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Abstract. In this paper, we present ThumbSpace, a software-based interaction 
technique that provides general one-handed thumb operation of touchscreen-
based mobile devices. Our goal is to provide accurate selection of all interface 
objects, especially small and far targets, which are traditionally difficult to 
interact with using the thumb. We present the ThumbSpace design and a 
comparative evaluation against direct interaction for target selection. Our 
results show that ThumbSpace was well-received, improved accuracy for 
selecting targets that are out of thumb reach, and made users as effective at 
selecting small targets as large targets. The results further suggest user practice 
and design iterations hold potential to close the gap in access time between the 
two input methods, where ThumbSpace did not do as well as direct interaction. 
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1   Introduction 

With the number of cell phones out-shipping more traditional computers by more than 
4:1 in 2006 [17, 28], the emergence of the phone as a ubiquitous personal accessory is 
clear. Traditionally, cell phones have served as little more than wireless telephones, 
while mobile information management has been reserved for PDAs and laptops. But 
with rapid advances in processing power, storage capacity, and connectivity, these 
different device types are converging into the “smartphone”: a feature-rich, Internet-
enabled mini-computer. As the numbers and types of devices grow, so will 
opportunities to explore a wider range of interaction methods, exemplified by Apple’s 
recent announcement of the multi-touch capacitive touchscreen iPhone [25].  Devices 
will remain small because mobility will remain a driving factor. Users in diverse 
mobile environments are bound to be visually and mentally distracted [16] and to 
have one or both of their hands frequently occupied. Given these trends, today’s 
touchscreen software designs often do a poor job supporting mobility because the 
majority require two-handed stylus input.  

Interfaces that accommodate single-handed interaction can offer a significant 
benefit by freeing one hand for the physical and intellectual demands of mobile tasks 
[20]. Surveys [14] confirm that users would generally prefer to use touchscreens with 
one hand when possible, but hardware and software designs of today’s devices 
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typically offer no such support. Styli are often required for touchscreen interaction 
because their software interfaces are composed of targets that are either too small [21] 
or ill-positioned to be hit reliably with the thumb. One solution is to build interfaces 
that explicitly accommodate thumb interaction by ensuring that all targets are thumb 
sized and within thumb reach [15]. Yet this “lowest common denominator” approach 
to interface design is unlikely to catch on. This is because small screens so severely 
constrain information presentation already that placing further limitations on visual 
expressivity can hurt the design in other ways. For example, increasing target sizes to 
accommodate thumbs means fewer targets can be shown per screen, and so will 
require more screens to present the same amount of information. This can slow down 
access to information, even when two hands are available. These observations, 
together with the reality that existing mobile UI toolkits include only small, stylus-
oriented widget palettes, have led us to consider an alternative strategy.  

We present ThumbSpace, a novel interaction technique to facilitate the thumb 
accessibility of rich touchscreen interfaces. ThumbSpace combats both the reach and 
accuracy problems that users experience when using thumbs on touchscreens. It 
works like an absolute-position touchpad superimposed on a portion of the standard 
touchscreen interface. Users can access all locations on the screen by interacting with 
only a sub-region of the display. Thumb reach limitations are addressed by allowing 
users to personalize the size and placement of ThumbSpace, thereby accommodating 
individual differences in hand preference, geometry, motion range, grip, and use 
scenario. As a result of decoupling input space and output space, ThumbSpace 
eliminates the dependence of target size on thumb size, and so alleviates the accuracy 
issues involved with directly hitting small targets with big thumbs. ThumbSpace does 
this without constraining the complexity of applications’ interfaces; in fact, 
ThumbSpace is designed to be application independent. 

Given the dynamic environments and varied tasks of mobile computing, user 
choice about the number of hands to use is expected to be fluid. Effective mobile 
interfaces will therefore maximize presentation power and interaction efficiency 
regardless of hand availability. With ThumbSpace, touchscreen devices can continue 
to take full advantage of the available display real estate for rich presentation and 
interaction with two hands while at the same time supporting one-handed scenarios. 

In the remainder of this paper we describe the design and implementation of 
ThumbSpace and our evaluation of ThumbSpace versus direct thumb interaction for 
accessing targets of varying size, density, and location. 

