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Abstract. Navigational features have been largely recognized as fundamental
for graph database query languages. This fact has motivated several authors to
propose RDF query languages with navigational capabilities. In particular, we
have argued in a previous paper that nested regular expressions are appropri-
ate to navigate RDF data, and we have proposed the nSPARQL query language
for RDF, that uses nested regular expressions as building blocks. In this paper,
we study some of the fundamental properties of nSPARQL concerning expres-
siveness and complexity of evaluation. Regarding expressiveness, we show that
nSPARQL is expressive enough to answer queries considering the semantics of
the RDFS vocabulary by directly traversing the input graph. We also show that
nesting is necessary to obtain this last result, and we study the expressiveness of
the combination of nested regular expressions and SPARQL operators. Regard-
ing complexity of evaluation, we prove that the evaluation of a nested regular
expression E over an RDF graph G can be computed in time O(|G| · |E|).

1 Introduction

The Resource Description Framework (RDF) [8,14] is the W3C recommendation data
model for the representation of information about resources on the Web. The RDF spec-
ification includes a set of reserved keywords with its own semantics, the RDFS vocab-
ulary. This vocabulary is designed to describe special relationships between resources
like typing and inheritance of classes and properties [8]. As with any data structure de-
signed to model information, a natural question that arises is what the desiderata are for
an RDF query language. Among the multiple design issues to be considered, it has been
largely recognized that navigational capabilities are of fundamental importance for data
models with explicit tree or graph structure (like XML and RDF).

Recently, the W3C Working Group issued the specification of a query language
for RDF, called SPARQL [20], which is a W3C recommendation since January 2008.
SPARQL is designed much in the spirit of classical relational languages such as SQL.
It has been noted that, although RDF is a directed labeled graph data format, SPARQL
only provides limited navigational functionalities. This is more notorious when one
considers the RDFS vocabulary (which current SPARQL specification does not cover),
where testing conditions like being a subclass of or a subproperty of naturally requires
navigating the RDF data. A good illustration of this is shown by the following query,
which cannot be expressed in SPARQL without some navigational capabilities. Con-
sider the RDF graph shown in Fig. 1. This graph stores information about cities, trans-
portation services between cities, and further relationships among those transportation
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Fig. 1. An RDF graph storing information about transportation services between cities

services (in the form of RDFS annotations). For instance, in the graph we have that a
“Seafrance” service is a subproperty of a “ferry” service, which in turn is a subproperty
of a general “transport” service. Assume that we want to test whether a pair of cities
A and B are connected by a sequence of transportation services, but without knowing
in advance what services provide those connections. We can answer such a query by
testing whether there is a path connecting A and B in the graph, such that every edge
in that path is connected with “transport” by following a sequence of subproperty re-
lationships. For instance, for “Paris” and “Calais” the condition holds, since “Paris” is
connected with “Calais” by an edge with label “TGV”, and “TGV” is a subproperty
of “train”, which in turn is a subproperty of “transport”. Notice that the condition also
holds for “Paris” and “Dover”.

Driven by these considerations, we introduced in [7] the language nSPARQL, that in-
corporates navigational capabilities to a fragment of SPARQL. The main goal of [7] was
not to formally study nSPARQL, but instead to provide evidence that the navigational
capabilities of nSPARQL can be used to pose many interesting and natural queries over
RDF data. Our goal in this paper is to formally study some fundamental properties of
nSPARQL. The first of these fundamental questions is whether the navigational capa-
bilities of nSPARQL can be implemented efficiently. In this paper, we show that this is
indeed the case. More precisely, the building blocks of nSPARQL patterns are nested
regular expressions, which specify how to navigate RDF data. Thus, we show in this
paper that nested regular expressions can be evaluated efficiently; if the appropriate data
structure is used to store RDF graphs, the evaluation of a nested regular expression E
over an RDF graph G can be computed in time O(|G| · |E|).

The second fundamental question about nSPARQL is how expressive is the language.
In this paper, we first show that nSPARQL is expressive enough to capture the deductive
rules of RDFS. Evaluating queries which involve the RDFS vocabulary is challenging,
and there is not yet consensus in the Semantic Web community on how to define a query
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language for RDFS. In this respect, we show that the RDFS evaluation of an important
fragment of SPARQL can be obtained by posing nSPARQL queries that directly tra-
verse the input RDF data. It should be noticed that nested regular expressions are used
in nSPARQL to encode the inference rules of RDFS. Thus, a second natural question
about nSPARQL is whether these expressions are necessary to obtain this result. In this
paper, we show that nesting is indeed necessary to deal with the semantics of RDFS.
More precisely, we show that regular expressions alone are not enough to obtain the
RDFS evaluation of some queries by simply navigating RDF data.

