®

Check for
updates

Design Weaknesses in Recent
Ultralightweight RFID Authentication
Protocols

P. D’Arco® and R. De Prisco®

Dipartimento di Informatica, Universita di Salerno, Fisciano, SA, Ttaly
robdep@unisa.it

Abstract. In this paper we focus our attention on the design of several
recently proposed ultralightweight authentication protocols and show
that the underlying methodology is not sound. Indeed, the common fea-
ture of these protocols lies in the use of transforms, which are the main
building blocks. We analyze these transforms and show that all of them
present some weaknesses, which can be essentially reduced to poor con-
fusion and diffusion in the input-output mappings. Then, exploiting the
weaknesses of the transforms, we describe impersonation attacks against
the ultralightweight authentication protocols in which they are used: pre-
cisely, RCIA, KMAP, SLAP, and SASI". On average, an attack requires
a constant number of interactions with the targeted tag, compared to the
allegedly needed exponential number in the informal security analysis.
Moreover, since the weaknesses are in the transforms, the attack strate-
gies we describe can be used to subvert any other protocol that uses the
same transforms or closely-related ones.
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1 Introduction

Motivations for the Current Work. Secure authentication is a well-established
research area in cryptography and several good solutions are available and
used every day. Unfortunately, for low-cost inexpensive computing elements, like
RFID tags, it is quite a challenging problem. These protocols involve two parties:
a Reader and a Tag, both of which are small devices. The hardware imposes very
strong constraints on the computing capabilities of these elements, especially on
the Tag. Hence, standard techniques based on public key cryptography or on
symmetric key primitives cannot be employed in the design.

Due to the above constraints, there are two choices: either to give up because
it is difficult, or probably impossible, to achieve the security standard we get
with other, much more powerful, digital devices, or to try to achieve a reasonable
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security level also in applications using these cheap computing elements. It goes
without saying that they are becoming a crucial end point of smart automated
solutions in the so called Internet of Things. Thus, it is desirable to follow the
latter option.

However, unfortunately, the current state of knowledge is quite poor: we
do not have any impossibility result within a model for such ultralightweight
protocols but, at the same time, all ultralightweight authentication protocols,
designed according to ad hoc approaches, proposed in the last years, have been
shown to suffer several weaknesses of different significance and impact: in many
cases the weaknesses have been used to break the protocols.

In some papers warnings have been rised against such solutions. In [3] a full
analysis of one of the most representative (at that time) ultralightweight authen-
tication protocol was provided, and in general the limits of such approaches, not
based on sound security arguments, were stressed. Moreover recently, in [2], a
full guide to the common pitfalls which are usually present in the design of
ultralightweight authentication protocols has been provided to designers and
practitioners.

As a matter of fact, ad hoc protocols with informal security analyses con-
tinue to be presented at a considerable rate and they are broken quickly after
publication!. Compared to the first protocol proposals of a few years ago, the
new feature which almost all newer protocols exhibit, is that some more involved
transforms of the data stored in the tag memory are used in order to construct
the messages the Reader and the Tag send to each other to be confident of the
reciprocal identities. However, as for the earlier protocols, also for these, sort of
generation 2.0 ultralightweight authentication protocols, the informal security
analyses are based solely on the following, questionable and very weak, conclu-
sion: since the transforms are complex, only the legitimate parties who share
the secret keys can produce the correct messages required by the authentication
protocol; for the same reason, no adversarial entity, without the secret keys, can
be successful with non negligible probability, that is, the best attack that can be
applied is to guess the secret keys, which belong to an exponentially large set.
In other words the entire security proof, in most cases, reduces to the alleged
complezity of the transforms.