2   Related Work 

2.1   One Handed Interaction 

The physical and attentional demands of mobile device use were reported early on for 
fieldworkers [16, 22]. This resulted in specific design recommendations for minimal-
attention and one-handed interfaces [22] which, though well suited to the directed 
tasks of fieldwork, do not generalize to the varied and complex personal information 
management tasks of average users. Since then, research in one-handed device 
interaction has largely focused on either the hardware or the tasks supported. 
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Technology-oriented efforts have investigated the potential benefits of accelerometer-
augmented devices [12] and touchscreen-based gestures [7, 15] for one-handed 
interaction. Other research has focused on enabling one-handed support for specific 
tasks, including media control [23] and text entry [30]. But overall, there has been 
relatively little focus on thumb interaction. 

Karlson et al. [14] looked more generally at human factors requirements for one-
handed interaction with personal mobile devices, including situational and task 
preferences for hand use as well as biomechanical limitations of thumbs. They found 
that in addition to the common practice of one-handed phone use, there is wide 
interest in single-handed use of (generally larger) touchscreen-based PDAs, but that 
current designs do not accommodate one-handed scenarios well. Their results further 
suggested that users were more comfortable when interaction could be limited to a 
sub-region of the device surface, preferably toward the center of the device. 
ThumbSpace’s design addresses these findings directly. 

Others have studied how physical characteristics of the thumb interact with 
touchscreen technology. Parhi et al. [21] investigated the effect of target size on input 
accuracy when operating a PDA one handed with the thumb. Previously, others had 
determined appropriate target sizes for pen-based interaction on mobile touchscreen 
devices [18], and index fingers for interaction on desktop-sized displays [8, 26], but 
pens and index fingers are smaller than thumbs and their use scenarios differ from the 
mechanic constraints of holding the screen with the same hand used for interaction.  

Current touchscreen interfaces consist of widgets similar in size and function to 
those featured on a desktop PC. While acceptable for interaction with a 1mm stylus 
tip, such targets are much smaller than the average thumb pad in at least one 
dimension, making reliable access difficult or impossible. Recently, Vogel and 
Baudisch [29] presented the Shift technique as an improvement over Sears and 
Shneiderman’s offset cursor [27], both of which address issues of occlusion during 
finger selection of small touchscreen targets. While Shift holds great potential for 
one-handed selection of targets within reach of the thumb, further investigation would 
be necessary to understand whether pixel-level selection is effective under mobile 
conditions, and whether Shift works equally well for objects along the perimeter of 
the screen, which occur frequently in today’s designs. More importantly, Shift was 
designed for two-handed index finger operation of mobile devices, and so does not 
address the limitations of thumb reach that ThumbSpace seeks to address. 

2.2   Reaching Distant Objects 

ThumbSpace draws its inspiration from the observation that large table-top and wall-
sized displays both confront issues with out-of reach interface objects. A general 
problem for large display interaction is that the increase in real estate also increases 
the average distance between on-screen objects. Unfortunately, Fitts’ Law dictates 
that increasing travel distance without a commensurate increase in target size will 
increase access time. Solutions have thus typically focused on 1) decreasing 
movement distance to targets and/or 2) increasing target sizes. We classify these 
further into indirect and direct interaction methods. 

Indirect Interaction. Improving target acquisition for mouse-based interaction has 
often involved clever manipulation of the control-display (CD) ratio. Slowing mouse 
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movement over interaction targets (Semantic Pointing [6]), jumping the cursor to the 
nearest target (Object Pointing [10]), and predicting the user’s intended target 
(Delphian desktop [2]) are three such examples. The drawback of these techniques is 
that their effectiveness decreases as the number of nearby objects increases. Other 
approaches in smart cursor control make targets easier to hit by increasing the cursor 
size, such as area cursor [13] and Bubble Cursor [9].  

Direct Interaction. Direct screen interaction with fingers or pens is common in 
tablet, mobile, and wall computing, but the absence of a remotely controlled cursor 
means there is 1:1 correspondence between motor and display movement, and thus no 
CD ratio to manipulate. Since increasing target widths has generally been achieved 
via CD manipulation, techniques for direct input have focused on reducing the 
movement distance to targets. Drag-and-pop [3] reduces an object’s drag distance by 
drawing full-sized proxies of targets closer to the moved item. The Vacuum widget 
[5] allows users to select the display sector of interest before moving object proxies to 
within reach. Drag-and-throw and push-and-throw [11] reduce movement distance by 
virtually extending the reach of the finger or pen. 