Finally, we also consider the question of whether the SPARQL operators add ex-
pressive power to nSPARQL. Given that nested regular expressions are a powerful
navigational tool, one may wonder whether the SPARQL operators can be somehow
represented by using these expressions. Or even if this is not the case, one may wonder
whether there exist natural queries that can be expressed in nSPARQL, which cannot
be expressed by using only nested regular expressions. In our last result, we show that
this is the case. More precisely, we prove that there are simple and natural queries that
can be expressed in nSPARQL and cannot be expressed by using only nested regular
expressions.

Organization of the paper. In Section 2, we introduce some basic notions about RDF
and RDFS. In Section 3, we define the notion of nested regular expression, and prove
that these expressions can be evaluated efficiently. In Section 4, we define the language
nSPARQL, and study the expressiveness of this language. Concluding remarks and re-
lated work are given in Section 5.

2 Preliminaries

RDF is a graph data format for the representation of information in the Web. An RDF
statement is a subject-predicate-object structure, called RDF triple, intended to describe
resources and properties of those resources. For the sake of simplicity, we assume that
RDF data is composed only by elements from an infinite set U of IRIs1. More formally,
an RDF triple is a tuple (s, p, o) ∈ U × U × U , where s is the subject, p the predicate
and o the object. An RDF graph is a finite set of RDF triples. Moreover, we denote by
voc(G) the elements from U that are mentioned in G.

Figure 1 shows an RDF graph that stores information about transportation services
between cities. In this figure, a triple (s, p, o) is depicted as an edge s

p−→ o, that is,
s and o are represented as nodes and p is represented as an edge label. For example,
(Paris, TGV, Calais) is a triple in the graph that states that TGV provides a transporta-
tion service from Paris to Calais. Notice that an RDF graph is not a standard labeled
graph as its set of edge labels may have a nonempty intersection with its set of nodes.
For instance, in the RDF graph in Fig. 1, TGV is simultaneously acting as a node and
as an edge label.

The RDF specification includes a set of reserved words (reserved elements from
U ) with predefined semantics, the RDFS vocabulary (RDF Schema [8]). This set of

1 In this paper, we do not consider anonymous resources called blank nodes in the RDF data
model, that is, our study focuses on ground RDF graphs. We neither make a special distinction
between IRIs and Literals.
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Table 1. RDFS inference rules

1. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

2. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

3. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

reserved words is designed to deal with inheritance of classes and properties, as well
as typing, among other features [8]. In this paper, we consider the subset of the RDFS
vocabulary composed by rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, rdfs:domain
and rdf:type, which are denoted by sc, sp, range, dom and type, respectively. This
fragment of RDFS was considered in [17]. In that paper, the authors provide a formal
semantics for it, and also show that this fragment is well-behaved as the remaining
RDFS vocabulary does not interfere with the semantics of this fragment. The semantics
proposed in [17] was shown to be equivalent to the full RDFS semantics when one
focuses on the mentioned fragment.

We use the system of rules in Tab. 1. This system was proved in [17] to be sound and
complete for the inference problem for RDFS in the presence of sc, sp, range, dom and
type, under some mild assumptions (see [17] for further details). In every rule, letters
A, B, C, X , and Y , stand for variables to be replaced by actual terms. More formally,
an instantiation of a rule is a replacement of the variables occurring in the triples of the
rule by elements of U . An application of a rule to a graph G is defined as follows. Given
a rule r, if there is an instantiation R

R′ of r such that R ⊆ G, then the graph G′ = G∪R′

is the result of an application of r to G. We say that a triple t is deduced from G, if there
exists a graph G′ such that t ∈ G′ and G′ is obtained from G by successively applying
the rules in Tab. 1.

Example 1. Let G be the RDF graph in Fig. 1. This graph contains RDFS annotations
for transportation services. For instance, (Seafrance, sp, ferry) states that Seafrance
is a subproperty of ferry. Thus, we know that there is a ferry going from Calais to
Dover since (Calais, Seafrance, Dover) is in G. This conclusion can be obtained by a
single application of rule (1b) to triples (Calais, Seafrance, Dover) and (Seafrance, sp,
ferry), from which we deduce triple (Calais, ferry, Dover). Moreover, by applying the
rule (3b) to this last triple and (ferry, range, coastal city), we deduce triple (Dover,
type, coastal city) and, thus, we conclude that Dover is a coastal city. ��

3 Nested Regular Expressions for RDF Data

Navigating graphs is done usually by using an operator next, which allows one to move
from one node to an adjacent one in a graph. In our setting, we have RDF “graphs”,
which are sets of triples, not classical graphs. In particular, instead of classical edges
(pair of nodes), we have directed triples of nodes (hyperedges). Hence, a language for
navigating RDF graphs should be able to deal with this type of objects. In [7], we
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Fig. 2. Forward and backward axes for an RDF triple (a, p, b)

introduce the notion of nested regular expression to navigate through an RDF graph.
This notion takes into account the special features of the RDF data model. In particular,
nested regular expressions use three different navigation axes to move through an RDF
triple. These axes are shown in Fig. 2 (together with their inverses).

