
The Complexity of Predicting Atomicity

Violations�

Azadeh Farzan1 and P. Madhusudan2

1 University of Toronto
2 Univ. of Illinois at Urbana-Champaign

Abstract. We study the prediction of runs that violate atomicity from
a single run, or from a regular or pushdown model of a concurrent pro-
gram. When prediction ignores all synchronization, we show predicting
from a single run (or from a regular model) is solvable in time O(n+k.ck)
where n is the length of the run (or the size of the regular model), k is
the number of threads, and c is a constant. This is a significant improve-

ment from the simple O(nk · 2k2
) algorithm that results from building a

global automaton and monitoring it. We also show that, surprisingly, the
problem is decidable for model-checking recursive concurrent programs
without synchronizations. Our results use a novel notion of a profile: we
extract profiles from each thread locally and compositionally combine
their effects to predict atomicity violations.

For threads synchronizing using a set of locks L, we show that predic-

tion from runs and regular models can be done in time O(nk ·2|L|·log k+k2
).

Notice that we are unable to remove the factor k from the exponent on n
in this case. However, we show that a faster algorithm is unlikely : more
precisely, we show that prediction for regular programs is unlikely to
be fixed-parameter tractable in the parameters (k, |L|) by proving it is
W [1]-hard. We also show, not surprisingly, that prediction of atomicity
violations on recursive models communicating using locks is undecidable.

1 Introduction

The new disruptive trend in microprocessor technology that bodes a future where
there will be no significant speed-up of individual processors but only a mul-
titude of processor cores, poses a tremendous challenge to computer science.
Parallel computers will become ubiquitous and all software will have to exploit
parallelism to gain performance. One of the most challenging aspects of this
overhauling of technology is that concurrent programs are very hard to write
and debug, making reliability and programmer productivity a huge concern.

Despite various efforts in computer science that strive to enable simple models
for concurrency such as transactional memory[24], stream-programming, actors
and MPI (message passing interface) paradigms [1,14,2], that escape the dread
of a wild shared-memory program, it is fairly clear that concurrent reactive

� For a full version of this paper refer to [8].

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 155–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 A. Farzan and P. Madhusudan

programs will exhibit significant non-determinism in terms of interleaved execu-
tions. A serious consequence of this is that software will become very hard even
to test against one particular input : given a concurrent program and an input,
there will be a myriad of interleaved executions, making testing extremely chal-
lenging. The CHESS project at Microsoft research and IBM’s ConTest tool are
efforts that try to address this problem.

An extremely common generic concurrency bug is the violation of atomicity.
Intuitively, a programmer writing a procedure often wants non-interfered access
to certain data, enabling local reasoning of the procedure in terms of how it
affects the state. A programmer often puts together concurrency control mech-
anisms to ensure atomicity, often by taking locks on the data accessed. This is
extremely error-prone: errors occur if not all locks for accessed data are taken,
non-uniform ordering of locking can cause deadlocks, and naive ways of locking
can inhibit concurrency, which forces programmers to invent intricate ways to
achieve concurrency and correctness at the same time. Recent studies of concur-
rency errors [19] show that a majority of errors (69%) are atomicity violations.
This motivates the problems we consider in this paper: to study algorithms that
can help search the space of all interleavings for atomicity violations.

First, we assume that we have a mechanism to observe the global run of a con-
current program as an interleaved sequence of events executed by the different
threads1. Assuming a program’s global run is divided into transactions, where a
transaction is a block of code like a procedure that we expect the programmer
intends to be atomic, we would like to check for runs of the program that violate
atomicity with respect to these transaction boundaries2. The notion of atom-
icity we study is a standard notion called conflict-serializability— intuitively, a
conflict serializable run is a run that may involve interleaving of threads but is
semantically equivalent to a serial run where all transactions are executed in a
sequential non-interleaved fashion.

Given a run, the first problem of interest is to check whether it is serializable.
This problem is a monitoring problem and we have recently solved this problem
satisfactorily [7], showing that there is a deterministic monitoring algorithm that
uses space at most O(k2 + kv) (for a program with k threads and v global vari-
ables). The salient aspect of this algorithm is that the space used is independent
of the length of the observed run, making it extremely useful in practice.

In this paper, we study the harder problem of predicting atomicity violations.
Given a run r, we would like to predict other runs r′ which are not serializable.
This is an extremely interesting and useful problem to solve; if we execute a
program on an input and obtain one run r, and use it to predict non-serializable
runs r′ efficiently, it gives us a very effective mechanism of finding atomicity vio-
lations without generating and testing all interleavings in a brute-force manner.

1 In practice, we can augment the program so that it communicates to a monitoring
module, and with extra synchronization, ensure sequential consistency, and correct
observation of runs.

2 Note that we do not assume a transactional memory programming model; the pro-
grams we consider run on “wild” shared memory.

