
Bite: Workflow Composition for the Web

Francisco Curbera, Matthew Duftler, Rania Khalaf, and Douglas Lovell

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
{curbera, duftler, rkhalaf, dclo}@us.ibm.com

Abstract. Service composition is core to service oriented architectures.
In the Web, mainstream composition is practiced in client-side or server-
side mashups, such as providing visual widgets on top of Google Maps re-
sults. This paper presents an explicit, workflow based composition model
for Web applications called Bite. In contrast with prior attempts to bring
workflow capabilities to the Web environment, Bite can deal with data
integration as well as interactive, asynchronous workflows with multi-
party interactions, and is architected to support protocols currently in
use by Web applications. The Bite development model is designed for
simplicity and short development cycle by taking a scripting approach
to workflow development.

1 Introduction

It is probably fair to say that service oriented architectures [1] deliver two main
values: extended interoperability (runtime as well as tools) and service compo-
sition. It is hard to argue at this point with the success of the SOC approach,
as its wide adoption by enterprises and public organizations demonstrates.

In the last few years, however, questions have been raised from Web-centric
developers about the complexity and overhead of the SOA and Web services
models [2]. Interoperability, it is argued, was delivered by the Web years ago
and at a much lower overhead to both runtime systems and developers. While
failing to address the need for end-to-end quality of service and tools in enterprise
settings, this argument is certainly appropriate in the context in which it is made:
Web application development. This paper is not concerned with this debate, but
with the related question of how to bring composition capabilities like those at
the heart of SOA to a Web-centric environment.

Composition is of course not new to the Web. The resource oriented archi-
tecture of the Web has favored data-centric composition models such as those
underlying most “mashups.” Mashups [3] can be supported at both the client
and the server sides, but in either case the focus is consistently on data ag-
gregation. In contrast, SOA composition focuses on behavioral aggregation of
services. This paper presents an approach to deliver composition capabilities in
a resource-centric environment, such that data and behavioral compositions are
seamlessly supported by a common workflow oriented model.

The approach taken is to adapt well known workflow techniques to the
resource-centric model, and to extend it beyond simple resource interactions

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 94–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bite: Workflow Composition for the Web 95

to cover fully asynchronous, interactive processes. However, since our goal is to
deliver native Web workflow composition, matching the interaction and model-
ing principles of the Web is not enough. This research also paid special attention
to lowering the development overhead of existing workflow models in order to ad-
dress the short-cycle, highly iterative development model prevalent in the Web.

The result of this work is “Bite,” a minimalist choreography language and run-
time built to support the Web. Bite offers a workflow based development model
for server-side scripting of all kinds of applications that interact with browser
clients, e-mail clients, REST resources, remote functions available through URL
encoded RPC, JSON-RPC, and local functions available through Java or
JavaScript method invocations. Bite supports low overhead development by en-
abling a script oriented approach in which developers can choose what advanced
capabilities to use according to the problem requirements. Variable and interface
typing are not required, but are supported. Likewise, simple data flows can be
created with the use of just a few constructs of the language, which is also able
to support powerful long-running asynchronous processes including conditional
and parallel processing.

A significant base of internet applications accessible through HTTP interfaces
is currently available from Web sites such as Google, Yahoo, EBay, PayPal Ama-
zon and many others, demonstrating a significant body of practice and commerce
built around straightforward Web protocols. Bite provides a simple to use, solid
composition model to leverage this growing trend.

The rest of this paper is organized as follows. Section 2 reviews prior work
in the area. Section 3 presents an overview of the Bite language and its design
principles. Section 4 explains how the Bite model addresses two major forms of
Web composition, data and interactive flows. In Section 5 a sample Bite process
is discussed in detail, and in Section 6 we discuss the implementation of the
Bite runtime. Finally we present the conclusions of this work and new research
directions in Section 7.

2 Related Work

The most relevant source of related work refers to Web-based workflows. We
use the BPEL language [4] as our reference for service oriented process models.
For a full survey of other approaches in Web services composition, see [5]. In
this section, we focus on workflows that operate using the Web in a first class
manner. Prior research can be summarized in the five categories below.