A navigation axis allows one to move one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph, and one can use
classical regular expressions over these axes to define a set of paths that can be used
in a query. An additional axis self is used not to actually navigate, but instead to test
the label of a specific node in a path. The language also allows nested expressions that
can be used to test for the existence of certain paths starting at any axis. The following
grammar defines the syntax of nested regular expressions:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp|exp | exp∗ (1)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}.
Before introducing the formal semantics of nested regular expressions, we give some

intuition about how these expressions are evaluated in an RDF graph. The most natural
navigation axis is next::a, with a an arbitrary element from U . Given an RDF graph G,
the expression next::a is interpreted as the a-neighbor relation in G, that is, the pairs
of nodes (x, y) such that (x, a, y) ∈ G. Given that in the RDF data model a node can
also be the label of an edge, the language allows us to navigate from a node to one of
its leaving edges by using the edge axis. More formally, the interpretation of edge::a
is the pairs of nodes (x, y) such that (x, y, a) ∈ G. The nesting construction [exp] is
used to check for the existence of a path defined by expression exp. For instance, when
evaluating nested expression next::[exp] in a graph G, we retrieve the pairs of nodes
(x, y) such that there exists z with (x, z, y) ∈ G, and such that there is a path in G that
follows expression exp starting in z.

The evaluation of a nested regular expression exp in a graph G is formally defined
as a binary relation �exp�G, denoting the pairs of nodes (x, y) such that y is reachable
from x in G by following a path that conforms to exp. The formal semantics of the
language is shown in Tab. 2. In this table, G is an RDF graph, a ∈ U , voc(G) is the
set of all the elements from U that are mentioned in G, and exp, exp1, exp2 are nested
regular expressions.

As is customary for regular expressions, given a nested regular expression exp, we
use exp+ as a shortcut for exp∗/exp. The following is a simple example of the evalua-
tion of a nested regular expression. We present more involved examples when introduc-
ing the nSPARQL language.
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Table 2. Formal semantics of nested regular expressions

�self�G = {(x, x) | x ∈ voc(G)}
�self::a�G = {(a, a)}

�next�G = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
�next::a�G = {(x, y) | (x, a, y) ∈ G}

�edge�G = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
�edge::a�G = {(x, y) | (x, y, a) ∈ G}

�node�G = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
�node::a�G = {(x, y) | (a, x, y) ∈ G}

�axis-1�G = {(x, y) | (y, x) ∈ �axis�G} with axis ∈ {next, node, edge}
�axis-1::a�G = {(x, y) | (y, x) ∈ �axis::a�G} with axis ∈ {next, node, edge}

�exp1/exp2�G = {(x, y) | there exists z s.t. (x, z) ∈ �exp1�G and (z, y) ∈ �exp2�G}
�exp1|exp2�G = �exp1�G ∪ �exp2�G

�exp∗�G = �self�G ∪ �exp�G ∪ �exp/exp�G ∪ �exp/exp/exp�G ∪ · · ·
�self::[exp]�G = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ �exp�G}
�next::[exp]�G = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z, w) ∈ �exp�G}
�edge::[exp]�G = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z, w) ∈ �exp�G}
�node::[exp]�G = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z, w) ∈ �exp�G}
�axis-1::[exp]�G = {(x, y) | (y, x) ∈ �axis::[exp]�G} with axis ∈ {next, node, edge}

Example 2. Let G be the graph in Fig. 1, and consider expression exp1 =
next::[next::sp/self::train ]. The nested expression [next::sp/self::train ] per-
forms an existential test; it defines the set of nodes z in G such that there exists a
path from z that follows an edge labeled sp and reaches a node labeled train. There
is a single such node in G, namely TGV. Restricted to graph G, expression exp1
is equivalent to next::TGV and, thus, it defines the pairs of nodes that are con-
nected by an edge labeled TGV. Hence, the evaluation of exp1 in G is �exp1�G =
{(Paris, Calais), (Paris, Dijon)}. ��
In the following section, we introduce the language nSPARQL that combines the oper-
ators of SPARQL with the navigational capabilities of nested regular expressions. But
before introducing this language, we show that nested regular expressions can be eval-
uated efficiently, which is an essential requirement if one wants to use nSPARQL for
web-scale applications.

3.1 Complexity of Evaluating Nested Regular Expressions

In this section, we study the complexity of evaluating nested regular expressions over
RDF graphs. We present an algorithm for this problem that works in time proportional
to the size of the input graph times the size of the expression being evaluated. As is cus-
tomary when studying the complexity of the evaluation problem for a query language
(cf. [21]), we consider its associated decision problem. For nested regular expressions,
this problem is defined as:

PROBLEM : Evaluation problem for nested regular expressions.
INPUT : An RDF graph G, a nested regular expression exp, and a pair (a, b).
QUESTION : Is (a, b) ∈ �exp�G?
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We assume that an RDF graph G is stored as an adjacency list that makes explicit the
navigation axes (and their inverses). Thus, every u ∈ voc(G) is associated with a list
of pairs α(u), where every pair contains a navigation axis and the destination node. For
instance, if (s, p, o) is a triple in G, then (next::p, o) ∈ α(s) and (edge-1::o, s) ∈ α(p).
Moreover, we assume that (self::u, u) ∈ α(u) for every u ∈ voc(G). Notice that if
the number of triples in G is N , then the adjacency list representation uses space O(N).
Thus, when measuring the size of G, we use |G| to denote the size of its adjacency list
representation. We further assume that given an element u ∈ voc(G), we can access
its associated list α(u) in time O(1). This is a standard assumption for graph data-
structures in a RAM model.