The Complexity of Predicting Atomicity Violations 157

Our prediction model is simple and intuitive: given a run r, we project the run
r to each of the threads to get local runs r1, . . . , rk. We then consider all runs
that can be obtained by combining the runs r1 through rk in any interleaved
fashion to be predicted by the run r. Note that our notion of a run does not
include conditional checks made by the threads nor the actual data written by
the programs: this is intentional, as considering these aspects leads to a very
complex prediction model that is unlikely to be tractable. Our prediction model
is optimistic: we predict a larger class of runs than may be allowed by the actual
program, and hence any non-serializable execution that we infer must be subject
to testing to check feasibility of execution by the program.

The problem of inferring whether any interleaved execution of k local runs
r1, . . . , rk leads to a violation of serializability is really a model-checking prob-
lem: for each thread Ti we are given a straight-line program executing ri, and
asked whether the concurrent program has a serializability violation. A natural
analog of this problem is that we are given a set of k program models (finite-
state transition systems or recursive transition systems) and asked whether any
interleaving of them results in a serializability violation. Program models can be
derived in various ways: for instance we can collect the projections of multiple
tests and build local transition systems and check whether we can predict a run
that violates atomicity. Program models may also be obtained statically from
programs using abstraction techniques.

This paper is devoted to the theoretical analysis of predicting atomicity viola-
tions from straight-line concurrent programs (for predictions from tests), regular
concurrent programs and recursive concurrent programs.

Let us briefly consider the problem of inferring runs from straight-line. It is
clear that we can construct a global transition system that generates all the in-
terleavings of the program, and by intersecting this with a monitoring automaton
for serializability, predict atomicity violations. However, this essentially gener-
ates all the interleavings, which is precisely the problem we wish to avoid. The
goal of this paper is to study when this can be avoided.

Notice that the state space of the global transition system generating all inter-
leavings is O(nk) in size where n is the size of the program, and k is the number
of threads. In practical applications, n is very large (the length of the run) and
k, though small, is not a constant, leading to a very large state-space, making
prediction almost impossible. Moreover, we clearly cannot expect algorithms to
work without an exponential dependence on k (we can show that the problem is
NP-complete). However, it would be extremely beneficial if we can build algo-
rithms where k does not occur in the exponent on n. An algorithm that works in
time O(n + k.ck) would work much faster in practice. For instance, in the SOR
benchmark (see [7]) for k = 3 threads, the length of a run is n = 97× 106 nodes,
and nothing short of a linear dependency on n can really work in practice.

Secondly, predicting runs gets harder when the synchronization mechanisms
have to be respected. In this paper, we consider two models: one where we
ignore any synchronization mechanism (which leads to faster but less accurate
predictions) and one where we consider synchronization using locks.

158 A. Farzan and P. Madhusudan

Our main contributions in this paper are the following. Assuming the set of
variables manipulated is a constant, we show:

– For prediction without considering of synchronization mechanisms, we show:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(n+k.ck) for a constant c (which depends
quadratically on the number of variables). This result is proved by giv-
ing a compositional algorithm that extracts relevant results from each
thread, using a novel notion called a profile, and combines the profiles
to check violations.

• Prediction of atomicity errors for recursive programs is (surprisingly)
decidable, and can be done in time O(n3 + k.ck).

– For prediction in programs that use lock synchronization over a lock-set L:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(nk · 2|L|·log k+k2
). This is a global al-

gorithm that considers all interleavings, and hence k does occur in the
exponent on n. However, we show that removing the k from the expo-
nent is highly unlikely. More precisely, we show that it is unlikely that
there is an an algorithm that works in time O(poly(n) ·f(k, |L|)), for any
computable function f , by showing that the problem is W[1]-hard over
the parameters (k, |L|). W[1]-hard problems are studied in complexity
theory, and are believed not to be fixed-parameter tractable.

• Prediction of atomicity for recursive programs is (not surprisingly) un-
decidable.

Two aspects of our work are novel. First, the notion of profiles that we use to
give the first sound and complete compositional mechanisms to prove atomicity
of programs without locks. Second, for programs with locks, our W[1]-hardness
lower bound shows that an efficient compositional method is unlikely. Such fixed-
parameter intractability results are not common in the verification literature (we
know of no such hardness result directly addressing model checking of systems).

The paper is organized as follows. In Section 2 we first define schedules which
capture how programs access variables, then define the three classes of programs
we study, namely straight-line, regular, and recursive programs. We also define
the notion of conflict-serializability and its algorithmic equivalent in terms of
conflict-graphs. Section 3 is devoted to the study of finding atomicity viola-
tions in programs with no synchronization mechanisms while Section 4 studies
the problem for programs with lock synchronization. We end with concluding
remarks and future directions in Section 5.