Our Contribution. Among the many novel ultralightweight protocols appeared in
the literature in the last two years, we concentrated our attention on: KMAP
[5], RCIA [6], SASTT [7], and SLAP [4]. All these protocols base their security
properties upon some transforms. Our attention was caught because they appear
to be more structured, compared to other previous proposals. The transforms
essentially try to protect their input values by masking them via a process-
ing stage, in which some secret values are involved and elementary operations,
allowed by the low-power computational devices, are applied. We have studied
such transforms and pointed out that they achieve poor confusion and diffusion.
Moreover, exploiting the weaknesses found, we construct impersonation attacks

! We refer the interested reader to [2] for an overview of the previous work on ultra-
lightweight authentication protocols.
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against KMAP, RCIA, SASI+ and SLAP, which reduce from exponential to con-
stant the number of trials needed to an adversary to impersonate the Reader to
a Tag. We remark that the results on the transforms can be used to attack any
protocol based on them.

2 Preliminaries: Transforms

Let us look at the transforms used in the authentication protocols we are dealing
with. Due to lack of space, all proofs are omitted from this abstract.

Pseudo-Kasami Codes. Pseudo-Kasami codes, used in [5], are defined as fol-
lows. Let © = x1,...,x, be a string of n bits and let s be an integer, called seed,
such that 1 < s < n. Let y = CRshift(xz,s), where y is obtained from z by a
circular right shift of s positions. Then, the pseudo-Kasami code of x is defined
as pKe(z, s) = x @ y. Here is an example, where n = 24 and the seed s = 6:

T = 100101 110101 101100 010110
Y= 010110 100101 110101 101100
pKe(z, s) = 110011 010000 011001 111010

The following lemma holds:

Lemma 1. Let x = x1,...,x, be a string of n bits, and let s be a seed for the
pseudo-Kasami code pKc(z,s) such that n is a multiple of s. Let ¥’ be a new
string obtained from x by flipping n/s bits, all at distance s from each other.
Then pKc(x, s) = pKe(z/, s).

An example helps in understanding the above result. Let us consider the
same bitstring = considered before, and let us apply the lemma starting from
position j = 2.

' = 110101 100101 111100 000110
y = 000110 110101 100101 111100
pKc(2/,s) = 110011 010000 011001 111010

It is easy to check that pKe(z, s) and pKe(z', s) coincide.

Let hw(-) denote the Hamming weight of a binary string, i.e., the number of
bits equal to one. The following results also hold:

Lemma 2. Let x = x1,...,x, be a string of n bits chosen uniformly at ran-
dom, and let s be an integer chosen uniformly at random such that 1 < s < n.
Moreover, let ' be a new string obtained from x by flipping one bit. Then

Pr[hw(pKc(z, s)) = hw(pKc(z', s))] = %EL.

Lemma 3. Let x = x1,...,x, be a string of n bits chosen uniformly at random.
Let ' be a new string obtained from x by flipping two randomly selected bits.
Then, for any seed s such that 1 < s <n, it holds that:
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(a) pKc(z, s) and pKe(z', s) are equal with probability (niil)
(b) pKe(z, s) and pKe(z', s) differ in two bits with probability 32((77:21))
( ’.5) n®—3n42

(c) pKe(x, s) and pKe(z', s) differ in four bits with probability Sl

(d) Prihw(pKe(z, s)) = hw(pKe(a', s))] = %'

Finally, the pseudo-Kasami code transform exhibits the following structural
property:

Lemma 4. Let x = x1,...,x, be a string of n bits chosen uniformly at random,
and let the seed s be equal to n/2. Then, pKc(z,s) is the concatenation of two
equal substrings of n/2 bits.

Recursive Hash. Recursive hash was defined in [6]. Let = be a string of n

bits, x = by,b2,...,b,, and let £ and z be integers such that ¢ is a divisor
of n and z = n/f. Moreover, let s be an integer value, called seed, such that
1 < s < z. Then, dividing « into z chunks xy,...,x, of £ bits each, x; =

bii—1).6,0(i—1)-t41 - - - » bi-e—1, and denoting with Rot(z,y) a right rotation of the
string @ by y positions?, the recursive hash of z and s, denoted by Rh(x,s) for
short, is defined as:

T1 D Ts,...,Ts—1 D Ts,ROt(xs, hw(Ts)), Ts41 D T, .. . , Tn D Ts.

That is, each chunk ¢; of the recursive hash is the @ of chunks z; and x, except
for chunk c¢,, which is equal to x, right rotated by its Hamming weight.