– State machine based workflow. A finite state machine is used in [6] to
provide REST-centric, workflows that interact with a browser. The goal is
to support single browser applications in which clicking on a link or posting
a form results in the state machine transitioning to a new state.

– Continuations. A continuation [7] is a low-level programming primitive
that stores execution context at a pre-determined location in the code, al-
lowing different mechanisms to restore it later. A continuation point is as-
sociated with a wait state in the “flow” and with an event (such as an

96 F. Curbera et al.

incoming HTTP request) that will trigger restoration of context and allow
execution to continue. Continuations are available in several languages such
as Ruby[8] and Scheme, and externally supported for others such as Cocoon’s
FlowScript API [9] or JavaFlow[10]. Continuations support “flow-like” pro-
gramming in traditional Web programming languages. One can send a user a
form that contains a unique identifier of the continuation while maintaining
a ”continuations repository” [11,12]. Once the user fills out the form, the
application knows exactly which continuation to go to. Anton van Straaten
[13] advocates making the continuation itself a REST resource, giving each
a URI.

– Web Services Derivations. In [14], the authors introduce a BPEL-like
workflow for browser interaction in a REST-centric manner. Factories and
process entry points are associated with externally visible URIs, and spe-
cialized semantics are provided for certain HTTP operations. It provides a
single client model. Other proposed workflow models that use Web-centric
interactions, but extend the HTTP verbs with additional commands, include
SWAP, ASAP and Wf-XML.

– Meta-data driven. Another approach is to overlay meta-data on top of
a service’s implementation, such that the metadata describes the workflow
semantics and directs the interaction with a browser. The Web Calculus [15]
defines a directed graph where the nodes are document nodes and the edges
may have closures. A client interacts with the service described by such a
graph using a combination of graph-traversal and closure invocations.

– Data Flows. Examples of pure data flow approaches include Yahoo Pipes
[16] and XProc [17]. However, they focus on manipulating data in response
to a single incoming request. They are not geared to aggregating user inter-
actions.

Bite shares certain aspects of its interaction model with [14], but extends an
array of capabilities that make it particularly well adapted to the Web interaction
model (including multi-protocol support) and different types of workflows (multi-
party asynchronous flows and also data flows). The next Section describes the
Bite approach in detail.

3 The Design of a Web-Centric Flow Language

Designing a process language for a REST oriented environment like the Web
requires adapting the two-level programming model underlying workflow devel-
opment to the resource-centric view. In addition, any programming model for
Web applications needs to support the short-cycle, highly iterative development
practice enabled by such systems as PHP and Ruby. In this paper we investigate
the adaptation of BPEL’s composition model to satisfy these two requirements.
The goal is to leverage the accumulated experience of process-centric composi-
tion in SOA environments to deliver process composition in a Web environment.

We consequently need to address two major concerns: how a process exe-
cutes within a REST environment, and how to support the Web’s fast paced,

Bite: Workflow Composition for the Web 97

lightweight development model. Before explaining how this is done, we present
a brief overview of the Bite language.

3.1 Bite Language Summary

As with most workflow languages, Bite contains two main constructs: activities
and links. Activities define units of work and links define dependencies between
activities. As in BPEL, activities have a “joinCondition” based on the status
of the incoming links and links have a “transitionCondition.” The execution
semantics of links and activities is the same as <flow> in BPEL with “sup-
pressJoinFailure” set to “yes,” which itself is derived from FDL [18].

The language comes with a predefined set of basic constructs, shown in Ta-
ble 1. The small set of built–in activities was chosen to embody basic actions in
Web workflow, as described in the Notes column. However, additional activity
types can easily be added by the user/developer community: the activity set is
extensible as explained in section 3.2. The rest of this paper will elaborate on
the different aspects of these constructs, with examples in Section 5.