Related Work: Atomicity is a new notion of correctness for concurrent pro-
grams. It has been suggested [10,11,26,25,27] that atomicity violations based on
serializability are effective in finding concurrency bugs. A recent and interest-
ing study of bug databases identifies atomicity violations to be the single major
cause for errors in a class of concurrent programs [19] Work in software verifica-
tion for atomicity errors are often based on the Lipton-transactional framework.
Lipton transactions are sufficient (but not necessary) thread-local conditions

The Complexity of Predicting Atomicity Violations 159

that ensure serializability [18]. Flanagan and Qadeer developed a type system
for atomicity [10] based on Lipton transactions (which, being local, is also com-
positional). Model checking has also been used to check atomicity using Lipton’s
transactions [11,15]. In [6], we had proposed a slightly different notion of atom-
icity called causal atomicity which can be checked using partial-order methods.

The run-time monitoring for atomicity violations is well-studied. Note that
here the problem is to simply observe a run and check whether that particu-
lar run is atomic (involves no prediction). In a recent paper [9], the authors
show monitoring algorithms that work with efficient space constraints to mon-
itor atomicity violations during testing. In another recent paper [7], we have
established a more sophisticated algorithm that uses bounded space to moni-
tor, and results in extremely efficient monitoring algorithms. The existence of
a monitor also implies that if the global state-space of a concurrent program
can be modeled as a finite-state system, then the model checking problem for
serializability is decidable.

The work in [22] defines access interleaving invariants that are certain pat-
terns of access interactions on variables, learns the intended specifications using
tests, and monitors runs to find errors. A variant of dynamic two-phase locking
algorithm [20] for detection of an serializability violation is used in the atomicity
monitoring tool developed in [27].

Turning to predictive analysis, there are two main streams of work that are rel-
evant. In papers [26,25], Wang and Stoller study the prediction of runs that vio-
late serializability from a single run. Under the assumptions of deadlock-freedom
and nested locking, they show precise algorithms that can handle serializability
violations involving at most two transactions. They also give heuristic incomplete
algorithms for checking arbitrary runs. In contrast, the algorithms we present
here do not make these assumptions, and are precise and complete. Predicting
alternate executions from a single run are also studied in a series of papers by
Rosu et al [23,4]. While these tools can also predict runs that can violate atomic-
ity, their prediction model is tuned towards explicitly generating alternate runs,
which can then be subject to atomicity analysis. In sharp contrast, the results
we present here search the space of alternate interleavings efficiently, without
enumerating them. However, the accuracy and feasibility of prediction in the
above papers are better as the algorithm involves looking at the static structure
of the programs and analyzing their control dependencies.

2 Modeling Runs of Concurrent Programs

A program consists of a set of threads that run concurrently. Each thread se-
quentially runs a series of transactions. A transaction is a sequence of actions;
each action can be a read or write to a (global) variable.

We assume a finite set of thread identifiers T = {T1, T2, . . . , Tk}. We also
assume a finite set of entity names (or just entities) X = {x1, x2, . . . , xv} that

160 A. Farzan and P. Madhusudan

the threads can access. Each thread T ∈ T can perform actions from the set
AT = {T :read(x), T :write(x) | x ∈ X}. Define A =

⋃
T∈T AT .

For most parts of this paper (save for the technical lemmas), we will assume
that the number of variables |X | = v is a fixed constant.

Let us define for each thread T ∈ T , the extended alphabet ΣT = AT ∪
{T :�, T :�}. The events T :read(x) and T :write(x) correspond to thread T reading
and writing to entity x, T :� and T :� correspond to boundaries that begin and
end transactional blocks of code in thread T . Let Σ =

⋃
T∈T ΣT .

For any alphabet A, w ∈ A∗, let w[i] (where i ∈ [0, |w| − 1]) denote the i’th
element of w, and w[i, j] denote the substring from position i to position j (both
inclusive) in w. For w ∈ A∗ and B ⊆ A, let w|B denote the word w projected
to the letters in B. For a word w ⊆ Σ∗, w|T be a shorthand notation for w|ΣT ,
which denotes the actions that thread T partakes in.

The following defines the notion of observable behaviors on the global variables
of a concurrent program, which we call a schedule.

Definition 1. A transaction tr of a thread T is a word in (T :�) · A∗
T · (T :�).

Let TranT denote the set of all transactions of thread T , and let Tran denote the
set of all transactions. A schedule is a word σ ∈ Σ∗ such that for each T ∈ T ,
σ|T is a prefix of Tran∗

T . Let Sched denote the set of all schedules.

In other words, the actions of thread T are divided into a sequence of transac-
tions, where each transaction begins with T :�, is followed by a set of reads and
writes, and ends with T :�. Let Sched denote the set of all schedules.

When we refer to two particular events σ[i] and σ[j] in σ, we say they belong
to the same transaction if they belong to the same transaction block: i.e. if
there is some T such that σ[i], σ[j] ∈ AT , and there is no i′, i < i′ < j such
that σ[i′] = T :�. We will refer to the transaction blocks freely and associate
(arbitrary) names to them, using notations such as tr, tr1, tr

′, etc.