A final class of direct interaction techniques offers users miniaturized, nearby 
versions of the entire display area for manipulating distant objects. With Radar View 
[19], the miniature representation appears as users begin drag operations. The Bubble 
Radar [1] extends the Bubble Cursor to pen-based computing, using a Radar View 
representation and dynamic expansion of the pen’s activation area. ThumbSpace uses 
a similar approach to the Radar View, while addressing occlusion and small displays. 

3   ThumbSpace  

Our goal with ThumbSpace has been to develop an interaction strategy whereby rich 
touchscreen interfaces can be effectively controlled with a thumb, without sacrificing 
the expressiveness of information presentation or the efficiency of navigation when 
two hands are available. 

3.1   ThumbSpace Design 

Karlson et al.’s investigation of thumb movement when using mobile devices with 
one hand [14] found that users were more comfortable interacting with some surface 
regions than others. Although the centers of devices were generally easy to access, 
and corners and edges were generally hard to access, gradations in opinion between 
these extremes indicated that participants were not in perfect agreement. Indeed, 
individual differences in hand size, thumb length, agility, and strength can all affect 
thumb range of motion. Furthermore, differences in use scenario will affect the 
freedom users have to change grip while maintaining control of the device, and so 
will also impact how well users can access different regions of the device surface. 

Given such variations in thumb ability, hand preference, and mobile usage 
requirements, the first principle of ThumbSpace is to support the user’s most 
comfortable and stable grip. Each user therefore defines his or her own ThumbSpace - 
a region of the touchscreen surface that is easy to reach and interact with. To 
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configure ThumbSpace, the user is instructed to drag her thumb along a diagonal to 
define the upper left and lower right corners of a rectangular region (Fig. 1a). All 
thumb interaction then occurs within this personalized ThumbSpace, which remains 
fixed (but reconfigurable) across all applications. 

     

Fig. 1. (a) Defining the ThumbSpace. (b) The ThumbSpace as a traditional Radar View. 

To support access to all interaction targets within the confines of the ThumbSpace, 
the user-defined region behaves as a type of a Radar View for the display. 
Traditionally, a Radar View is a miniaturized representation of a large display that 
serves as a within-reach proxy for out-of-reach objects; interactions upon objects 
within the Radar View are propagated to the associated objects in the original display, 
hereafter referred to as the “DisplaySpace”. This approach has proven successful for 
accessing distant windows and icons on large displays [19], but hasn’t been applied to 
small screen interaction, which presents novel challenges. Consider, for example, that 
a straightforward implementation of a Radar View for the Windows Mobile Contacts 
application is shown in Fig. 1b. This approach has several problems: 1) the Radar 
View representation occludes a large number of DisplaySpace objects; 2) the Radar 
View proxies are unreadable; 3) the detailed Radar View representation contributes to 
unacceptable visual clutter; and 4) the Radar View proxies are far too small to access 
reliably with the thumb.  

To address problems (1-3), we avoid using a miniature representation. Instead, we 
offer only a whitewashed region to suggest where the user should focus her attention. 
Fig. 2a shows this representation of ThumbSpace, which overlays the application at 
all times. Even without the miniature displayed, ThumbSpace retains the spirit of the 
Radar View by honoring an input mapping between the ThumbSpace and the 
DisplaySpace. ThumbSpace is partitioned so that each object in the DisplaySpace is 
associated with a sub-region (proxy) in the ThumbSpace; tapping a proxy in 
ThumbSpace selects the assigned object in the DisplaySpace. If ThumbSpace were to 
represent a linearly scaled DisplaySpace (as in Fig. 1b), the partition of ThumbSpace 
into DisplaySpace proxies would be that shown in Fig. 2b. Yet the ThumbSpace 
partition is not required to be a scaled representation of the DisplaySpace; in section 
3.4 we discuss how different partitioning strategies may improve user performance. 
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Fig. 2. (a) The actual ThumbSpace representation. (b) One possible partitioning of the 
ThumbSpace into proxies for DisplaySpace objects. 

3.2   Using ThumbSpace 

The final challenge ((4) above) in using a miniature representation as an interaction 
medium is that the proxies can be too small to hit reliably with a big thumb, even 
when users can see the representation. ThumbSpace introduces further uncertainty 
because it provides no visual cues for how its sub-regions map to DisplaySpace 
objects. ThumbSpace manages these uncertainties during interaction by providing 
dynamic visual feedback. 