Let us look at an example: let n = 24 and z = 100100101011110101111110.
Moreover, let £ = 6 and, thus, z = 4. We get:

Tr=| I T2 T3 T4
100100 101011 110101 111110

Let the seed s be equal to 3. The selected chunk is x3 = 110101 whose
Hamming weight is hw(z3) = 4. Hence, the right rotation of x3 is 010111. The
recursive hash Rh(z, s) is:

Tr = I I2 I3 Ty
100100 101011 110101 111110
x3 replicated|110101 110101 110101
z; @ xs 010001 011110 001011
T3 rotated 010111
Rh(z,s) 010001 011110 010111 001011
C; C1 Co C3 Cq

2 Notice that the Rot(z,y) operation is equal to the CRshift(x’, s) used in the previous
transform. To keep the same notations used in the original papers we are analyzing,
we have maintained both of them.
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Lemma 5. Let {,n and z integers such that £ is a divisor of n and z = n/L.
Moreover, let x = x1,...,x, be a string of n bits chosen uniformly at random,
and ¥’ be a new string obtained from x by flipping two randomly selected bits.
Then, for any seed s € {1,...,z}, Rh(x,s) and Rh(z’, s) differ in two bits with
probability equal to

(n—0n-0-1)
n(n —1) '

Notice that the probability function is decreasing in ¢. Since meaningful val-

ues of ¢ range from 2 to n/2, we have that the minimum value is obtained for
¢ = 5. Therefore, for £ = 3, it is ~ i.
Lemma 6. Let ¢,n and z integers such that ¢ is a divisor of n and z = n/l.
Moreover, let © = x1,...,2, be a string of n bits chosen uniformly at random,
and ' a new string obtained from x by flipping two randomly selected bits. Then,
for any seed s € {1,...,z}, Prlhw(Rh(x, s)) = hw(Rh(z', s))] is at least

.7+l.u.£_1,(<zﬁ>l/2)'

z—1
1 n—t 1 ((z—l)/z)
n(n — 1) 2 n n—1 2(z=1) 2 n n—1 2(z+1)

1 (n—O)(n—-£0-1) 1\=z £(£—1)
2 n(n — 1) (5) ’ *

A simple study of the function (for example with a math program like Maple),

shows that it is an increasing function. Since meaningful values of ¢ range from
2 to n/2, we have that the minimum value is obtained for £ = 2. For n = 64 the
above probability is ~ %
Conversion Transform. In [4] the authors introduce the Cnv transform. It
takes as input two binary strings of length n, say® A = a,a,—1 ...aga; and B =
bnbn_1...b2b1, and a threshold t such that 1 < ¢ < n, and produces in output a
binary string Cnv(A, B, t) of length n by applying a three-step procedure. More
precisely:

Step 1 (Grouping). Determine a bit grouping for both A and B. The grouping
is a function of the Hamming weight of the string and of the threshold t. Let
X = z,xp_1...2271 be the binary string to be bit-grouped. The grouping is
defined recursively as follows: if the length of X is strictly shorter than ¢, then the
recursion ends; otherwise, the string is split in two groups X and Xpg according
to its Hamming weight w = hw(X), by letting X;, = z,xp—1 ... Ty11, then —w
leftmost bits, and Xz = @yTyw_1-..21, the w rightmost bits. Then, the bit
grouping procedure is applied recursively to both X and Xg.

Let us consider an example. Let n =24, X = 1011 0101 1111 1101 1101 1101
and t = 6. The Hamming weight of X is hw(X) = 18. Since | X| > 6, the string
is split into two substrings, the left one, X7, containing the leftmost 24 — 18 = 6
bits, and the right one, X5, containing the rightmost 18 bits of X; that is,
X1 =1011 01 and X5 =01 1111 1101 1101 1101.

Since |X1| > 6, and hw(X;) = 4, the string is split in X; 1 = 10 and X; 2 =
11 01. Both strings are shorter than the threshold 6. Hence, the recursion ends.