In this section, we assume some familiarity with automata theory. Recall that given a
regular expression r, one can construct in linear time a nondeterministic finite automa-
ton with ε-transitions Ar that accepts the language generated by r.

A key idea in the algorithm introduced in this section is to associate to each nested
regular expression a nondeterministic finite automaton with ε-transitions (ε-NFA).
Given a nested regular expression exp, we recursively define the set of depth-0 terms of
exp, denoted by D0(exp), as follows:

D0(exp) = {exp} if exp is either axis, or axis::a, or axis::[exp′ ],
D0(exp1/exp2) = D0(exp1|exp2) = D0(exp1) ∪ D0(exp2),
D0(exp∗) = D0(exp),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. For instance, for the
nested expression:

exp = next::a/(next::[next::a/self::b ])∗/(next::[node::b ] | next::a)+,

we have D0(exp) = {next::a, next::[next::a/self::b ], next::[node::b ]}. Notice
that a nested regular expression exp can be viewed as a classical regular expression over
alphabet D0(exp). We denote by Aexp the ε-NFA that accepts the language generated
by the regular expression exp over alphabet D0(exp).

The algorithm for the evaluation of nested regular expressions is similar to the al-
gorithms for the evaluation of some temporal logics [11] and propositional dynamic
logic [1]. Given an RDF graph G and a nested regular expression exp, it proceeds by
recursively labeling every node u of G with a set label(u) of nested expressions. Ini-
tially, label(u) is the empty set. Then at the end of the execution of the algorithm, it
holds that exp ∈ label(u) if and only if there exists z such that (u, z) ∈ �exp�G. In the
algorithm, we use the product automaton G × Aexp , which is constructed as follows.
Let Q be the set of states of Aexp , and δ : Q × (D0(exp) ∪ {ε}) → 2Q the transition
function of Aexp . The set of states of G × Aexp is voc(G) × Q, and its transition func-
tion δ′ : (voc(G) × Q) × (D0(exp) ∪ {ε}) → 2voc(G)×Q is defined as follows. For
every (u, p) ∈ voc(G) × Q and s ∈ D0(exp), we have that (v, q) ∈ δ′((u, p), s) if and
only if q ∈ δ(p, s) and one of the following cases hold:

– s = axis and there exists a such that (axis::a, v) ∈ α(u),
– s = axis::a and (axis::a, v) ∈ α(u),
– s = axis::[exp ] and there exists b such that (axis::b, v) ∈ α(u) and exp ∈ label(b),
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where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Additionally, if q ∈
δ(p, ε) we have that (u, q) ∈ δ′((u, p), ε) for every u ∈ voc(G). That is, G × Aexp is
the standard product automaton if G is viewed as an NFA over alphabet D0(exp). It is
straightforward to prove that G × Aexp can be constructed in time O(|G| · |Aexp |).

Now we have all the necessary ingredients to present the algorithm for the evaluation
problem for nested regular expressions. This algorithm is split in two procedures: LA-
BEL labels G according to nested expression exp as explained above, and EVAL returns
YES if (a, b) ∈ �exp�G and NO otherwise.

LABEL(G,exp):
1. for each axis::[exp ′ ] ∈ D0(exp) do
2. call LABEL(G,exp ′)
3. construct Aexp , and assume that q0 is its initial state and F is its set of final states
4. construct G × Aexp

5. for each state (u, q0) that reaches a state (v, qf ) in G × Aexp , with qf ∈ F do
6. label(u) := label(u) ∪ {exp}

EVAL(G, exp, (a, b)):
1. for each u ∈ voc(G) do
2. label(u) := ∅
3. call LABEL(G,exp)
4. construct Aexp , and assume that q0 is its initial state and F is its set of final states
5. construct G × Aexp

6. if a state (b, qf ), with qf ∈ F , is reachable from (a, q0) in G × Aexp

7. then return YES

8. else return NO

It is not difficult to see that these procedures work in time O(|G| · |exp|). Just observe
that step 5 of procedure LABEL and step 6 of procedure EVAL, can be done in time
linear in the size of G × Aexp by traversing G × Aexp in a depth first search manner.

Theorem 1. Procedure EVAL solves the evaluation problem for nested regular expres-
sions in time O(|G| · |exp|).

4 The Navigational Language nSPARQL

In this section, we introduce the language nSPARQL, and we formally study its expres-
siveness. nSPARQL is essentially obtained by using triple patterns with nested regular
expressions in the predicate position, plus SPARQL operators AND, OPT, UNION,
and FILTER. Before formally introducing nSPARQL, we recall the necessary defini-
tions about SPARQL.