Object selection in ThumbSpace is performed in three phases: aim, adjust, and lift. 
The aim phase requires users to have formed a mental model of the input mapping 
between the ThumbSpace and DisplaySpace. Again, the simplest assumption is that 
the ThumbSpace represents a linear scaling of the DisplaySpace. Based on her mental 
model, the user makes an initial guess about the sub-region of ThumbSpace that 
corresponds to the intended target, and aims at the sub-region with her thumb  
(Fig. 3a). In the aim phase, ThumbSpace can be likened to an absolute touchpad - if 
the user guesses correctly, ThumbSpace provides touchdown access to objects that 
would otherwise be difficult (e.g., too small) or impossible (e.g., out of reach) to hit 
directly with her thumb. 

As soon as the user’s thumb touches a ThumbSpace proxy, the associated 
DisplaySpace object is highlighted using an object cursor, depicted as a thick orange 
border. The user then enters the adjust phase for fine-tuning the selection. During the 
adjust phase, ThumbSpace acts like a relative touchpad for controlling the object 
cursor. If the user rolls or drags her thumb more than 10 pixels up, down, left, or 
right, the object cursor animates to the closest DisplaySpace object in the direction of 
movement (Fig. 3b). In the adjust phase, ThumbSpace interaction is similar to Object 
Pointing [10], which ignores the whitespace between interface objects in desktop-
based mouse interaction by jumping the cursor to the closest object in the direction of 
movement when the mouse cursor leaves an object’s bounds. The adjust strategy  
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Fig. 3. Selecting objects with ThumbSpace. Assuming the user wants to select the first name in 
the list, she first (a) aims at the probable ThumbSpace proxy for ‘Alonso’; (b) the initial 
ThumbSpace point of contact maps to ‘ijk’ so the user adjusts the intended target by dragging 
her thumb downward. The user confirms the selection by lifting her thumb, or cancels the 
selection by dragging her thumb to the X before lifting; (c) ThumbSpace occlusion correction. 

differs slightly from Object Pointing because adjust does not take into account proxy 
widths and heights, only the delta of thumb movement. 

Finally, the user confirms the selection by lifting her thumb. This manner of object 
selection is inspired by the lift-off strategy for touchscreen object selection developed 
by Potter [24], which allows users to visually confirm and adjust a selection before 
committing to the action. To allow users to cancel a selection, the user can drag her 
thumb over the red X, which appears during interaction in either the upper right or 
lower left corner of ThumbSpace, whichever is furthest from the first point of contact.  

A ThumbSpace proxy may overlap its corresponding DisplaySpace object, or even 
appear below it, which may cause the thumb to occlude the DisplaySpace object. At 
these times, the selected item is highlighted in the original display, and an 
unobstructed representation appears at a fixed location above the ThumbSpace to 
improve the visibility of the current selection (Fig. 3c). Again, this solution can be 
considered an adaptation of the take-off touchscreen selection strategy [24], which 
avoided finger occlusion by placing the selection cursor above the user’s finger.  Note 
that, by displaying the obstructed object above ThumbSpace, and by allowing the user 
to specify her ThumbSpace (Fig. 1a), we support both left- and right-handed users. 

A video demonstration of ThumbSpace definition and interaction can be viewed at 
http://www.youtube.com/user/thumbspace.  

3.3   Interactions Supported 

Traditional PDAs support three primary interactions: tap for object selection, tap-
drag-release to drag objects and cancel selections, and tap-and-hold to trigger 
context-sensitive menus. The ThumbSpace aim-adjuist-lift interaction technique 
repurposes the traditional tap-drag-release for object selection. While object selection 
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is required far more frequently than the other two in standard interfaces, failure to 
support them would certainly limit the utility of ThumbSpace for general-purpose use.  

For widgets that support more specialized interaction than tapping, we propose a 2 
step process: 1) the aim-adjust-lift sequence gives focus to the widget or opens an 
associated context-sensitive menu (leaving the red cancel box visible; and 2) any drag 
operation then performed in the ThumbSpace moves or scrolls the widget in sync with 
the thumb until the user lifts her thumb to perform the final selection, or selects the 
red cancel box to abort the operation. For example, selecting a combo box via aim-
adjust-lift gives focus to the widget and opens the list of available items; dragging the 
thumb in ThumbSpace moves the highlight among the combo box list; lifting the 
thumb either selects an item in the list or cancels the selection if performed over the 
red cancel box. In this paper we explore the viability of object selection only, and will 
investigate the other interaction types in future work. 