3 Notice that in this case we are numbering the bits from left to right in descending
order. This is to maintain the same notation used in [4].
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We proceed similarly for X,. Since |X3| > 6, and hw(X2) = 14, the string
is split in X5 ; = 0111 and X5 = 11 1101 1101 1101. The recursion ends for
Xo.1, while X34 is split in X227 = 111 and X322 = 101 1101 1101. Since
X221 is shorter than ¢t = 6, then the recursion ends, while X5 5 5 is split into
X2221 = 101 and X3 292 = 1101 1101. Thus, the recursion ends for the first
substring, while it keeps going for the second. Indeed, since hw(Xz222) = 6,
then X2727272 is spht in X2,272,271 =11 X2,27272,2 =01 1101. Finally, X2,2727272 is
Spht in X2’2727272,1 =01 and X2,27272,272 = 1101.

In the following table we report another example in a more concise form:
the vertical lines indicate the splittings of the substrings. The starting string is
X =101101010101110101011111.

X =101101010101110101011111
X,len = 24, hw = 16
10110101 0101110101011111
len =8 hw =5 len = 16,hw = 11
101| 10101 |01011 10101011111
len =11,hw =28
101 01011111

len = 8,hw =6
01 011111
len =6,hw =5
0 11111

Step 2 (Rearrangement). Once both A and B have been bit-grouped, the rear-
rangement phase simply swaps the two groupings, that is, the grouping found
for A is applied to B and vice versa. Notice that the groupings might differ both
in the number of groups and in the size of each group.

Let us continue with an example.

Let A = 1011 0101 1111 1101 1101 1101 and B = 1011 0101 0101 1101
0101 1111 be the strings that we have used as examples before. The grouping
obtained for each of them is summarized in the following tables.

[A =[10[1101]0111[111[101[11[01[1101] [B =[101]10101[01011[101[0L[0[11111]

Swapping the groupings we get:

[A =[101][10101]11111[101[11[0[11101] [B =[10]1101][0101]011[101]01]01]1111]

At this point each group of bits gets (left circularly) rotated according to the
Hamming weight of the group itself. Thus we obtain:

[A” =[110[10101[11111[110[11[0[11110] [B” =[01[1110]0101[101[110[10[10]1111]

Step 3. The final step that produces the output bitstring is simply the @ of the
rearranged bitstrings A’ and B’. Completing our example, we have:
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A = 1101 0101 1111 1110 1101 1110
B = 0111 1001 0110 1110 1010 1111
Cnv(A, B,6) =|1010 1100 1001 0000 0111 0001

We prove the following result:

Lemma 7. Given two binary strings A and B of length n, chosen uniformly at
random, and a threshold t, with 1 < t < n, if we flip two bits of A in the first t
positions to obtain A’, then

1 1 3—2t2—t+42
Pr{(Cav(A, B, 1), Cav(A', B,)differ in tuo bits] ~ - - < Tl);

3 KMAP

The protocol KMAP, introduced in [5], is a mutual authentication protocol.
According to the authors, “KMAP avoids unbalanced logical operations (or,
and) and introduces a new ultralightweight primitive, the pseudoKasami code,
which enhances the diffusion properties of the protocol messages and makes the
Hamming weight of the secrets unpredictable and irreversible”. The protocol is
also claimed to be “highly resistive against all possible attacks” and efficient in
terms of communication cost and computational operations.

In this section we show that this is not the case. By building on the previous
analysis of the pseudo-Kasami transform, we construct an efficient impersonation
attack.

Protocol Description. Tags are identified with a static identifier ID which
however is never exposed. Instead, a sequence of changing “pseudonyms” IDS
is used. Tag and Reader share the pseudonym IDS and two secret keys, K;
and Ks; these values are updated upon each successful completion of a session of
the protocol. To cope with desynchronization attacks, the Tag and the Reader
maintain both the current values and the previous ones. If a Tag receives twice
the initial “Hello” message (see below), then the first time it replies with the
current value of IDS , while the second time falls back to the old value, assuming
that there has been a desyncronization with the Reader, which has been unable
to recognize the newer value.