Table 1. Overview of Bite Constructs

Activities Notes
<receive>, <reply>,<receive-reply> Receiving and replying to messages. Optional relative

url attribute may be used to match incoming message.
<receive-reply> shorthand for the two activities linked
together, for the common pattern of callers just retriev-
ing data

<invoke> Call to an external party. Mandatory “invocationTarget”
attribute, whose value is an expression, inlines service lo-
cation and must resolve to a URI. Optional content-type
and httpMethod attributes.

<local> Call local code, such a static Java method or a script.
<wait>, <empty>, <terminate> Utility activities: wait for fixed time, no–op, terminate the

process instance.
<assign> Basic data manipulation.
<pick> External choice: contains an ordered list of external re-

quest and/or timer “choice” elements.
<while> Loop as long as a condition is true.
Other Constructs Notes
<source> Control link. Also behaves as a data link if the “input”

attribute is set to “yes.”
<variable> Optional variable declaration. May contain a “content-

type” attribute, among others.

3.2 Deep Integration with the Web

Processes as active resources. In a SOA-centric model, a deployed business
process interacts with its environment by invoking external services and by of-
fering itself to requesters as a service over one or more service endpoints [4].
Likewise, in a REST oriented environment a process should interact with other
entities as resources, and be itself exposed as a resource.

There is a deep similarity between the BPEL implicit factory model (in which
a startable receive generates a new process instance for an incoming message),
and the ATOM protocol by which a POST request creates items in an ATOM

98 F. Curbera et al.

collection [19]. We thus model a deployed process as a logical collection whose
members are process instances. The process itself is exposed as a collection
resource whose URL address corresponds to the startable receive of the process
(see [4]). An HTTP POST against the process URL results in the creation of a
new logical “item”– a process instance in the process collection. Following [19],
a new URL is assigned to the newly created instance (resource), and returned
in the HTTP Location header.

REST interactions on the new process instance URL have a specific meaning,
providing process management calls not available to regular clients. GET and
DELETE verbs respectively retrieve a representation of the process’s state and
terminate the running instance. A PUT request is not defined in Bite. Bite
process instances are “active” resources with lifecycle and termination controlled
by the internal logic of the process execution.

To support interaction between external requesters, a process instance exposes
one or more URLs as logical addresses of the instance’s nested resources. POST
requests directed to these URLs are dispatched to the individual <receive>
activities in the process model using the relative URLs defined in the activities’
url attribute.

In BPEL, the partner link construct represents external partners (applica-
tions or people, see [20]). Bite represents external partners using their resource
identifiers. Requests initiated by the process create HTTP requests (usually but
not strictly GET or POST) directed at one of these external resources.

One note of caution is in order. The operation of the Web relies on more than
REST interactions. Other protocols, in particular e-mail exchanges, are fun-
damental components of most complex Web interactions. For that reason, any
workflow language directed at Web applications must be able to support alter-
native interaction protocols, and e-mail in particular. Bite’s <invoke> activity,
described in Section 3.1, enables processes to send generic invocations in differ-
ent protocols identified by the scheme of the invocation target URI: “mailto:”
sends an e-mail over SMTP and “http:” sends an HTTP request.

Dynamic data types. One characteristic of web interactions is the runtime
discovery of request metadata, of which content-type [21] is particularly impor-
tant. HTTP requests and responses carry content-type information used by the
requestor’s application to interpret the response. Bite supports dynamic content-
type for incoming messages as well as optional statically defined content-type
for outgoing requests (<invoke>).

Bite variables are associated with a content-type. The content-type of a vari-
able used to save an incoming request is automatically set to the content type of
the incoming message. As the variable gets used by the process, the content type
is carried with the data. It is set in the corresponding HTTP header when the
data is sent out. The result is that a flow may be designed to operate with differ-
ent incoming content-types (such as XML and JSON), as long as no dependency
on the specific data format is built into the code.

Content type can be statically set in the process definition for both variables
(if the variable is declared) and <invoke> activities. An error is generated when

Bite: Workflow Composition for the Web 99

a content-type mismatch is detected between data copied into a variable and a
static content-type declaration.