Concurrent Programs
We now define the three classes of programs we will work with— straight-line,
regular, and recursive programs.

For a set of locks L, and thread T ∈ T , define the set of lock-actions of T as
ΠL,T = {T :acquire(l), T :release(l)| l ∈ L}. Let ΠL =

⋃
T∈T ΠL,T .

A word γ ∈ Π∗
L is lock-valid if it respects the usual locking pattern imposed

by a the locking mechanism, or formally, if for every l ∈ L, γ|Π{l} is a prefix of
[⋃

T∈T (T :acquire(l) T :release(l))
]∗.

We consider three frameworks based on the structure of code in the threads.

– A Straight-line program over L is a set Pr = {αT }T∈T where αT ∈
(T :�(AT ∪ ΠL,T)∗T :�)∗ such that αT |ΠL,T is lock-valid.

The runs defined by the program Pr is given by: Runs(Pr) = {w| w ∈ (Σ∪
ΠL)∗, s.t. w|ΠL is lock-valid and w|ΣT is a prefix of αT , for each T ∈ T }.

The Complexity of Predicting Atomicity Violations 161

– A regular program over L is a set Pr = {AT }T∈T where each AT is
a finite transition system. AT = (QT , qT

in ,→T) where QT is a finite set of
states, qT

in ∈ QT is the initial state, and →T⊆ QT × (ΣT ∪ ΠL,T) × QT is
the transition relation. The language of AT , L(AT), is the set of all words
w ∈ (AT ∪ ΠL,T)∗ on which there is a path from qin on w. We require that
for any w ∈ L(AT), w|ΠL,T is lock-valid, and w|ΣT is a prefix of Tran∗

T .
The runs defined by Pr is given by:

Runs(Pr) = {w| w ∈ (Σ ∪ ΠL)∗, s.t. w|ΠL is lock-valid and for each T ∈
T , w|ΣT ∈ L(AT)}.

– A Recursive program over L is a set Pr = {PT }T∈T where each PT is
a pushdown transition system PT = (QT , qT

in , Γ T ,→T) where QT is a finite
set of states, qT

in ∈ QT is the initial state, Γ T is the stack alphabet, and
→T⊆ QT ×(ΣT ∪ΠL,T)×{push(d), pop(d), skip}d∈Γ T ×QT is the transition
relation. The language of PT , L(PT) is the set of all words generated by PT

and is defined as usual. We again require that for any w ∈ L(PT), w|ΠL,T is
lock-valid, and w|ΣT is a prefix of Tran∗

T .
The runs defined by Pr is given by: Runs(Pr) = {w| w ∈ (Σ ∪ ΠL)∗,

s.t. w|ΠL is lock-valid and for each T ∈ T , w|ΣT ∈ L(AT)}.

Finally, for any program Pr as above, the set of schedules defined by Pr is
defined as Sched(Pr) = Runs(Pr)|Σ . A program without locks is a program Pr
over the empty set of locks.

Defining atomicity
We now define atomicity as the notion of conflict serializability. Define the de-
pendency relation D as a symmetric relation defined over the events in Σ, which
captures the dependency between (a) two events accessing the same entity, where
one of them is a write, and (b) any two events of the same thread, i.e.,

D = {(T1:a1, T2:a2) | T1 = T2 and a1, a2 ∈ A ∪ {�, �} or
∃x ∈ X such that (a1 = read(x) and a2 = write(x)) or
(a1 =write(x) and a2 =read(x)) or (a1 =write(x) and a2 =write(x))}.

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼ ⊆ Sched × Sched such that: if
σ = ρabρ′, σ′ = ρbaρ′ ∈ Sched with (a, b) �∈ D, then σ ∼ σ′.

It is easy to see that the above notion is well-defined. Two schedules are con-
sidered equivalent if we can derive one schedule from the other by iteratively
swapping consecutive independent actions in the schedule.

We call a schedule σ serial if all the transactions in it occur sequentially:
formally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some
j < i such that T [i] = T :� and every j < j′ < i is such that σ[j′] ∈ AT . In
other words, the schedule is made up of a sequence of complete transactions
from different threads, interleaved at boundaries only.

162 A. Farzan and P. Madhusudan

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:write(x)

T2:�

T1:�

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:�

T1:�

T2:read(x)

Fig. 1. A non-serializable schedule and a serializable schedule

Definition 3. A schedule is serializable if it has an equivalent serial schedule.
That is, σ is a serializable schedule if there a serial schedule σ′ such that σ ∼ σ′.

Example 1. Figure 1 contains two schedules depicted by the dotted lines. The
one on the left is not serializable. The dependent events (T1:read(x), T2:write(x))
indicate that T2 has to be executed after T1 in a serial run, while the pair of
dependent events (T2:read(z), T1:write(z)) impose the opposite order. Therefore,
no equivalent serial run can exist. The schedule on the right is serializable since
in an equivalent serial run exists that runs T2 followed by T1.

