
Co-array Python:
A Parallel Extension to the Python Language

Craig E. Rasmussen1, Matthew J. Sottile1, Jarek Nieplocha2,
Robert W. Numrich3, and Eric Jones4

1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Pacific Northwest National Laboratory

3 Minnesota Supercomputing Institute, University of Minnesota,
Minneapolis, MN 55455

4 Enthought, Inc.

Abstract. A parallel extension to the Python language is introduced
that is modeled after the Co-Array Fortran extensions to Fortran 95. A
new Python module, CoArray, has been developed to provide co-array
syntax that allows a Python programmer to address co-array data on
a remote processor. An example of Jacobi iteration using the CoArray

module is shown and corresponding performance results are presented.

1 Introduction

There have been several attempts at extending programming languages for use in
a parallel processing environment. These language extensions include, but are not
limited to, C∗ [1], Unified Parallel C (UPC) [2], Titanium (a Java extension) [3],
F−− (a Fortran 77 extension) [4], High Performance Fortran (HPF) [5], and Co-
Array Fortran (CAF) [6]. The existence of these parallel extensions indicate the
popularity of the idea, but as yet, none have had the nearly universal acceptance
of MPI [7] as a parallel programming model.

The Python language [8] provides a rapid prototyping environment and sev-
eral extension modules (mostly serial) have been created for the scientific com-
munity [9]. A notable Python feature is that many elements of the language can
be modified and extended, allowing tool developers to use existing syntactic ele-
ments to express new, more sophisticated operations. Furthermore, Python can
be extended with “plugin” modules implementing these new linguistic features,
rather than requiring a new or modified compiler. Portability is dictated by the
portable implementation of these specific modules, unlike the significantly larger
compiler suites for earlier parallel languages and extensions.

In this research note, we present a parallel Python extension module,
CoArray, as a way of providing co-array notation and functionality to Python
programmers. A co-array is a local data structure existing on all processors ex-
ecuting in a Single Program Multiple Data (SPMD) fashion. Data elements on
non-local processors can be referenced via an extra-array dimension, called the
co-dimension.
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In this implementation, the Aggregate Remote Memory Copy (ARMCI) li-
brary [10] is used to facilitate memory transfer between co-array elements exist-
ing in memory on remote processors. ARMCI has also been used to implement
the Global Array library, GPSHMEM – a portable version of Cray SHMEM
library, and the portable Co-Array Fortran compiler from Rice University [11].
ARMCI provides simpler progress rules and a less synchronous model of RMA
than MPI-2.

2 Co-array Python Implementation

The CoArray Python module implements co-arrays as an extension to Numeric
Python [9], though other Python numerical array libraries could be used. The
Numeric third-party module provides higher performance than do standard
Python arrays. CoArray extends the Python array syntax by adding a set of
parentheses (the co-dimension) to the standard array notation. For example,
consider a two dimensional array A and a load operation from A into the scalar,
c = A[i, j] from row i and column j. If T is a co-array, then a similar load
operation would be expressed as c = T (k)[i, j], except in this case, the scalar
is loaded with data from row i and column j on processor k, not necessarily
the local processor. Note that the co-dimension k appears within parentheses
to distinguish it from the normal Python array indices appearing within square
brackets.

While this example illustrates load and store operations for a scalar, the truly
powerful features are slicing operations. Using Python slices, one can transfer
entire regions of a co-array in a single Python statement. For example, the state-
ment T (0)[−1, :] = T [0, :] puts the entire first row from T to the last row (index
of -1) of T on processor 0. Assuming that the local processor index is 1, this
could also have been written as T (0)[−1, :] = T (1)[0, :].

The CoArray module uses the ARMCI library to transfer data (although
nothing prohibits it from being implemented on top of other data-transport
layers). ARMCI provides general-purpose, efficient, and widely portable remote
memory access (RMA) operations (one-sided communication). ARMCI opera-
tions are optimized for contiguous and noncontiguous (strided, scatter/gather,
I/O vector) data transfers. It also exploits native network communication in-
terfaces and system resources such as shared memory [12]. Because very little
processing occurs in Python, and because no extra copies of data are made
(memory for the Numeric arrays are actually allocated by ARMCI), memory
transfer operations using the CoArray module are roughly comparable to a C
implementation, as will be shown in the example in next section.

It should also be noted that the local portion of a co-array can easily be shared
with C as pointers to local co-array data are readily available. In addition, using
the Chasm array descriptor library [13], one can assign local co-array data to an
assumed shape, Fortran 90 array pointer.
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2.1 Implementation Details

The key to the parallel CoArray module implementation is the Python call ,
setitem and getitem methods. The call method is invoked by the

interpreter when the co-dimension is selected (using parenthesis notation) and
returns the local Numeric array if the co-dimension index is local or a proxy
to the remote co-array otherwise. The setitem method is invoked when the
normal array dimensions are selected (using square bracket notation) on the left
side of an assignment statement. When setitem is called on a remote proxy,
the ARMCI library is used to put data to the remote co-array. Likewise, when
getitem is called on a remote proxy, the ARMCI library is used to get data

from the remote array. Otherwise, the getitem and setitem methods are
forwarded to the local Numeric array.