Extensible activity set. Bite’s activity set is extensible, enabling communities
of users to define domain specific activities in addition to Bite’s built–in ones. Such
new activities may capture well known actions such as data sort, append, etc. Bite
provides for extensions by a tag library model similar to that of Java Server Pages
([22]). To define a new activity, developers register an XML parsing class and as-
sociate it with an execution class in the tag library registry. The parsing class will
read the information provided in the activity definition within a process model
and make it available to the execution class. At runtime, the Bite engine invokes
the execution class providing access to the activity definition. The execution class
gets its input from the process and writes its output back to the process; it is not
given read or write access to any other part of the process state.

3.3 Lightweight Process Model

The workflow development model provides significant advantages over tradi-
tional procedural and object oriented implementation languages. Foremost is its
ability to capture the end-to-end business logic of an application in a single def-
inition. With long-running, asynchronous flows, traditional development models
(such as servlets) necessarily fracture the application logic into multiple separate
code artifacts. The result is the obfuscation of the coordination mechanisms by
programming constructs such as hash tables, state machines, etc.

In order to deliver this value to Web developers it is crucial to offer a radically
simplified workflow model and development process. In this section we examine
how these two aspects are addressed by the Bite language.

Flat graph model. Much of the barrier to entry for BPEL is in its combination
of flat and structured programming models. Bite’s process model is a graph
model with no nesting (except for loops), but with rich execution semantics
similar to BPEL activities within a BPEL flow activity. Because of the lack of
scope nesting, exception handling in Bite is fundamentally different from BPEL’s
[23]. Exceptions may be handled at the activity level through exception-labeled
outgoing links as in [18]. Otherwise, they may be handled at the process level
with an exception handler block.

Two of BPEL’s structured activities find their way into Bite: <while> and
<pick>. Structured iteration loops (<while>) significantly simplify the defi-
nition of correct iterative flows (as opposed to unstructured loops built using
backward links). An example is shown in section 5.

The <pick> activity allows the flow to react to an exclusive choice from a set
of different possible external inputs. External choice is a required feature [24] of
interactive processes. Bite adapts the pick construct to the “flat graph” model
by turning it into a flat activity whose output variable contains: which choice
was taken (using an index or the choice’s name if provided), and the received
message data. The process may use the variable like any other, especially in link
transition conditions to go down a different branch based on the selected choice.

100 F. Curbera et al.

Workflow scripting. Most of today’s workflow languages are strongly typed
with respect to both data and behavior (interfaces). There is a clear rationale for
strongly typed languages in general (ability to detect errors, overall consistency,
etc.) and workflows in particular. From the practice of Web application develop-
ment, however, we have learned that the overhead imposed by typing and other
forms of required artifacts external to the workflow logic itself creates a barrier
of entry that excludes most Web developers. (See [2] for a good discussion on
the topic.)

With this consideration in mind, Bite takes a “scripting” approach to workflow
definition. By this we specifically mean:

1. The principle of “use implies definition:” Variables can be directly used with-
out requiring prior declaration or explicit typing. This is similar to the use
of variable in languages like JavaScript. However, a developer may choose to
explicitly define and type a variable using the optional <variable> element.

2. The principle of “convention over configuration.” Bite conventions dictate
that the output of an activity is contained within an implicitly defined vari-
able with the same name as the activity. Additionally, a control link may
also specify that the output data of its source activity be used as part of the
input of its target activity.

3. Radical reduction of extraneous constructs while eliminating levels of indi-
rection. Invocation targets on invoke activities are encoded as literal URLs
or as data variables (see section 5) No typing of the resource being accessed
is required (i.e.: message types). Contrast this with the BPEL model, where
an invocation must reference a partner link construct that is in turn typed
by a predefined partner link type, which in turn depends on WSDL port
types and XML Schema definitions, and which is finally bound to physical
service endpoint by an implementation dependent mechanism that is out of
the scope of the BPEL language.

Flexible configurability. Bite processes provide configurability by enabling
values of variables to be set outside of the workflow definition. This is similar
to “properties” in Java. This capability may be used for actions such as: late
binding of partner URLs, or turning paths of a process on or off by setting values
of variables used on transition conditions or the condition of a while loop.