SPARQL [20] is the standard language for querying RDF data. We use here the
algebraic formalization introduced in [19]. Assume the existence of an infinite set V of
variables disjoint from U . A SPARQL graph pattern is defined as follows:

– A tuple from (U ∪ V )×(U ∪ V )×(U ∪ V ) is a graph pattern (a triple pattern).
– If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2), and

(P1 UNION P2) are graph patterns.
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– If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

A SPARQL built-in condition is a Boolean combination of terms constructed by using
equality (=) among elements in U ∪ V , and the unary predicate bound over variables.

To define the semantics of SPARQL graph patterns, we need to introduce some ter-
minology. A mapping μ from V to U is a partial function μ : V → U . For a triple
pattern t, we denote by μ(t) the triple obtained by replacing the variables in t according
to μ. The domain of μ, denoted by dom(μ), is the subset of V where μ is defined. Two
mappings μ1 and μ2 are compatible if for every x ∈ dom(μ1)∩dom(μ2), it is the case
that μ1(x) = μ2(x), i.e. when μ1 ∪ μ2 is also a mapping. Let Ω1 and Ω2 be sets of
mappings. We define the join, the union, the difference, and the left-outer join between
Ω1 and Ω2 as:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible mappings},

Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},

Ω1 � Ω2 = {μ ∈ Ω1 | for all μ′ ∈ Ω2, μ and μ′ are not compatible},

Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

The evaluation of a graph pattern over an RDF graph G, denoted by � · �G, is defined
recursively as follows:

– �t�G = {μ | dom(μ) = var(t) and μ(t) ∈ G}, where var(t) is the set of variables
occurring in t.

– �(P1 AND P2)�G = �P1�G �� �P2�G, �(P1 UNION P2)�G = �P1�G ∪�P2�G, and
�(P1 OPT P2)�G = �P1�G �P2�G.

The semantics of FILTER expressions goes as follows. Given a mapping μ and a built-
in condition R, we say that μ satisfies R, denoted by μ |= R, if (we omit the usual rules
for Boolean operators):

– R is bound(?X) and ?X ∈ dom(μ);
– R is ?X = c, where c ∈ U , ?X ∈ dom(μ) and μ(?X) = c;
– R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y ).

Then �(P FILTER R)�G = {μ ∈ �P �G | μ |= R}.
It was shown in [19], among other algebraic properties, that AND and UNION are

associative and commutative, thus permitting us to avoid parenthesis when writing se-
quences of either AND operators or UNION operators.

Now we formally define the language nested SPARQL (or just nSPARQL), by con-
sidering triples with nested regular expressions in the predicate position. A nested-
regular-expression triple (or just nre-triple) is a tuple t of the form (x, exp, y), where
x, y ∈ U ∪V and exp is a nested regular expression. nSPARQL patterns are recursively
defined from nre-triples:

– An nre-triple is an nSPARQL pattern.
– If P1 and P2 are nSPARQL patterns and R is a built-in condition, then

(P1 AND P2), (P1 OPT P2), (P1 UNION P2), and (P1 FILTER R) are
nSPARQL patterns.
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To define the semantics of nSPARQL, we just need to define the semantics of nre-triples.
The evaluation of an nre-triple t = (?X, exp, ?Y ) over an RDF graph G is defined as
the following set of mappings:

�t�G = {μ | dom(μ) = {?X, ?Y } and (μ(?X), μ(?Y )) ∈ �exp�G}.

Similarly, the evaluation of an nre-triple t = (?X, exp, a) over an RDF graph G, where
a ∈ U , is defined as {μ | dom(μ) = {?X} and (μ(?X), a) ∈ �exp�G}, and likewise
for (a, exp, ?X) and (a, exp, b) with b ∈ U .

Notice that every SPARQL triple (?X, p, ?Y ) with p ∈ U is equivalent to (has
the same evaluation of) nSPARQL triple (?X, next::p, ?Y ). Also notice that, since
variables are not allowed in nested regular expressions, the occurrence of variables in
the predicate position of triple patterns is forbidden in nSPARQL. Nevertheless, every
SPARQL triple of the form (?X, ?Y, a), with a ∈ U , is equivalent to nSPARQL pattern
(?X, edge::a, ?Y ). Similarly, the triple (a, ?X, ?Y ) is equivalent to (?X, node::a, ?Y ).
Thus, what we are loosing in nSPARQL is only the possibility of using variables in the
three positions of a triple pattern.