The Conflict-Graph Characterization: For any schedule σ, let us give
names to transactions in σ, say tr1, . . . , trn. The conflict-graph of σ is CG(σ) =
(V, E) where V = {tr1, . . . , trn} and E contains an edge from tr to tr′ iff there
is some event a in transaction tr and some action a′ in transaction tr′ such that
(1) the a-event occurs before a′ in σ, and (2) aDa′.

Lemma 1. [3,20,12,7] A schedule σ is atomic iff the conflict graph associated
with σ is acyclic.

The above characterization yields a simple algorithm for serializability:

Proposition 1. The problem of checking whether a single schedule σ is serial-
izable is decidable in polynomial time.

3 Model Checking Atomicity for Concurrent Programs
without Synchronizations

In this section, we present model checking algorithms for checking atomicity of
finite-state concurrent programs (straight-line, regular, and recursive programs).
Let us first show that if the program has a non-serializable run, then it has a
non-serializable run of a particular form.

The Complexity of Predicting Atomicity Violations 163

T1:�

T1:read(x)

T1:write(y)

T2:�

T2:read(z)

T1:write(z)

T2:write(x)

T2:�

T1:�

A run σ is said to be normal if there is a thread
Ti such that σ = ui · Ti:� · vi · w1 · w2 · · ·wi−1 ·
wi+1 · · ·wk · v′i · Ti:� · u′

i, where wj = σ|ΣTj
(for every

j), ui · Ti:� · vi · v′i · Ti:� · u′
i = σ|ΣTi

, and vi · v′i ∈ A∗
Ti

.
In other words, a run is normal if it executes a thread
from the beginning up to the middle of a transaction in
that thread, executes other threads serially and com-
pletely, and then finishes the incomplete thread. The
Figure on the right demonstrates the normal run which
is equivalent to the non-serializable run in Figure 1 (on
the left).

The following observation will prove useful through-
out this section:
Lemma 2. If a program with no locks (L = ∅) has a non-serializable run, then
it has a non-serializable normal run.
The crucial observation (behind Lemma 2) is that there are really at most two
events in each thread that contribute to evidencing the cycle in the conflict
graph, and hence witnessing non-serializability. Intuitively, for each thread T in
the cycle, we pick can pick two events inT and outT , that cause respectively
the incoming edge from the previous thread and the outgoing edge to the next
thread in the cycle. This observation leads us to the following notion of profiles:

Definition 4 (Profile). Let σT ⊆ Σ∗
T be a local schedule. A profile for σT is a

(bounded-length) word π that is of one of the following forms:

– π = T :� T :a T :�, where T :a occurs in σT , or
– π = T :� T :a T :b T :� , provided there are two indices i and j such that i < j,

σT [i] = T :a, σT [j] = T :b, and moreover there is no i′ with i < i′ < j and
σT [i′] = T :�. In other words, T :a and T :b occur as events in σt in that order,
and belong to the same transaction.

– π = T :� T :a T :� T :� T :b T :�, provided there are two indices i and j such
that i < j, σT [i] = T :a, σT [j] = T :b, and moreover there is an i′ with
i < i′ < j and σT [i′] = T :�. In other words, T :a and T :b occur as events in
σt in that order, and belong to different transactions.

The idea of a profile is that it picks one or two events from a thread’s execution,
along with the information as to whether the two events occurred in the same
transaction or in different transactions. It turns out that profiles are enough to
witness non-serializability.

Lemma 3. A program P with no locks (straight-line, regular, or recursive) has
a non-serializable run if and only if there exists a set 〈πT 〉T∈T , where each πT

is a profile of σ|T , such that the straight line program defined by these profiles
has a non-serializable run.

The above lemma is very important, as it says that no matter how long or
complex a thread is, we can summarize it using short profiles and check the
profiles for non-serializability. This will form the key technical idea in proving
the upper bounds in this section.

164 A. Farzan and P. Madhusudan

3.1 Straight-Line and Regular Programs

We discuss now the problem of checking whether a straight-line or regular pro-
gram has a non-serializable schedule. We show that, by using profiles, we can
solve this problem in O(n + k.ck) time where n is the maximum size of the
program for any thread, k is the number of threads, and c is a constant.

Suppose that a regular program Pr consists of threads T1, . . . , Tk. The idea
is to replace each thread Ti by a set of profiles Pi, and then check whether the
collection of profiles P1, . . . ,Pk induces a non-serializable run. By Lemma 3,
Pr has a non-serializable run if and only if the collection of profiles P1, . . . ,Pk

induces a non-serializable run.
For all threads Ti, the set of profiles Pi can be computed from Ti in O(n) time.