Hence, Tag and Reader maintain two triples of values: (IDS yr, K1 cur,
K cur) and (IDS g1, K1 01d; K2,014)- For the sake of simplicity of notation, some-
times, to save space, we omit the subscript of IDS, K; and K5 when we are
referring to the current values IDS .y, K1, cur and Kz cyr.

The protocol is a four-message protocol whose general structure is shown in
Fig. 1:

1. The Reader starts the protocol by sending an “Hello” message;
2. The Tag replies with the current value of the identifier IDS ., ;
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Reader Message Tag
Hello —
—IDS
Al|B||C —
— D

Fig. 1. KMAP general structure

3. The Reader checks the received value IDS : if it is equal to IDS,,, then the
rest of the computation is performed using K1 = K cur and Ko = Ko cyr;
if the received value is equal to IDS,;4, then the rest of the computation
is performed using K; = Kj 4 and Ky = Kj o — that is, the old values
become the current ones; otherwise, the protocol is immediately terminated.
The Reader performs some computation, computing some temporary values
(a seed and two temporary keys K and K3), and three sequences of bits,
A, B and C, and sends a message consisting of three parts. A, B and C, which
are sent to the tag;

4. The Tag checks that the values received are consistent with its own infor-
mation (if not, the protocol is immediately terminated) and performs some
computation to obtain a sequence of bits D, which is sent to the Reader.

Upon completion of a session of the protocol, both the Tag and the
Reader update the values of ID and of the keys K; and Kb, storing in
(IDS o1 K1,01d, K2 014) the values of (IDScyr, K1 cur, K2 cur), and updating the
latter. The Tag maintains also a failure counter, so that if there are too many
unsuccessful attempts, the Tag will stop its functionality for a while, in order to
introduce delays into the attacks?*.

The details of the computation of the messages A, B,C and D are shown in
Fig. 2. More specifically, the Reader chooses two random values n; and ns, and
computes their xor P = ny & ny and a seed s = hw(P) mod 64. Then, A is com-
puted by a double rotation of nj, the first of a number of positions given by the
weight of IDS @ K, and the second of a number of positions given by the weight
of Ko; similarly, B is computed by a double rotation of ng, the first of a number
of positions given by the weight of Ko @& IDS, and the second of a number of posi-
tions given by the weight of K7 @ny. The Reader, then, computes two temporary
keys, K and K, namely K; = Rot(pKc(K71,s),pKc(ni,s)) ® Ki) and K5 =
Rot(pKc(Ka, s),pKc(na, s)) @ K1), and, finally, computes C, again with a double
rotation, namely C' = Rot(Rot(pKc(ni, s), pKc(Kj @ pKe(na,s)), pKe(KT, s) @
n2)). The message consisting of the concatenation of A, B, C' is sent to the tag.

The Tag, upon reception of the message A||B||C, extracts the value of n;
from A, by computing n; = Rot™!(Rot (4, K3), IDS & Ki), and ny from
B, by computing ny = Rot ! (Rot~(B, K; ® n1), IDS & K,), then computes
P =ny @ ng, the seed s and the temporary keys K7 and K. At this point, the
Tag can compute the value of C* in the same way as the Reader computed C, and

4 This feature, however, if implemented, exposes the Tag to an easy DoS attack.
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Reader chooses n1 and ng2 randomly

P=n1&ns

s=hw(P) mod 64

A = Rot(Rot(n1,IDS®H K1), K2)

B = ROt(ROt(nQ, KQ@IDS), K ® nl)

K7 = Rot(pKc(K1, s),pKe(ni, s)) @ Ka)

K5 = Rot(pKc(Ka, s),pKe(nz, s)) @ K1)

C = Rot(Rot(pKc(ni, s), pKe(K5 @ pKe(ne, s)), pKe(K7, s) @ na2))

D = Rot(Rot(pKc(IDS, s) @ pKe(ni), pKe(IDS, s) @ pKe(K1, s)), pKe(K2, s))

Fig. 2. KMAP message computation

IDSo1q =IDScur; IDScyr = Rot(pKe(IDScur, s) ® ni,pKe(nz, s))
Kl,old = KLcuT; Kl,cur = ch(Kf,cuTa 5)
K2,old = KZAVC’U,’V‘; K2,cu7‘ = PKC(KS,cura S)

Fig. 3. KMAP pseudonym and keys update

compare the computed value C* with the received one C'. If they are equal, the
Tag completes the protocol by computing and sending D and updating IDS, K;
and K5 as detailed in Fig.3. On the other hand, if a mismatch is detected,
then the protocol is aborted and the failure counter is incremented. The failure
counter is reset when a session of the protocol is successful.