3.4   Deriving ThumbSpace Proxies 

Just as manipulations of the CD ratio for mouse input has been shown to improve 
object selection in desktop systems under certain conditions [6, 10], our strategy for 
mapping ThumbSpace proxies to DisplaySpace objects also has the potential to 
influence system usability. An interface with a sparse object layout would suffer from 
a strict linear mapping between DisplaySpace and ThumbSpace because a large 
percentage of ThumbSpace pixels would be “dead” in that they would not be 
associated with any DisplaySpace object. This approach would waste scarce input 
space and result in unnecessarily small proxies that would be difficult to hit.  

Ideally, the ThumbSpace to DisplaySpace mapping would instead optimize the size 
and placement of ThumbSpace proxies to achieve the following goals: (1) The 
ThumbSpace should be fully partitioned into proxies so that every pixel in 
ThumbSpace corresponds to some DisplaySpace object. Our goal is to maximize the 
sizes of proxies and thus improve user accuracy in the aim phase of object selection. 
(2) “Landmark” objects in DisplaySpace, such as those in the four corners and center 
of the display, should retain their relative positions within the ThumbSpace; ideally 
“landmark” proxies would be relatively larger than those for similarly sized objects, 
again to improve user accuracy in the aim phase of object selection. (3) ThumbSpace 
proxies should retain the same up-down and left-right positions to one another as do 
their corresponding DisplaySpace objects. This goal allows for efficient and intuitive 
targeting in the adjust phase of object selection. 

For our initial exploration of the ThumbSpace technique, we define the mapping 
between ThumbSpace proxies and DisplaySpace objects by hand, and will develop 
generalized proxy partitions in future design iterations. 

3.5   Implementation 

As a real-world input system, ThumbSpace will need to cooperate with a PDA’s 
operating system in order to capture and reinterpret thumb events for stylus-oriented 
interface designs. However, to first establish its viability, we have implemented 
ThumbSpace as a generalized input handler to custom interfaces written in C# (.NET 
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Compact Framework) for Windows Mobile Pocket PCs using the PocketPiccolo open 
source graphics toolkit [4]. 

4   User Study 

To understand the potential of ThumbSpace in terms of usability, interaction 
effectiveness, and user satisfaction, we conducted a quantitative study to compare 
ThumbSpace to direct thumb interaction for object selection tasks. 

4.1   Tasks 

Because object selection via tapping is the predominant interaction type on PDAs 
today, we focused on basic target selection for our study. We hypothesized that users 
would be able to select objects faster and more accurately with one hand overall when 
using ThumbSpace than when using only their thumbs directly. In particular, we 
predicted that the relative benefits of ThumbSpace would vary by target size, 
distance, and overall target density as follows: 

Target Size: In determining the target size conditions, we were mainly concerned 
with the difference in performance between selecting a target that is too small to be 
hit reliably with the thumb and one that is large enough to be hit. Based on previous 
investigations on appropriate target sizes for one-handed thumb interaction [21], we 
chose two sizes to study: small (20 pixels = 4.8 mm), and large (40 pixels = 9.6 mm). 
Since ThumbSpace decouples input and output space, we did not expect target size to 
impact selection accuracy, as is prevalent in direct thumb selection.  

Target Distance: When operating a device with one hand, users generally find some 
surface areas of a device easier to access than others [14]. Using guidelines from [14], 
we classified targets into two distance categories: near (comfortable to reach) and far 
(uncomfortable to reach). Due to thumb reach constraints, we expected users would 
perform near tasks better than far tasks when directly tapping. Since ThumbSpace is 
within user reach by design, we did not expect target location to affect performance 
for ThumbSpace. 

Target Density: Target density plays a role in ThumbSpace because it affects the size 
of the ThumbSpace proxies, and thus user accuracy in the aim phase of object 
selection. We chose to study 2 densities: sparse (proxies were 80 px2, or 19.2 mm2) 
and dense (proxies were 40 px2, or 9.6 mm2). With ThumbSpace, we expected users 
would be slower when hitting targets in dense conditions due to the need to perform 
more corrective moves in the adjust phase of object selection than under sparse 
conditions.  In contrast, we did not expect density to impact direct thumb interaction. 