3 Co-array Python Example

To illustrate the simplicity and expressive power of Co-Array Python syntax,
we consider the two-dimensional Laplace equation on a square of size (M × M).
We cut the square into horizontal strips by dividing the first dimension by the
number of processors N=M/nProcs. Each processor allocates its own co-array,

T = coarray((N+2,M+2), Numeric.Float)

which contains a local strip with a halo of width one. The halo values on the
boundary of the global square enforce Derichlet boundary conditions, but the
halo values on interior boundaries, row boundaries in our case, must be updated
with data from neighboring strips after each iteration.

The following variables are defined:

nProcs = mpi.size
me = mpi.rank

up = me - 1
dn = me + 1
if me == 0: up = None
if me == nProcs - 1: dn = None

where me is the local processor index and up and dn are the neighboring processor
indices on which the logically up and down array strips are allocated. As can be
seen by the use of the pyMPI [14] module elements, mpi.size and mpi.rank,
the CoArray module has been designed to be used with MPI.

The inner, iterative Python loop, executed in SPMD fashion by each proces-
sor, is:

1 """ update interior values """
2 T[1:-1,1:-1] = ( T[0:-2,1:-1] + T[2:,1:-1] +
3 T[1:-1,0:-2] + T[1:-1,2:] ) / 4.0
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4 """ exchange boundary conditions """
5 mpi.barrier()
6 if up != None: T(up)[-1,:] = T[ 1,:]
7 if dn != None: T(dn)[ 0,:] = T[-2,:]
8 mpi.barrier()

Each processor replaces each value in its local strip by the average of the
four surrounding values. Standard Python syntax allows us to represent this
averaging in very compact notation (lines 2-3, above). The first two terms on
the right side represent values up and down and the last two terms represent
values left and right. This code corresponds to a true Jacobi iteration because the
Numeric Python array module computes the entire result on the right side of the
statement before storing the result to the left side. A Jacobi iteration written in
C requires two arrays to avoid polluting the new solution with partially updated
values. Two arrays are not needed in Python because temporary arrays are
created as binary expressions on the right side of the equation are evaluated.

No communication between processors takes place during the averaging. It is
all local computation. To update the halos after averaging, we need two barriers.
The first barrier guarantees that all processors have finished computing their
average using the old values before any processor updates the halos with new
values. The second barrier guarantees that all processors have finished updating
halos before any processor performs the next average using the new values.

We also coded the example in Python, using the pyMPI module, and in C
with MPI to compare with Co-Array Python. We ran all three versions on a
dual processor Macintosh G4 (1 GHz, 1.5 Gbyte) using Mac OS X version 10.3.2
and Python version 2.3. We used LAM/MPI version 7.0.4 for the C and Python
code and ARMCI version 1.1 for the Co-Array Python code.

Table 1 shows timing results. Note that communication times for Co-Array
Python are much shorter than those for pyMPI due to the need for Python to
serialize (pickle) every message before sending it. This requires a heap allocation,
a copy, and additional processing [14]. Co-Array Python is able to send data with
no extra memory copies and communication times are roughly two times those
of the C version.

Code complexity is an important metric for evaluating programming models.
The Co-Array Python code requires less than half the number of statements,

Table 1. Timing data (seconds) for the Co-Array Python (CoP), MPI Python
(PyMPI), and C (C) versions. Data are an average of 5 runs, each for 40 iterations.
The Python MPI version failed to complete the 2048x2048 run.

Size CoPcomm CoPtotal PyMPIcomm PyMPItotal Ccomm Ctotal

128x128 0.017 0.33 0.07 0.38 0.013 0.05
256x256 0.023 1.28 0.13 1.41 0.015 0.14
512x512 0.041 6.28 0.28 6.47 0.020 0.55

1024x1024 0.068 28.4 0.52 28.78 0.032 2.49
2048x2048 0.089 113.5 0.047 10.13
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six versus thirteen, to represent data transfer compared with the pyMPI code.
The additional code in the MPI version was required to avoid synchronization
deadlock.

Although not encountered in this simple example, the C MPI version would
require an additional level of complexity, if data were partitioned across proces-
sors by blocks, rather than by strips. This would require the transfer of noncon-
tiguous halo data along columns by the use of an MPI Type vector to specify
strides. The Co-Array Python module transfers data stored in noncontiguous
memory transparently, as the module provides the necessary stride information
to the ARMCI library, rather than placing the burden on the user. This is also
true of the pyMPI version, although it would suffer the same performance penal-
ties discussed above.

4 Future Work

This research note describes an implementation of co-arrays in Python. The
co-array syntax provides a concise mechanism for implementing parallel appli-
cations while hiding the underlying communication details, making it ideal for
rapid prototyping. While computation was dominant in our simple example,
other algorithms exist where communication is more of a concern. Therefore,
we will pursue performance optimizations in the implementation of the CoArray
module to take advantage of asynchronous transfers to provide overlap with
computation.

Performance may be improved by changing when a data transfer occurs rel-
ative to when it is posted. An eager evaluation approach, which is currently
implemented, forces immediate transfer. Varying degrees of laziness in this eval-
uation could defer the actual transfer until a later time, possibly eliminating
them altogether if the data are not used. A lazy implementation of this ex-
tension could take advantage of data locality of several posted communication
requests to aggregate multiple small communication requests into larger, coarser
grained messages that perform well on modern communication hardware.

Finally, we would like to implement the CoArray module in C for perfor-
mance and on top of other communications libraries to broaden the number of
users who can take advantage of this library, with particular attention to com-
patibility with extensions and tools included as part of the Scientific Python
(SciPy) distribution [9].
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