Assuming that Ti is represented by a finite transition system of size n, one can
establish in time linear in n whether a profile π is a profile of Ti. Since there are
at most v2 possible profiles (where v is the number of global variables), one can
compute all profiles of Ti in time O(v2n). In fact, we construct an automaton Pi

which accepts Pi, the set of all profiles of Ti. These profile automata are all of
size O(v2). We build a product automaton P which accepts the set of all possible
interleavings of strings accepted by P1, . . . , Pk. Hence, P accepts the set of all
possible interleavings of profiles of threads T1, . . . , Tk, and its size is O

(
(v2)k

)
.

We can now intersect P with a monitoring automaton S for non-serializability
(see [7]). The monitor maintains a graph with k nodes, and a set of labels of
size O(v) for each node; therefore S is of size O

(
2k2

+ k2vk
)
. However, since it

suffices to monitor only normal runs, we can restrict ourselves to graphs with
only a linear number of edges and vertices, resulting in an automaton of size
O

(
k2vk

)
. Thus, the product automaton is of size O

(
k.2vk.v2k

)
. Hence we have

the following result:

Theorem 1. Given a straight-line or regular program Pr, one can check in time
O(nv2 +k2vk.v2k) whether Pr has a non-serializable run, where n is the maximum
size of a thread, k is the number of threads, and v is the number of variables. When
v is a constant, the complexity reduces to O(n + kck) where c is a constant.

We can show that, in general, an exponential dependence on the input is unlikely
to be avoidable:

Theorem 2. The problem of checking non-serializability of straight-line pro-
grams and regular programs, without locks, are both NP-complete.

3.2 Recursive Programs

In this section, we discuss the effect of the presence of recursion in the code on the
serializability checking problem. Note that even reachability of a global state is
undecidable for concurrent recursive programs, and, since serializability is a fairly
complex global property, even the decidability of serializability is not obvious.

We show, surprisingly, that checking serializability for recursive programs
without locks is indeed decidable and in time O(n3 + k.ck). Again, the notion of
profiles come to the rescue, as they avoid searching the global state-space.

The Complexity of Predicting Atomicity Violations 165

By Lemma 4, the witness for non-serializability need only contain a profile
of each thread; Therefore, we can, similar to the regular program case, extract
the profiles of each thread, and combine the profiles (which are straight-line
programs) to check for non-serializability.

Extracting profiles from non-recursive threads is a rather straightforward task.
For recursive programs, this is slightly more involved. Recall that each thread
T is modeled as a pushdown automaton (PDA) PT . We show that for any PDA
P , we can efficiently construct an NFA (nondeterministic finite automaton) N ,
such that the set of profiles of P and N are the same. Therefore, we can replace
the PDA model (the recursive code) of a thread by regular program, effectively
removing recursion, and reduce serializability of recursive programs to that of
regular programs.

Lemma 4. For a PDA P , we can construct, in O(|P |3.v2)-time, an NFA that
is of size O(|P |.v2) and that accepts the set of all profiles of schedules of P .

The result below follows from our result on checking serializability of regular
programs.

Theorem 3. Given a recursive program Pr, the problem of checking whether it
generates a non-serializable schedule, is solvable in time O(n3v2 + k.2vk.v2k),
where n is size of the program, k is the number of threads, and v is the number
of variables. When v is a constant, the complexity reduces to O(n3 +kck), where
c is a constant.

4 Programs with Lock Synchronization

In this section, we consider programs that synchronize using locks. We establish
two simple results: first, we show that the problem of checking straight-line and
regular programs with locks is solvable in time O(nk ·2|L|·log k), and, second, that
the problem of checking recursive programs with locks is undecidable. Note that
the complexity bounds we prove for straight-line programs and regular programs
are not of the form O(poly(n) · 2|L|·logk · f(k)), i.e., we do not remove k from
the exponent on n, as we did for checking atomicity of programs without locks
by extracting profiles locally and combining them. However, for programs with
locks, a notion of summarizing a thread using a finite amount of information
that is independent of n seems hard. In fact, we believe that no such scheme
exists. More precisely, we show that the problem of checking atomicity in regular
programs with locks is unlikely to be fixed-parameter tractable (i.e., it is unlikely
that there is an algorithm that works in time O(poly(n) · f(k, |L|)) for any
computable function f) by showing that the problem is W[1]-hard.

Given a straight-line or regular program with locks, we can construct the
product machine that generates all global runs. This machine will be of size
O(nk · 2|L|·log k), as its state-space will track individual states of each thread,
and in addition will keep track for each lock, the thread that holds it. We can
now intersect this with a monitoring automaton for non-serializability (see [7]),

166 A. Farzan and P. Madhusudan

which is of size O(2k2+kv). It is easy to see that the language of the resulting
automaton is empty if and only if the program has a serializability violation. We
therefore have proven the following theorem.

Theorem 4. The problem of checking whether a straight-line program or a
regular program with locks has a serializability violation is decidable in time
O(nk · 2|L|·log k+k2+kv). When v is a constant, the complexity reduces to O(nk ·
2|L|·log k+k2

).