As pointed out in the introduction, it has been largely recognized that navigational
capabilities are fundamental for graph databases query languages. However, although
RDF is a directed labeled graph data format, SPARQL only provides limited naviga-
tional functionalities. In [7], we introduced nSPARQL as a way to overcome this limi-
tation. The main goal of [7] was not to formally study nSPARQL, but instead to provide
evidence that the navigational capabilities of nSPARQL can be used to pose many in-
teresting and natural queries over RDF data. Our goal in this paper is to formally justify
nSPARQL. In particular, we have already shown that nested regular expressions can be
evaluated efficiently, which is an essential requirement if one wants to use nSPARQL for
web-scale applications. In this section, we study some fundamental properties related to
the expressiveness of nSPARQL. But before doing that, we provide some additional ex-
amples of queries that are likely to occur in the Semantic Web, but cannot be expressed
in SPARQL without using nested regular expressions.

Example 3. Let G be the RDF graph of Fig. 1 and P1 the following pattern:

P1 = (?X, (next::TGV | next::Seafrance)+, Dover) AND (?X, next::country, ?Y )

Pattern P1 retrieves cities, and the country where they are located, such that there is a
way to travel from those cities to Dover using either TGV or Seafrance in every direct
trip. The evaluation of P1 over G is {{?X → Paris, ?Y → France}}. Notice that
although there is a direct way to travel from Calais to Dover using Seafrance, Calais
does not appear in the result since there is no information in G about the country where
Calais is located. We can relax this last restriction by using the OPT operator:

P2 = (?X, (next::TGV | next::Seafrance)+, Dover) OPT (?X, next::country, ?Y )

Then we have that �P2�G = {{?X → Paris, ?Y → France}, {?X → Calais}}. ��
Example 4. Assume that we want to obtain the pairs of cities (?X, ?Y ) such that there
is a way to travel from ?X to ?Y by using either Seafrance or NExpress, with an in-
termediate stop in a city that has a direct NExpress trip to London. Consider nested
expression:
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exp1 = (next::Seafrance | next::NExpress)+/

self::[next::NExpress/self::London ]/(next::Seafrance | next::NExpress)+

Then pattern P = (?X, exp1, ?Y ) answers our initial query. Notice that expression
self::[next::NExpress/self::London] is used to perform the intermediate existential
test of having a direct NExpress trip to London. ��

Example 5. Let G be the graph in Fig. 1 and P1 the following pattern:

P1 = (?X, next::[(next::sp)∗/self::transport], ?Y ). (2)

Pattern P1 defines the pairs of cities (?X, ?Y ) such that, there exists a triple (?X, p, ?Y )
in the graph and a path from p to transport where every edge has label sp. Thus, nested
expression [(next::sp)∗/self::transport] is used to emulate the process of inference
in RDFS; it retrieves all the nodes that are sub-properties of transport (rule (1a) in
Tab. 1). Therefore, pattern P1 retrieves the pairs of cities that are connected by a direct
transportation service, which could be a train, ferry, bus, etc. In general, if we want to
obtain the pairs of cities such that there is a way to travel from one city to another, we
can use the following nSPARQL pattern:

P2 = (?X, (next::[(next::sp)∗/self::transport])+, ?Y ). (3)

In this section, we formally prove that (2) and (3) cannot be expressed without using
nested expressions of the form axis::[exp]. ��

4.1 On RDFS and nSPARQL

We claimed in [7] that the language of nested regular expressions is powerful enough to
deal with the predefined semantics of RDFS. In this section, we formally prove this fact.
More precisely, we show that if one wants to answer a SPARQL query P according to
the semantics of RDFS, then one can rewrite P into an nSPARQL query Q such that Q
retrieves the answer to P by directly traversing the input graph. We also show that the
nesting operation is crucial for this result.

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query treats
RDFS vocabulary without considering its predefined semantics. We are interested in
defining the semantics of SPARQL over RDFS, that is, taking into account not only
the explicit RDF triples of a graph G, but also the triples that can be derived from G
according to the semantics of RDFS. Let the closure of an RDF graph G, denoted by
cl(G), be the graph obtained from G by successively applying the rules in Tab. 1 until
the graph does not change. The most direct way of defining a semantics for the RDFS
evaluation of SPARQL patterns is by considering not the original graph but its closure.
The theoretical formalization of such an approach was studied in [12]. The following
definition formalizes this notion.

Definition 1. Given a SPARQL graph pattern P , the RDFS evaluation of P over G,
denoted by �P �rdfs

G , is defined as the set of mappings �P �cl(G), that is, as the evaluation
of P over the closure of G.
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Regular expressions alone are not enough. Regular expressions are the most common
way of giving navigational capabilities to query languages over graph databases [5], and
recently to query languages over RDF graphs [3,16,6]. Our language not only allows
regular expressions over navigational axes but also nesting of those regular expressions.
In our setting, regular expressions are obtained by forbidding the nesting operator and,
thus, they are generated by the following grammar:

exp := axis | axis::a (a ∈ U) | exp/exp | exp|exp | exp∗ (4)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Let regular SPARQL
(or just rSPARQL) be the language obtained from nSPARQL by restricting nre-triples to
contain in the predicate position only regular expressions (generated by grammar (4)).
Notice that rSPARQL is a fragment of nSPARQL and, thus, the semantics for rSPARQL
is inherited from nSPARQL.