The target configurations studied are shown in Fig. 4a. Tasks began with a 
message box indicating the target to select (Fig. 4b). Tapping the message box started 
the task timer, and if appropriate, the user’s ThumbSpace would appear (Fig. 4c). 
Once a target was selected, a “success” or “error” sound provided accuracy feedback. 
The study software ran on an HP iPAQ h4155 Pocket PC measuring 4.5x2.8x0.5 
inches with a 3.5 inch, 240 x 320 resolution screen, calibrated prior to the study. 
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                       (a)                                               (b)                                      (c) 

Fig. 4. (a) Target configurations for the user study. (b,c) Example study task. 

4.2   Method and Measures 

The study was a 2 (input type: ThumbSpace v. direct interaction) x 2 (size: small v. 
large) x 2 (density: sparse v. dense) x 2 (distance: near v. far) x 3 trial within subject 
design. For each input type, users performed the tasks in 5 blocks, for a total of 240 
trials. Input type was counterbalanced across participants, and tasks were randomized 
within blocks. Dependent variables collected during the study included task time, 
error rate, user satisfaction ratings on a 7 point scale, and overall input preference. 

4.3   Participants and Procedure 

We recruited right-handed participants via fliers posted in our Department of 
Computer Science, and through flier distribution in an undergraduate HCI course for 
non-majors. Sixteen respondents (8 female, 8 male) participated in the study, ranging 
in age from 18 to 28 with an average age of 23 years of age. Participants received $10 
for approximately 45 minutes of their time. 

The study began with an introduction to each input type. Participants first read a 
description of direct thumb interaction, followed by practice with a single block of 
tasks. Participants then read a description of ThumbSpace, defined a personal 
ThumbSpace (Fig. 1a), and practiced with two blocks of tasks; the administrator 
demonstrated ThumbSpace for the first 5 of these tasks. After the practice phase, the 
study proper began: users completed 5 task blocks for one input type, followed by a 
usability questionnaire, then repeated the process with the second input type. After 
this official data collection phase, users completed a “usability” phase, which 
provided the opportunity to use the techniques with a real interface. With each input 
type, users performed 20 object selection tasks, presented as in Fig. 4b, for a 
Windows Mobile Start Menu and Calendar program. 
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Users completed the study by recording their preferred input type for targets by 
condition (small, large, near, and far), their preferred input type overall, and expected 
input preference after gaining sufficient expertise using ThumbSpace. 

4.4   Results 

Task Times. We performed a 2 (input type: ThumbSpace v. direct interaction) x 2 
(size: small v. large) x 2 (density: sparse v. dense) x 2 (distance: near v. far) repeated 
measures Analysis of Variance (RM-ANOVA) on mean selection time data. 
Significant main effects of input type, size, and density were observed, as were 
significant interactions of input x size, input x density, and input x distance (Table 1). 

Table 1. Significant results for Task Times and Percent Correct data 

 input size density input x size input x density input x dist. 

F1,15 26.8 11.0 62.0 5.2 32.8 12.8 Task 
Times p <.001 .005 <.001 .04 <.001 .002 

F1,15 - 18.0 5.1 69.4 5.3 9.8 Percent 
Correct p - <.001 .04 <.001 .04 .007 

On average, direct interaction was faster than ThumbSpace (811 ms v. 2068 ms), 
large targets were easier to select than small targets (1367 ms v. 1512 ms), and sparse 
targets were easier to select than dense targets (1312 ms v. 1566 ms). The two way 
interactions involving input type confirmed two of our hypotheses: (1) target size 
impacted user performance when using direct interaction (large = 691 ms v. small = 
930 ms), but not when using ThumbSpace; and (2) target density impacted user 
performance more when using ThumbSpace than using direct interaction, presumably 
because users performed more corrective moves in the adjust phase of selection for 
dense targets than sparse targets. However, our prediction that distance would not 
impact access time with ThumbSpace was incorrect. In fact, users were significantly 
slower selecting near targets with ThumbSpace than far targets (Fig. 5a). We surmise 
that most users’ ThumbSpaces directly overlapped the near targets, resulting in 
considerable thumb occlusion for during these tasks. Our study setup exacerbated the 
problem because targets were not visually distinct from one another, which 
diminished the efficacy of ThumbSpace’s occlusion solution. 

 
Percent Correct. We carried out a 2 (input type) x 2 (size) x 2 (density) x 2 
(distances) RM-ANOVA on percent correct selection data. Significant main effects of 
target size and density were observed, as well as significant interactions of input x 
size, input x density, and input x distance (Table 1). 