4 Web Workflow Scenarios

We focus on two scenarios for which Web workflow provides significant value
added— data-centric flows and interactive flows.

4.1 Web Data Flows

The resource-centric nature of many Web applications makes data integration
common for simple Web integration scenarios. The approach is well illustrated by

Bite: Workflow Composition for the Web 101

the Yahoo Pipes tool [16], and its model is also captured by the XProc language
[17]. The common pattern is a set of processing steps connected by explicitly
stated data dependencies. Execution of a step takes place as soon as all required
inputs are available.

This model is natively supported in Bite, taking advantage of the fact that a
data dependency always implies a (direct or indirect) control dependency. The
execution semantics of Bite imply that an activity targeted by a link, defined
using <source> in Bite, waits for completion of the link’s source before proceed-
ing. An activity may contain <input value=“. . . ”> subelements that explicitly
provide it with data. The value is an expression that of course may refer to
any of the process’s variables. The <source> element provides an “input” at-
tribute that enables one to treat it as a combined control link and <input>.
The source’s “name” attribute refers to the link’s source activity. If “input” is
set to “yes,” it indicates that the output of the source activity (contained in an
implicit variable with the same name, see Section 3.3) is treated as one of the
inputs of the target activity. Therefore, an activity’s input data set consists of
the ordered list of <source input=“yes”> and <input> elements. The following
code snippet shows a data flow connection between two activities, as do lines
2-9 of the example in section 5.

<invoke name="getBBCTopStories"
invocationTarget="’http://rss.news.yahoo.com/rss/topstories’"/>

<local name="sort" invocationTarget="’java:util.Sort’" operation="sort">
<source name="getBBCTopStories" input="yes"/>

</local>

Data flow composition is thus a particularly simple application of Bite’s gen-
eral workflow model. Data flows are typically executed synchronously in response
to a single external request for data retrieval (such as through a GET request),
and they have very limited error handling capabilities (see [17]).

The main value of encoding a data flow as a workflow lies in explicitly ex-
posing data dependencies. Bite’s support for more complete workflow execution
semantics (including error handling and asynchronous execution) allows seamless
extension of data flow logic into more functional workflows.

4.2 Interactive Flows

Most Web applications are highly interactive. Beyond delivering information to
end users, they often receive customer data through HTML forms and contact
customers back via e-mail. They often involve several parties and potentially
back–end applications. Many typical Web transactions are potentially long run-
ning (resolved in the course of days or weeks) and asynchronous, involving a
combination of synchronous HTTP interactions and asynchronous e-mail mes-
sages.

Bite’s model is particularly well suited to support these types of applications.
Remaining fundamentally Web centered, both in protocols and interactions mod-
els, it has significant advantages over other development approaches:(1) the ap-
plication logic is defined in a single file where the interaction with all the parties

102 F. Curbera et al.

and their relationships are explicitly encoded; (2) the workflow model natively
supports asynchronous execution, as opposed to object or procedural models;
(3) multi-protocol capabilities support seamless integration of traditional Web
interaction models, e-mail, and back-end interactions. In addition, Bite sup-
ports multi-party interactions natively since it supports a Web-centric version
of BPEL’s partner link model.

5 Example Bite Workflow: Special Order

The following example illustrates Bite’s salient features. It demonstrates a mix
of automatic and human interaction in a scenario involving multiple parties and
agents. A customer requests a special order item at a high–end store as shown in
Figure 1. The employee submits the order to the process (order) and gets back
a URL of where to go to confirm receipt once the order arrives in the store. The
process sends the order to an automated authorization service (autoApprove).
If it is not approved, it goes to a manager via e-mail (rqstApproval) for a deeper
evaluation. The manager gets a link in the e–mail notifying her of the order and
approves or rejects the order (authorize). If the manager does not approve, the
process ends. If either the service or the manager had approved the order, the
process sends an e-mail to the designer to create the item (makeItem). Then,
a loop is entered that waits until the employee confirms receipt of the item. In
the pick (pick1), the employee has 7 days (reminder) to confirm (confirmation)
after which he gets an e–mail reminder (remind) to find out why the item is
delayed. If he confirms, he gets a reply acknowledging that (confirm). Once the
process is notified that the item is in store, the customer is notified via e-mail
(itemArrived).