Our next result shows that regular expressions are not enough to obtain the RDFS
evaluation of some simple SPARQL patterns by directly traversing RDF graphs. In
fact, the following theorem shows that there is a SPARQL triple pattern whose RDFS
evaluation cannot be obtained by any rSPARQL pattern.

Theorem 2. Let p ∈ U � {sp, sc, type, dom, range} and consider triple pattern
(?X, p, ?Y ). There is no rSPARQL pattern Q such that �(?X, p, ?Y )�rdfs

G = �Q�G for
every RDF graph G.

nSPARQL and RDFS evaluation. In this section, we show that if a SPARQL pattern
P is constructed by using triple patterns having at least one position with a non-variable
element, then the RDFS evaluation of P can be obtained by directly traversing the input
graph with an nSPARQL pattern. More precisely, consider the following translation
function from elements in U to nested regular expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom

trans(range) = next::range

trans(type) = ( next::type/(next::sc)∗ |
edge/(next::sp)∗/next::dom/(next::sc)∗ |
node-1/(next::sp)∗/next::range/(next::sc)∗ )

trans(p) = next::[ (next::sp)∗/self::p ] for p /∈ {sc, sp, range, dom, type}.

Notice that we have implicitly used this translation function in Example 5.

Lemma 1. Let (x, a, y) be a SPARQL triple pattern with x, y ∈ U ∪ V and a ∈ U ,
then �(x, a, y)�rdfs

G = �(x, trans(a), y)�G for every RDF graph G.

That is, given an RDF graph G and a triple pattern t not containing a variable in the
predicate position, it is possible to obtain the RDFS evaluation of t over G by navigating
G through a nested regular expression.
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Suppose now that we have a SPARQL triple pattern t with a variable in the predicate
position, but such that the subject and object of t are not both variables. We show how to
construct an nSPARQL pattern Pt such that �t�rdfs

G = �Pt�G. Assume that t = (x, ?Y, a)
with x ∈ U ∪ V , ?Y ∈ V , and a ∈ U , that is, t does not contain a variable in the object
position. Consider for every p ∈ {sc, sp, dom, range, type}, the pattern Pt,p defined
as ((x, trans(p), a) AND (?Y, self::p, ?Y )). Then define then pattern Pt as follows:

Pt = ((x, edge::a/(next::sp)∗, ?Y ) UNION Pt,sc UNION Pt,sp UNION
Pt,dom UNION Pt,range UNION Pt,type).

We can similarly define pattern Pt for a triple pattern t = (a, ?Y, x), where a ∈ U ,
?Y ∈ V and x ∈ U ∪ V . Thus, we have the following result.

Lemma 2. Let t = (x, ?Y, z) be a triple pattern such that ?Y ∈ V , and x /∈ V or
z /∈ V . Then �t�rdfs

G = �Pt�G for every RDF graph G.

Let T be the set of triple patterns of the form (x, y, z) such that x /∈ V or y /∈ V or
z /∈ V . We have translated every triple pattern t ∈ T into an nSPARQL pattern Pt such
that �t�rdfs

G = �Pt�G. Moreover, for every triple pattern t, its translation is of size linear
in the size of t. Given that the semantics of SPARQL is defined from the evaluation of
triple patterns, we can state the following result.

Theorem 3. Let P be a SPARQL pattern constructed from triple patterns in T . Then
there exists an nSPARQL pattern Q such that �P �rdfs

G = �Q�G for every RDF graph G.
Moreover, the size of Q is linear in the size of P .

The following example shows that one can combine the translation function presented
in this section with nested regular expression patterns to obtain more expressive queries
that take into account the RDFS semantics.

Example 6. Let G be the RDF graph shown in Fig. 1. Assume that one wants to retrieve
the pairs of cities such that there is a way of traveling (by using any transportation
service) between those cities, and such that every stop in the trip is a coastal city. The
following nSPARQL pattern answers this query:

P = (?X, (trans(transport)/self::[trans(type)/self::coastal city ])+, ?Y ). ��

Notice that Theorems 2 and 3 imply that nSPARQL is strictly more expressive than
rSPARQL. We state this result in the following corollary.

Corollary 1. There exists an nSPARQL pattern that is not equivalent to any rSPARQL
pattern.

4.2 On the Expressiveness of the SPARQL Operators in nSPARQL

Clearly, nested regular expressions add expressive power to SPARQL. The opposite
question is whether using SPARQL operators in nSPARQL patterns add expressive
power to the language. Next we show that this is indeed the case. In particular, we
show that there are simple and natural queries that can be expressed by using nSPARQL
features and that cannot be simulated by using only nested regular expressions. Let us
present the intuition of this result with an example.
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Example 7. Let G be the RDF graph shown in Fig. 1. Assume that one wants to retrieve
from G the cities ?X such that there exists exactly one city that can be reached from
?X by using a direct Seafrance service. The following nSPARQL pattern answers this
query:

�
(?X, next::Seafrance/next-1, ?X)