Overall, participants were more accurate selecting large targets than small targets 
(.95 v. .90), and more accurate selecting from among sparse targets than among  
dense targets (.93 v. .91). As with the time results, target size significantly influenced 
error rate for direct interaction (large = .87 v. small = .99) but not for ThumbSpace 
interaction. Target density only influenced user performance when using 
ThumbSpace (sparse = .94 v. dense = .90), but had no impact during direct 
interaction. Assuming that users perform fewer corrections in the adjust phase for 
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sparse targets than for dense targets, then it is reasonable that the success rate would 
be higher for sparse targets. We saw a similar pattern for input x distance with error 
rate as selection time: with direct interaction, users were more accurate hitting near 
targets, whereas with ThumbSpace users were more accurate selecting far targets. In 
fact, users were significantly more accurate hitting far targets with ThumbSpace (.94) 
than with direct interaction (.92), as shown at the bottom of Fig. 5a. 

      
                      (a)                                                                          (b) 

Fig. 5. (a) Average selection time and percent correct for near v. far targets by input method. 
Note the scale for percent correct does not start at 0. (b) User satisfaction (7 = most satisfied). 

Satisfaction: User satisfaction data correlated with the performance data, with users 
on average preferring direct interaction (μ = 5.7) to ThumbSpace (μ = 4.8). 
Participants generally found ThumbSpace more mentally challenging than direct 
interaction, rated the two methods similarly in terms of task satisfaction and fun, but 
found ThumbSpace required less physical exertion than direct interaction. 
ThumbSpace received its lowest scores for accessing near targets, but was much 
preferred over direct interaction for selecting far targets. Only a quarter of the users 
stated a preference for using ThumbSpace for one-handed interaction given their 
comfort level at the end of the study, but 69% stated they would prefer ThumbSpace 
to direct interaction for general one handed device use if given sufficient practice.  

5   Summary and Future Work 

ThumbSpace is the result of our exploration of applying techniques from large-
display interaction to small, mobile devices. We have shown that a direct application 
of existing techniques is not enough; issues such as occlusion, limited real estate, and 
users' varying biomechanics must be taken into account. ThumbSpace addresses these 
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issues with specific, intuitive mechanisms, including a user-defined input space (Fig. 
1a) and a consistent aim-adjust-lift interaction technique (Fig. 3). 

The results from our user study indicate that applying large-display interaction 
techniques to mobile devices is promising and that ThumbSpace is a strong step in 
this direction.  In particular, we are encouraged that ThumbSpace made progress 
toward both of our design goals: (1) "decouple target size from thumb size": 
ThumbSpace makes users as effective at selecting small targets as large targets, 
evidenced by the fact that neither speed nor error data were affected by target size; (2) 
"improve selection for targets that are out of thumb reach": users accessed far targets 
more accurately using ThumbSpace than direct interaction. Finally, users thought 
ThumbSpace held promise; ThumbSpace was given relatively high ratings on a 7-
point scale for task satisfaction (5.1), fun (5.4) and learnability (5.4), and the majority 
of users indicated that ThumbSpace would be preferable to direct interaction after 
sufficient practice.  

However, ThumbSpace does not appear to be an immediate, realistic replacement 
for direct thumb interaction for one-handed device use. Our findings suggest that both 
user practice and strategic design iterations may have a strong impact on closing the 
performance gap between the two input types. Further, it seems that the mental 
demand of learning ThumbSpace could not be overcome within the time constraints 
of the study, and was at least partially to blame for lower user performance.  

Lastly, some design problems must be addressed for ThumbSpace to be an 
effective one-handed interaction solution. ThumbSpace was designed to improve one-
handed access to far targets, since near targets should already be easy to tap. 
However, our current ThumbSpace design makes near targets harder to select than far 
targets. One possible solution is to allow users to launch ThumbSpace on-demand for 
far targets, and provide only occlusion avoidance techniques for easy to reach objects. 
The problems of speeding the user learning curve and reducing the mental demand of 
ThumbSpace requires further exploration, but offering visual cues about the proxy to 
object mappings, and constraining users' ThumbSpace definitions to those with the 
same aspect ratio as the DisplaySpace, are promising future directions.  

Acknowledgments. Many thanks to Dave Levin for his helpful edit suggestions. 
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