We now look at the complete Bite process, shown below, and containing nearly
all the language elements. Activity names match the labels in the figure, so we
focus on highlighting interesting aspects of the script. Consider the receive-reply
(lines 2–6). It receives the order from the client, at which time a process instance
is created and the value of ProcessId is set, and replies with the value inlined in
“input.” ProcessId is a reserved variable available to every Bite process instance
containing the id of that instance. The full URL is also available in the reserved
Location variable. The reply contains a URL that is routable back exactly to
this process instance: notice the “ProcessId.”

The activity “autoApprove” (line 7–9) shows an example of a service invo-
cation as well as a control link that transmits data. The “source” element has
“input” set to yes, meaning that the message sent to the service is the mes-
sage received from “order.” The next invoke, “rqstApproval” (line 10–16) shows
an e–mail style invoke. Notice the “mailto” scheme in the URL. The “invoca-
tionTarget” attribute takes an expression so one can build the value directly
from the received message in “order.” Recall that the default output variable of
an activity has the same name as the activity. Therefore, the order, containing
the manager’s e–mail, is in the variable “order.” Notice the URL used for the
manager to send back a response: it will be received by “authorize” (line 17–20).

Bite: Workflow Composition for the Web 103

Fig. 1. Sample Bite process for a special order. Icons by activities represent the person
or service the activity interacts with.

From here, an interesting part is the pick activity (line 29–32). It has a
message–based choice (line 30) that waits for the employee to confirm an alarm
(line 31). Notice how one uses the selected choice in the transition condition of
the links entering “confirm” (line 34) and “remind” (line 39).

1. <process name="orderItemPlus">
2. <receive-reply name="order" url="/initiateCase">
3. <input value=
4. "’When the item arrives, confirm here: http://localhost:8080/demo/order/’
5. + ProcessId + ’/confirm’"/>
6. </receive-reply>
7. <invoke name="autoApprove" invocationTarget="’http://example.com/orderAuthorization">
8. <source name="order" input="yes"/>
9. </invoke>
10. <invoke name="rqstApproval" invocationTarget=
11. "’mailto:’+ order.managerEmail[0]" operation="Manager Approval">
12. <source name="autoApprove" condition="autoApprove==’no’"/>
13. <input value=
14. "’Please go here to approve an order: http://localhost:8080/demo/approvalform/’
15. + ProcessId"/>
16. </invoke>
17. <receive-reply name="authorize" url="/approvalResponse">
18. <input value="’Thank you for responding.’"/>
19. <source name="rqstApproval"/>
20. </receive-reply>
21. <invoke name="makeItem" invocationTarget="’mailto:’ + order.designerEmail[0]"
22. operation="Manufacturer Request">
23. <source name="authorize" condition="authorize.approved[0]==’yes’"/>
24. <source name="autoApprove" condition="autoApprove==’yes’"/>
25. <input value="order"/>
26. </invoke>
27. <while name="loop" condition="!confirmed">
28. <source name="makeItem"/>

104 F. Curbera et al.

29. <pick name="pick1">
30. <choice name="confirmation" url="/confirm" outputVariable="confirmed"/>
31. <choice name="reminder" for="’P7D’"/>
32. </pick>
33. <reply name="confirm" url="/confirm">
34. <source name="pick1" condition="pick1.choice==’confirmation’"/>
35. <input value="’Thank you for confirming that this order has arrived.’"/>
36. </reply>
37. <invoke name="remind" invocationTarget="’mailto:’ + order.employeeEmail[0]"
38. operation="Employee Reminder">
39. <source name="pick1" condition="pick1.choice==’reminder’"/>
40. <input value="order"/>
41. </invoke>
42. </while>
43. <invoke name="itemArrived" invocationTarget="’mailto:’ + order.customerEmail[0]"
44. operation="Customer Notification">
45. <input value="’Your order is ready for pickup at the store.’"/>
46. <source name="loop"/>
47. </invoke>
48. </process>