Let us now consider recursive programs with locks. It is known that the global
reachability problem for two recursive machines communicating via synchronous
messages is undecidable [21]. Moreover, it is known (see Kahlon et al [16]) that
synchronous messages can be simulated using locks, and hence the global reach-
ability problem for two recursive machines synchronizing using locks is undecid-
able. It is not hard to reduce this problem to checking serializability of a recursive
program: intuitively, we augment the machines to execute a non-serializable run
when they reach their respective goal states. Hence:

Theorem 5. The problem of checking whether a recursive program with locks
has serializability violations is undecidable.

4.1 A Lower Bound on Checking Atomicity of Lock Synchronized
Regular Programs

In this section, we will assume that the number of variables, v, is a constant.
In the setting of programs where all synchronization was ignored, we showed

that predicting atomicity errors can be done in time O(poly(n) · k.ck). As we
argued, this is a much better algorithm than the naive algorithms that work
in time O(nk) as typically n is much larger than k. In the setting of programs
that synchronize using locks, we showed only an algorithm that runs in time
O(nk · 2|L|. log k). A natural question is to ask whether this problem can also be
solved in time O(poly(n) · 2|L|·log k · f(k)). We now show that this is unlikely: in
fact, we show that the problem is unlikely to be fixed-parameter tractable (over
the parameter k) by showing it is W [1]-hard.

Consider a problem X in which to each instance i we associate in addition
to its size n a second a parameter k ∈ N. Then the problem X is said to be
fixed-parameter tractable with respect to k if there is an algorithm that decides
X in time O(nc · f(k)), where f is an arbitrary function (we will assume f is
computable) and c is a constant.

Fixed-parameter tractability is a mature area of computational complexity
theory; we refer the reader to the textbooks [5,13]. For instance, finding a vertex
cover of a graph G with k sets is an NP-complete problem, but is fixed-parameter
tractable when the parameter is k (in fact, solvable in time O(2k · |G|)). Also,
there is a hierarchy of classes of problems, called the W -hierarchy, for which no
fixed-parameter tractable algorithms are known, and it is believed that problems
complete for these classes are not fixed-parameter tractable. For instance, finding
an independent set of size k in a graph G, where k is the parameter, is known
to be W [1]-hard and hence not believed to be fixed-parameter tractable.

The Complexity of Predicting Atomicity Violations 167

In this section, we will show that the problem of checking whether a regular
program with locks has an atomicity violation, where the parameters are the
number of threads in the program and the number of locks, is W[1]-hard.

We show hardness by reducing the problem of finite state automata intersec-
tion given below, which is known to be W[1]-hard, to our problem:

Finite State Automata Intersection
Instance: A set of k deterministic finite-state automata A1, . . . Ak over

a common alphabet Σ (Σ is not fixed).
Parameters: k, m
Question: Is there a string w ∈ L(A1)∩L(A2)∩. . . L(Ak) with |w| ≥ m?

Given an instance of this problem 〈A1, . . . , Ak〉, we construct finite-state automata
B1, . . . Bk over a set of locksL and variables V such that they have a serializability
violation if and only if the intersection of A1, . . . , Ak is nonempty. Furthermore,
and most importantly, |L| = O(k · |Σ|), V = {x}, a single variable, and each Bi

will be of size O(|Ai| ·m). Note that the parameters never occur in the exponent in
the complexity of any of these sizes. Hence, an FPT algorithm for serializability of
regular programs with locks will imply that the finite-state intersection problem
is fixed-parameter tractable, which is unlikely as it is W [1]-hard.

The construction proceeds in two phases. First, we construct automata
C1, . . . , Ck that communicate using pairwise rendezvous, and show that they
exhibit a serializability violation if and only if the intersection of A1, . . . , Ak

is nonempty. Then we show that the pairwise rendezvous mechanism can be
simulated using locks. Intuitively, the automaton C1 guesses a letter and com-
municates it to all other processes by relay messaging. All automata update
their state, each Ci simulating automaton Ai. C1 ensures that at least m letters
have been guesses, and then sends a message asking whether all other processes
have reached their final states. If they all respond that they have, C1 and C2

perform a sequence of accesses to a single variable x that results in a serializabil-
ity violation. Finally, we show that we can simulate the pairwise rendezvous of
communication using only lock-synchronization (using a mechanism in Kahlon
et al [16], and build automata B1, . . . , Bk such that they exhibit a serializabil-
ity violation if and only if the intersection of the languages of A1, . . . , Ak has a
string longer than m. This leads us to the following theorem:

Theorem 6. The following problem:

Serializability of Regular Programs
Instance: A regular program B1, . . . Bk with lock synchronization over

a set of locks L and over a single global variable x.
Parameter: k, |L|
Question: Is the program atomic?

is W [1]-hard. ��
The above shows that it is unlikely that there is an algorithm that can solve
atomicity of regular programs in time O (poly(n) · f(k, |L|)). The question as to
whether the problem of checking serializability violations of straight-line pro-
grams is also W [1]-hard is open.