Impersonation Attack. Analyzing the equations used in the protocol, the
following observations hold:

1.

Flipping two bits of B is equivalent to flipping two bits of ns in some unknown
positions.

Let P’ = ny & nb, where n), is equal to ns up to two flipped bits. Then P’ is
equal to P up to two flipped bits. If the two flipped bits are the complement of
each other, i.e., they are 01 or 10 respectively, we have that hw(P’) = hw(P).
Since there are 2 out of 4 bit patterns that satisfy the above, this event occurs
with probability 1/2.

If hw(P’) = hw(P), the structure of pKc(-, s) does not change since the seed is
the same.

If hw(pKc(na, s)) = hw(pKc(nj, s)), then the value K3 does not change.
pKc(K7, s) @ nh and pKe (KT, s) @ ny differs in two bits.

hw(pKc(K7F, s) @ nh) = hw(pKc(K7, s) @ na) with probability 1/2, since there
are two patterns of bits, i.e., 01 and 10, such that, when flipped, the overall
weight of the bitstring stays the same.

pKc(K3, s)PpKe(nh, s) and pKe(K3, s) ®pKc(ng, s) have the same weight with
probability at least 3/8, since there are six patterns of four bits out of sixteen
such that, when flipped, the overall weight of the bitstring stays the same.

Putting everything together, we can prove the following:
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Lemma 8. Assume an adversary eavesdrops an authentication session and
stores A||B||C. Let B’ be equal to B up to two bits which are flipped. Then,
forcing the Tag to send the old IDS and replying with A||B’||C, the adversary
succeeds in impersonating the legal Reader with probability roughly equal to %.

Thus, a few interactions are sufficient to break the security of the authentica-
tion protocol. Notice that, the authors specify that “a protocol message counter
has also been integrated in the KMAP which stops the functionality of the Tag
for some particular time, if the counter’s value exceeds the threshold 8”. It means
that if the attack does not succeed during the first trials, an extra delay is added
due to the temporary stop of the Tag.

4 RCIA

The protocol RCIA, introduced in [6], is a mutual authentication protocol. It has
been designed to “provide robust confidentiality, integrity, and authentication in
a cost effective manner”. In RCIA, Tags use only three main operations, the
bitwise and, or, and bit rotation, and the recursive hash transform scrutinized
before.

Protocol Description. Since the protocol is very similar to the KMAP proto-
col, we describe it in a very concise way. The overall structure is the same as the
one of KMAP (see Fig.1): the differences lay in the way the messages A, B,C
and D are constructed, and how the pseudonym and the keys are updated. The
details of RCIA are described in Figs.4 and 5.

Reader chooses randomly n1 and no

P =n1®ne

s=hw(P) mod b

A =Rot(IDS, K1) ®ni

B = (ROt(IDS/\ nl,Kz) N K1) D no

K7 =Rot(Rh(K2, s),Rh(n1,s)) A K1)

K5 = Rot(Rh(K71, s),Rh(n2, s)) A K2)

C =Rot(Rh(K7,s),Rh(K73,s)) ARot(Rh(ni, s),Rh(n2, s))

D = Rot(Rh(IDS, s), K7)) A (Rot(Rh(K3, s),Rh(na, s))PIDS)

Fig. 4. RCIA message computation

IDSy1q =IDScur; IDS, ey = Rot(RR(IDS) & nao,n))
Kl,old = Kl,cuN Kl,cu'r' = Rh(KT7 S)
K2,old = KZ,(:':M"; K2,(:ur = Rh(KQ*, S)

Fig. 5. RCIA pseudonym and keys update
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Impersonation Attack. Analyzing the equations used in the protocol, the
following observations hold:

1. Flipping two bits of B is equivalent to flipping two bits of ny in the same
positions.

2. Let P’ = ny & n),, where n), is equal to ny up to two flipped bits. Then, P’ is
equal to P up to two flipped bits. If the two flipped bits are the complement of
each other, i.e., they are 01 or 10 respectively, we have that hw(P’) = hw(P).
Since there are 2 good bit patterns out of 4 possible bit patterns, this event
occurs with probability 1/2.