OPT
� �

(?X, next::Seafrance, ?Y ) AND (?X, next::Seafrance, ?Z)
�

FILTER ¬?Y =?Z
� �

FILTER ¬ bound(?Y )

The first nre-triple (?X, next::Seafrance/next-1, ?X) retrieves the cities ?X that are
connected with some other city by a Seafrance service. The optional part obtains ad-
ditional information for those cities ?X that are connected with at least two different
cities by a Seafrance service. Finally, the pattern filters out those cities for which no
optional information was added (by using ¬bound(?Y )). That is, only the cities ?X
that are connected with exactly one city by a Seafrance service remains in the evalua-
tion. If we evaluate the above pattern over G, we obtain a single mapping μ such that
dom(μ) = {?X} and μ(?X) = Calais. ��

The nSPARQL pattern in the above example is essentially counting (up to a fixed thresh-
old) the cities that are connected with ?X by a Seafrance service. In the next result, we
show that some counting capabilities cannot be obtained by using nSPARQL patterns
without considering the OPT operator, even if we combine nested regular expressions
by using the operators AND, UNION and FILTER. The query used in the proof is
similar to that of Example 7. It retrieves the nodes ?X for which there exists at least
two different nodes connected with ?X .

Theorem 4. There is an nSPARQL pattern that is not equivalent to any nSPARQL
pattern that uses only AND, UNION, and FILTER operators.

5 Related Work and Concluding Remarks

Related work. The language of nested regular expressions has been motivated by some
features of query languages for graphs and trees, namely, XPath [10], temporal log-
ics [11] and propositional dynamic logic [1]. In fact, nested regular expressions are con-
structed by borrowing the notions of branching and navigation axes from XPath [10],
and adding them to regular expressions over RDF graphs. The algorithm that we present
in Section 3.1 is motivated by standard algorithms for some temporal logics [11] and
propositional dynamic logic [1].

Regarding languages with navigational capabilities for querying RDF graphs, several
proposals can be found in the literature [18,3,16,6,4,2]. Nevertheless, none of these lan-
guages is motivated by the necessity to evaluate queries over RDFS, and none of them
is comparable in expressiveness and complexity of evaluation with the language that we
study in this paper. Probably the first language for RDF with navigational capabilities
was Versa [18], whose motivation was to use XPath over the XML serialization of RDF
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graphs. Kochut et al. [16] propose SPARQLeR, an extension of SPARQL that works
with path variables that represent paths between nodes in a graph. This language also
allows to check whether a path conforms to a regular expression. Anyanwu et al. [6] pro-
pose a language called SPARQ2L. The authors further investigate the implementation of
a query evaluation mechanism for SPARQ2L with emphasis in some secondary mem-
ory issues. The language PSPARQL was proposed by Alkhateeb et al. in [3]. PSPARQL
extends SPARQL by allowing regular expressions in triple patterns. The same authors
propose a further extension of PSPARQL called CPSPARQL [4] that allows constraints
over regular expressions. CPSPARQL also allows variables inside regular expressions,
thus permitting to retrieve data along the traversed paths. In [3,4], the authors study
some theoretical aspects of (C)PSPARQL.

Alkhateeb has recently shown [2] that PSPARQL, that is, the full SPARQL language
extended with regular expressions, can be used to encode RDFS inference. Although
PSPARQL [2] and the language rSPARQL that we present in Section 4.1 are similar,
when defining rSPARQL we use a fragment of SPARQL, namely, the graph pattern
matching facility without solution modifiers like projection. Alkhateeb’s encoding [2]
needs the projection operator, and in particular, extra variables (not needed in the out-
put solution) appearing in the predicate position of triple patterns. This feature is not
allowed in the fragment that we use to construct languages rSPARQL and nSPARQL.
Although PSPARQL could be used to answer some RDFS queries, the additional abili-
ties needed in PSPARQL come with an associated complexity impact in the evaluation
problem for the conjunctive fragment, namely, NP-completeness [2]. By using the re-
sults in [19] and the complexity of the evaluation problem for nested regular expres-
sions, it is easy to show that the complexity of the evaluation problem for the conjunc-
tive fragment of nSPARQL is polynomial.

Evaluating queries which involve RDFS vocabulary is challenging, and there is not
yet consensus in the Semantic Web community on how to define a query language for
RDFS. Nevertheless, there have been several proposals and implementations of query
languages for RDF data with RDFS vocabulary, e.g. [15,9,13,12]. It would be interest-
ing to compare these approaches with the process of answering a SPARQL query under
the RDFS semantics by first compiling it into an nSPARQL query.

Concluding Remarks. In this paper, we have started the formal study of nested regular
expressions and the language nSPARQL, that we proposed in [7]. We have shown that
nested regular expressions admit a very efficient evaluation method, that justifies its
use in practice. We further showed that the language nSPARQL is expressive enough
to be used for querying and navigating RDF data. In particular, we proved that besides
capturing the semantics of RDFS, nSPARQL provides some other interesting features
that allows users to pose natural and interesting queries.
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