6 Implementation

The Bite language has been implemented as a set of embeddable Java compo-
nents. A “BiteManager” (referred to simply as manager) implements the lan-
guage’s core execution semantics. A servlet is used to service incoming HTTP
requests, forwarding them to the manager. This servlet has been tested through
deployment into Jetty installations.

We now briefly describe the runtime operation of the Bite engine. Incoming
requests to URLs matching the <receive> activities in the process model are
mapped to execution events. The target process instance is identified from the
request’s URL, and its instance data is retrieved from a map of process context
data. The manager uses a thread pool to serve requests to multiple concur-
rent process instances. The hand-over of events between worker threads in the
thread pool and the servlet thread associated to the incoming request is sup-
ported using event queues stored as part of the instance data. In addition to
<receive>, wait, pick, and invoke also wait for events coming from the manager
notifying them, respectively, of when the alarm has gone off, a message or alarm
matching a ’choice’ has occured, or the response to the invocation has arrived.
A worker thread navigates a process instance until all paths block, or the pro-
cess completes. A path blocks when a receive, invoke, pick, or wait activity is
encountered and there is no suitable event queued that can matches the activity.
Such an activity is then added to a list of waiting activities for new events.

7 Conclusion and Future Work

This paper has presented the Bite Web–centric flow composition model through
a discussion of its main design points and an overview of the language and
implementation. Devlivering an composition mechanism for the development of
Web applications and leveraging their workflow model, Bite supports explicit
encoding of compositional logic in a single programming artifact.

Bite: Workflow Composition for the Web 105

The Bite model is aligned with the resource-centric view of the Web, but is
not limited to REST interactions alone, in line with current practice in the Web.
Bite supports sophisticated asynchronous, multi-part workflows as well as simple
data composition ones. In Bite, workflows are developed with minimal up-front
overhead, aligning the development model with fast paced development practices
of Web scripting languages. The runtime has been developed in Java and tested
on the Jetty servlet engine, but is designed as an embeddable component that
can be used in other runtimes.

To fully exploit the potential of Web–centric compositions, we are starting
new work in several areas. We are exploring a dedicated scripting syntax, as an
alternative to Bite’s current use of XML. While XML ensures wide familiarity
among developers, a scripting alternative can improve readability and usability.
We are also planning to identify and support well known interaction patterns,
such as the e-mail and form interaction shown in Section 5, using Bite’s tag
library mechanism. We are considering a <choice-reply> under <pick> to mirror
the <receive-reply> shortcut, and investigating whether a simplified form of
BPEL correlation would be a useful addition. The difficulty there is in simplifying
the definition of a correlation set especially for the case of untyped messages.
Finally we are extending our effort to provide increased transparency and control
with respect to the use of interaction protocols by exposing HTTP and e-mail
artifacts such as protocol headers directly in the flow language.

Since the submission for publication, a later version of the Bite language and
runtime, under the title “the Project Zero assembly flow language,” has become
publicly available [25].

Acknowledgement. The authors would like to thank Marc-Thomas Schmidt
for his comments and advice regarding the general design of the Bite language
and Xin Sheng Mao for his input on the use of Bite for data flows.