3. If hw(P’) = hw(P), the structure of Rh(-, s) does not change since the seed is
the same.

4. Tf hw(Rh(ng, s)) = hw(Rh(n), s)), then the values K3,Rh(K3, s) and C do not
change.

Putting everything together, we prove the following:

Lemma 9. Assume an adversary eavesdrops an authentication session and
stores A||B||C. Let B’ be equal to B up to two bits which are flipped. Then,
forcing the Tag to send the old IDS and replying with A||B’||C, the adversary
succeeds in impersonating the legal Reader with probability roughly equal to %.

Thus, a few interactions are sufficient to break the security of the authentication
protocol.

5 SASIt

The protocol SASIT, introduced in [7], is a mutual authentication protocol. It
incorporates only bitwise operations, xor, rotation and, like RCIA, the recursive
hash transform. The protocol has also been implemented in hardware and shown
to be efficient in terms of communication and computation costs.

Protocol Description. As for RCIA, also SASI™, is basically the same as
KMAP, with differences due to the way in which the messages are constructed
and the way the pseudonym and the keys are updated. Figures 6 and 7 show the
details.

Reader chooses randomly n1 and no

P =n1®ne

s=hw(P) mod b

A= ROt(ROt(’I’Ll (&) K1,IDS D KQ), K1)

B = ROt(ROt(ng D na, Ko P Kl), KQ)

C = Rot(Rot(Rh(n2, s) ® Rh(K>2, s),Rh(n1,s)),Rh(K1,s))

D = Rot(Rot(Rh(ID, s) ® Rh(K71,s) ®Rh(ni,s),Rh(ns, s)),Rh(K2,s))

Fig. 6. SASIT message computation
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]DSold :IDS(:U,T; [DSnew = ROt(Rh(IDS, S) (&) na, 77,1))
Kl,old - Klﬁcur; Kl,cur = Rh(KT, 3)
K2,old = K27cur§ K2,cu1‘ = Rh(KS, S)

Fig. 7. SASI" pseudonym and keys update

Impersonation Attack. SASIT uses the recursive hash transform. Hence,
applying a similar analysis to the one applied for RCIA, we notice that:

1. Flipping two bits of B is equivalent to flipping two bits of ns in some unknown
positions.

2. Let P’ = ny & n),, where n), is equal to ny up to two flipped bits. Then, P’ is
equal to P up to two flipped bits. If the two flipped bits are the complement of
each other, i.e., they are 01 or 10 respectively, we have that hw(P’) = hu(P).
Since there are 2 out of 4 bit patterns that satisfy the above, this event occurs
with probability 1/2.

3. If hw(P’) = hw(P), the structure of Rh(-, s) does not change since the seed is
the same.

4. Due to Lemma 5, Rh(ng, s) and Rh(nj, s) differs in two bits with probability
at least %.

5. If this is the case, the resulting string C’ differs from C' in two bits.

Putting everything together, the following result holds:

Lemma 10. Assume an adversary eavesdrops an authentication session and

stores A||B||C. Let B’ and C' be equal, respectively, to B and C up to two

consecutive bits which are flipped. Then, forcing the Tag to send the old IDS and

replying with A||B'||C’, the adversary succeeds in impersonating the legal Reader
1

with probability roughly é ‘35

Thus, a linear (in the size of the bitstring) number of interactions is sufficient to
break the security of the authentication protocol.

6 SLAP

The protocol SLAP, introduced in [4], is a mutual authentication protocol. It
uses only bitwise operations like xor, rotations, and the conversion transform.
The authors stress that the conversion transform is the main security component
of the system “with properties such as irreversibility, sensibility, full confusion
and low complexity”, with better performance compared to previous protocols.

