse
deterministic automata. Examining the rank-based approach, we note that with reverse-
deterministic automata we do not have to worry about multiple paths to a state. Thus a
maximum rank of 2, rather than 2n, suffices to prove termination of every path, and the
worst-case bound of the rank-based construction improves to 2O(n).

Lemma 8. Given a reverse-deterministic Büchi automaton B with n states, there exists
an automaton B′ with 2O(n) states such that L(B′) = L(B).

In light of this discovery, we revisit the experiments and again compare rank and
Ramsey-based approaches on SCT problems. This time we tell Mh, the rank-based
solver, that the problems have a maximum rank of 2. Table 2 compares the running
time of Mh and sct/scp on the five most difficult problems. As before, time taken to
reduce SCT problems to automata containment problems was not counted.

While our problem space is small, the theoretical worst-case bounds of Ramsey and
rank-based approach appears to be reflected in the table. The Ramsey-based sct/scp
completes some problems more quickly, but in the worst cases, ex04 and ex05, performs
significantly more slowly than Mh. It is worth noting, however, that the benefits of
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Table 2. SCT problem completion time times by tool, exploiting reverse-determinism

Problem Mh (s) sct/scp (s)
ex04 0.01 1.39
ex05 0.13 227.7
ms 0.1 0.02
gexgcd 0.39 0.023
graphcolour2 0.044 0.014

reverse-determinism on Ramsey-based approaches emerges automatically, while rank-
based approaches must explicitly test for this property in order to exploit it.

6 Conclusion

In this paper we demonstrate that the Ramsey-based size-change termination algo-
rithm proposed by Lee, Jones, and Ben-Amram [10] is a specialized realization of the
1987 Ramsey-based complementation construction [3,14]. With this link established,
we compare rank-based and Ramsey-based tools on the domain of SCT problems. Ini-
tial experimentation revealed a surprising competitiveness of the Ramsey-based tools,
and led us to further investigation. By exploiting reverse-determinism, we were able to
demonstrate the superiority of the rank-based approach.

Our experiments operated on a very sparse space of problem, and still yielded two
interesting observations. First, subsumption appears to be critical to the performance
of Büchi complementation tools using both rank and Ramsey-based algorithms. It has
already been established that rank-based tools benefit strongly from the use of subsump-
tion [5]. Our results demonstrate that Ramsey-based tools also benefit from subsump-
tion, and in fact experiments with removing subsumption from sct/scp seem to limit its
scalability. Second, by exploiting reverse-determinism, we can dramatically improve
the performance of both rank and Ramsey-based approaches to containment checking.

Our test space was unfortunately small, with only five interesting problems emerg-
ing. In [5,15], a space of random automata universality problems is used to provide a
diverse problem domain. We plan to similarly generate a space of random SCT prob-
lems to provide a more informative problem space. Sampling this problem space is
complicated by the low transition density of reverse-deterministic problems: in [5,15]
the most interesting problems had a transition density of 2. Intrigued by the competi-
tive performance of Ramsey-based solutions, we also intend to compare Ramsey and
rank-based approaches on the domain of random universality problems.

On the theoretical side, we are interested in extending the subsumption relation
present in sct/scp. It is not immediately clear how to use subsumption for problems
that are not strongly suffix-closed. While arbitrary problems can be phrased as a single-
graph search, doing so imposes additional complexity. Extending the subsumption re-
lation to the double-graph search of Lemma 4 would simplify this solution greatly.

The effects of reverse-determinism on the complementation of automata bear further
study. Reverse-determinism is not an obscure property, it is known that automata derived
from LTL formula are reverse-deterministic [6]. As noted above, both rank and Ramsey-
based approaches improves exponentially when operating on reverse-deterministic
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automata. Further, Ben-Amram and Lee have defined SCP, a polynomial-time approxi-
mation algorithm for SCT. For a wide subset of SCT problems with restricted in degrees,
including the set used in this paper, SCP is exact. In terms of automata, this property
is similar, although perhaps not identical, to reverse-determinism. The presence of an
exact polynomial algorithm for the SCT case suggests a interesting subset of Büchi con-
tainment problems may be solvable in polynomial time. The first step in this direction
would be to determine what properties a containment problem must have to be solved
in this fashion.
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