References

1. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice-Hall, Englewood Cliffs (2005)

2. Bosworth, A.: ICSOC 2004 keynote talk. Adam Bosworth’s Weblog (2004),
http://www.adambosworth.net/archives/000031.html

3. Anonymous: ProgrammableWeb.com (2007), http://www.programmableweb.com/
4. OASIS: Web Services Business Process Execution Language Version 2.0. (2007),

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
5. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and

Grid Services 1(1) (2005)
6. Kuhlman, D.: Workflow and REST how-to. Personal Web site (2003),

http://www.rexx.com/~dkuhlman/workflow_howto.html
7. Ruby, S.: Continuations-for-curmudgeons. Blog post (2005),

http://www.intertwingly.net/blog/2005/04/13/Continuations-for-
Curmudgeons

http://www.adambosworth.net/archives/000031.html
http://www.programmableweb.com/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.rexx.com/~dkuhlman/workflow_howto.html
http://www.intertwingly.net/blog/2005/04/13/Continuations-for-Curmudgeons
http://www.intertwingly.net/blog/2005/04/13/Continuations-for-Curmudgeons

106 F. Curbera et al.

8. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic Guide, 2nd
edn. Addison-Wesley, Reading (2004)

9. Apache: Apache Cocoon, Control Flow. (2006),
http://cocoon.apache.org/2.1/userdocs/flow/index.html

10. Apache Jakarta: Javaflow (2006),
http://jakarta.apache.org/commons/sandbox/javaflow

11. Tate, B.: Crossing borders: Continuations, web development, and java
programming (2006), http://www-128.ibm.com/developerworks/java/library/
j-cb03216/?ca=dgr-jw22StatelessWeb

12. Belapurkar, A.: Use continuations to develop complex web applications. IBM
developerWorks (2004),
http://www-128.ibm.com/developerworks/library/j-contin.html

13. Straaten, A.V.: Continuations continued: the REST of the computation (2006),
http://ll4.csail.mit.edu/slides/rest-slides.pdf

14. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards - the case of REST vs. SOAP. Decision Support Systems 37
(2004)

15. Waterken Inc.: Web-Calculus. (2005), http://www.waterken.com/dev/Web/
Calculus/

16. Yahoo Inc.: Yahoo pipes (2007), http://pipes.yahoo.com
17. Walsh, N., Milowski, A.: XProc: An XML pipeline language. Working draft, W3C

(2007), http://www.w3.org/TR/xproc/
18. Leymann, F., Roller, D.: Production Workflow. Prentice Hall, New York (2000)
19. Gregorio, J., de hOra, B.: The atom publishing protocol. Internet

draft, IETF Network Working Group (2007), http://bitworking.org/projects/
atom/draft-ietf-atompub-protocol-15.html

20. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG: WS-BPEL extension for
people (BPEL4People). IBM developerWorks (2007),
http://www.ibm.com/developerworks/webservices/library/specification/
ws-bpel4people/

21. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Mastinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – http/1.1. Request for Comments 2616,
IETF Network Working Group (1999), http://www.ietf.org/rfc/rfc2616.txt

22. Sun Microsystems: JSR-000245 JavaServer PagesTM 2.1. (2004),
http://jcp.org/aboutJava/ communityprocess/final/jsr245/index.html

23. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Exception handling in the
BPEL4WS language. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, Springer, Heidelberg (2003)

24. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

25. IBM: Project zero (2007), http://www.projectzero.org/

http://cocoon.apache.org/2.1/userdocs/flow/index.html
http://jakarta.apache.org/commons/sandbox/javaflow
http://www-128.ibm.com/developerworks/java/library/j-cb03216/?ca=dgr-jw22StatelessWeb
http://www-128.ibm.com/developerworks/java/library/j-cb03216/?ca=dgr-jw22StatelessWeb
http://www-128.ibm.com/developerworks/library/j-contin.html
http://ll4.csail.mit.edu/slides/rest-slides.pdf
http://www.waterken.com/dev/Web/Calculus/
http://www.waterken.com/dev/Web/Calculus/
http://pipes.yahoo.com
http://www.w3.org/TR/xproc/
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-15.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-15.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.ietf.org/rfc/rfc2616.txt
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://www.projectzero.org/

	Bite: Workflow Composition for the Web
	Introduction
	Related Work
	The Design of a Web-Centric Flow Language
	Bite Language Summary
	Deep Integration with the Web
	Lightweight Process Model

	Web Workflow Scenarios
	Web Data Flows
	Interactive Flows

	Example Bite Workflow: Special Order
	Implementation
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