168 A. Farzan and P. Madhusudan

The above reduction from automata intersection to atomicity has the property
that the state-space of the machines and the lock-set are only linear in k; this has
further implications. In [17], it was shown that the intersection of k finite-state
automata, each of size n, is unlikely to be solvable in time O

(
n(k/f(k))+d

)
where

f = o(k) and d > 0 is a constant (i.e. reducing the exponent from k to a function
sublinear in k). The authors show that if this were true, then problems solvable
in nondeterministic time t would be solvable in subexponential deterministic
time. This unlikelihood combined with our reduction (simplified not to count
the number of letters in the word) implies that it is unlikely to find algorithms
for atomicity that work in time O

(
n(k/f(k))+d

)
as well. That is, not only is k

unavoidable in the exponent on n, a sub-linear exponent is also unlikely.

5 Conclusion and Future Work

We have established fundamental algorithms for predicting atomicity violations
from straight-line programs, regular programs, and recursive programs. We have
studied two prediction models: one which ignores any synchronization of the
threads, and the other that considers lock-based synchronization. Our main re-
sults are that the problem is tractable, and solvable without exploring all in-
terleavings, for the case when synchronizations are ignored. We believe that the
notion of profiles set forth in this paper, which compositionally solve the serial-
izability model-checking problem, will be very useful in practical tools. For syn-
chronization using locks, we showed that such an efficient compositional scheme
is unlikely, by proving a W[1]-hardness lower bound for regular programs.

There are several future directions worthy of pursuit. First, we are implement-
ing prediction tools for atomicity violations in large programs, and preliminary
results show that more restrictions (such as limiting violations to involve only
two threads) are needed to make algorithms practical. Second, we do not know
whether prediction of atomicity violations of straight-line programs with locks
is also W[1]-hard; establishing this will give a strong argument to use prediction
models that ignore synchronizations. Finally, the recent study of nested locking
holds promise, as global reachability of concurrent programs synchronizing via
nested locks admits a compositional algorithm [16]. We would like to investigate
whether atomicity prediction can also benefit if threads use nested locking.

Acknowledgements. This work was partially supported by NSF Career Award
CCF-0747041 and the Universal Parallel Computing Research Center at the
University of Illinois at Urbana-Champaign (sponsored by Intel Corporation
and Microsoft Corporation).

References

1. MPI: A message-passing interface standard,
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

2. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Comput. Surv. 13(2), 185–221 (1981)

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

The Complexity of Predicting Atomicity Violations 169

4. Chen, F., Serbanuta, T.F., Rosu, G.: jpredictor: a predictive runtime analysis tool
for java. In: ICSE, pp. 221–230 (2008)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1998)

6. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

7. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008)

8. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations.
Technical Report CSRG-591, University of Torotno, Department of Computer Sci-
ence (2009)

9. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: PLDI, pp. 293–303 (2008)

10. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp.
338–349 (2003)

11. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL, pp. 256–267 (2004)

12. Fle, M.P., Roucairol, G.: On serializability of iterated transactions. In: PODC
1982: Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pp. 194–200. ACM Press, New York (1982)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
14. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and

pipeline parallelism in stream programs. In: ASPLOS, pp. 151–162 (2006)
15. Hatcliff, J., Robby, Dwyer, M.B.: Verifying atomicity specifications for concurrent

object-oriented software using model-checking. In: Steffen, B., Levi, G. (eds.) VM-
CAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004)

16. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

17. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata and n l versus n p. Theor. Comput. Sci. 302(1-3), 257–274 (2003)

18. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

19. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339 (2008)

20. Papadimitriou, C.: The theory of database concurrency control. Computer Science
Press, Inc, New York (1986)

21. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

22. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: detecting atomicity violations via access
interleaving invariants. In: ASPLOS, pp. 37–48 (2006)

23. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multi-
threaded programs. STTT 8(3), 248–260 (2006)

24. Shavit,N.,Touitou,D.:Softwaretransactionalmemory.In:PODC,pp.204–213(1995)
25. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors

in concurrent programs. In: PPoPP, pp. 137–146 (2006)
26. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multi-threaded programs.

IEEE Transactions on Software Engineering 32, 93–110 (2006)
27. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-

memory server programs. SIGPLAN Not. 40(6), 1–14 (2005)

	The Complexity of Predicting Atomicity Violations
	Introduction
	Modeling Runs of Concurrent Programs
	Model Checking Atomicity for Concurrent Programs without Synchronizations
	Straight-Line and Regular Programs
	Recursive Programs

	Programs with Lock Synchronization
	A Lower Bound on Checking Atomicity of Lock Synchronized Regular Programs

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