Protocol Description. As for the other protocols, the general structure is
the same, although for SLAP the third message has a slightly different form.
Figure. 8 shows the general structure of the protocol, while Figs. 9 and 10 provide
the details. In SLAP the third message is composed of only two pieces, A and
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Reader Message Tag
Hello —
«— IDS
AHBLorR -
— C

Fig. 8. SLAP general structure

Reader chooses n randomly

A=Cnv(Ki,K2)®n

B = Cnv(Rot(K1,n), K1 & K2) @ Rot(Cav(K2, Ko ®n), K1)
C = Cov(Cav(B, K1),Cnv(K1, K2 ®n)) ® ID

Fig. 9. SLAP message computation

one half, either the left one or the right one, of B. The choice is determined by
the Hamming weight of B itself: if it is odd, then By, is sent, otherwise Bpg is
sent.

Impersonation Attack. Consider the Cnv(X,Y’) function. The main obser-
vation is that by flipping two different bits of X at the beginning of X, the
Hamming weight of the string stays the same, i.e., hw(X) = hw(X’) and, with
high probability, Cav(X’,Y"), where X’ denotes the modified bitstring, is differ-
ent from Cnv(X,Y) in two bits. For example, in the example presented in [4], by
flipping the second and the third bits of A, it follows that the final value A* @ B*
is modified only in the first and fourth bits. As we have formally shown before,
such an event occurs in general with probability p approximatively equal to 1—12
Analyzing the equations of the protocol, notice that:

1. Flipping two bits of A is equivalent to flipping two bits of n in the same
positions.

2. If the two flipped bits of n are complementary bits, i.e., 0 and 1 or 1 and 0, the
resulting bitstring n’ is such that hw(n’) = hw(n) and, hence, Rot(Ki,n') =
Rot(Kq,n).

3. Tt follows that Cnv(Rot(Ki,n’), K1 @ K3) = Cov(Rot(K1,n), K1 @ Ka).

4. Since the bitstring Ko @ n’ differs from K @& n in two bits, it follows that
Rot(Cav (Ko, Ko ®@n'), K1) differs in two bits from Rot(Cnv(Ks, Ko @ n), K1)
with probability p ~ L

12
IDS51q :IDScu'r; IDSpew = ch(IDS7 n o (BI/_l/orR HCIClorR)
Kl,old - Kl,cu'r‘; Kl,cuT - CnV(Kl,cuT7n) (&) K2
KQ,old - KE.,cur; K2,cur = CnV(KQ,curyn) (&) K1

Fig. 10. SLAP pseudonym and keys update
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5. The resulting string B’ differs in two bits from B and, with probability %,
they have the same weight.

Putting everything together, the following result holds:

Lemma 11. Assume an adversary eavesdrops an authentication session and
stores Al|Brorr- Let A’ be equal to A up to two consecutive bits which are flipped.
Forcing the Tag to send the old IDS and replying with A'||Brorr, the adversary

succeeds in impersonating the legal Reader with probability roughly % . %

7 Conclusions

We have shown that the design of several recently proposed ultralightweight
authentication protocols is affected by a common problem: the transforms, used
as building blocks in the protocols, do not provide confusion and diffusion in the
input-output mappings as they should. Exploiting the corresponding weaknesses,
we have shown for example how impersonation attacks against the protocols can
be mounted. Attacks defeating other properties of the schemes are possible (e.g.,
[8]). Moreover, we have not considered important practical issues in the imple-
mentation of ultralightweight protocols (e.g., [1]). Our goal was to point out that
the lack of confusion and diffusion can open the door to several breaches. In the
future proposals the designers should primarily check whether such basic prop-
erties are achieved by the underlying transforms. A closer look at the standard
strategies used in the design of lightweight symmetric primitives might help.
Actually, the most important open problem in our opinion is to come up with a
reasonable model for the class of ultralightweight protocols, in order to get an
in-depth understanding of possibilities and limits for these protocols.
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