
Evasive Malware Detection Using Groups
of Processes

Gheorghe Hăjmăşan1,2(B) , Alexandra Mondoc1,3 , Radu Portase1,2 ,
and Octavian Creţ2

1 Bitdefender, Cluj-Napoca, Romania
{amondoc,rportase}@bitdefender.com

2 Technical University of Cluj-Napoca, Cluj-Napoca, Romania
{Gheorghe.Hajmasan,Octavian.Cret}@cs.utcluj.ro

3 Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract. Fueled by a recent boost in revenue, cybercriminals are devel-
oping increasingly sophisticated and advanced malicious applications.
This new generation of malware is able to avoid most of the existing
detection methods. Even behavioral detection solutions are no longer
immune to evasion, mostly because existing solutions focus on the actions
or characteristics of a single process. We propose shifting the focus from
malware as a single component to a more accurate perspective of malware
as multi-component systems. We propose a dynamic behavioral detec-
tion solution that identifies groups of related processes, analyzes the
actions performed by processes in these groups using behavioral heuris-
tics and evaluates their behavior such that even evasive, multiprocess
malware can be detected. Using the information provided by groups of
processes, once a malware has been detected, a more comprehensive sys-
tem cleanup can be performed, to ensure that all traces of an attack have
been removed and the system is no longer at risk.

1 Introduction

Malicious software has become the foundation of a highly profitable industry.
To maximize profit, malware authors are developing increasingly sophisticated
attacks. The new breed of malware is able to avoid static detection through
various methods, like obfuscation or encryption. To make detection even more
difficult, thousands of new malware or variants of existing malware are being
released every day. Consequently, dynamic detection has become more impor-
tant, representing a last line of defense in security solutions.

Currently, the majority of dynamic malware detection techniques evaluate
the behavior of a process and, using a set of rules, decide if that process is mali-
cious or not. The rule set must accurately differentiate between malicious and
non-malicious processes. Because a balance between detection rate and num-
ber of false positives must be assured, a dynamic detection system can not be
too aggressive when evaluating a single process. Advanced malware may take

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 32–45, 2017.
DOI: 10.1007/978-3-319-58469-0 3

http://orcid.org/0000-0001-8664-8956
http://orcid.org/0000-0003-2096-3771
http://orcid.org/0000-0001-9008-1462
http://orcid.org/0000-0002-6657-634X


Evasive Malware Detection Using Groups of Processes 33

advantage of this lack of aggression. They can evade being detected by separat-
ing malicious actions into multiple processes through process creation or code
injection. This separation causes current dynamic detection systems to be unable
to detect some of the malware components or, even worse, not to detect the mal-
ware at all. This is a major issue, because if a malware attack is only partially
detected and the malicious components are not entirely removed from a system,
they will continue to represent a serious security risk for the user.

We propose a behavioral detection solution that overcomes the issue of detect-
ing evasive malware. We propose renouncing the current view of malware as
single component systems and adopting a more accurate and comprehensive,
multi-component based, method of evaluation and detection.

The following sections present a method to detect malicious groups of
processes instead of single malicious processes. This research will provide a
method for constructing such groups, together with a way to evaluate their
actions so that malware groups can be detected. We also present a way to clean
the infected system based on the actions performed by the processes in the
detected group.

This paper is organized as follows: Section 2 presents the current state of
research concerning behavioral malware detection and how most common solu-
tions can be evaded. The proposed solution is described in Sect. 3 and the results
of the proposed solution are presented in Sect. 4. The conclusions are mentioned
in Sect. 5.

2 Related Work

An approach used in behavioral malware detection consists of extracting features
based on the API calls performed by an analyzed sample. Devesa et al. [2]
propose identifying which actions were performed, based on API calls records.
These actions represent features, used to classify a sample as malicious or clean.

Constructing graphs based on the relations between system calls represents
another approach in behavioral malware detection. Elhadi et al. [3] propose
creating data dependent graphs, with nodes representing system calls and the
edges, relations between their parameters or return values. An algorithm based
on the Longest Common Subsequence is used to match the obtained graph to
those of known malware stored in a database. Behavior graphs are also used
in [7]. Compared to other similar solutions, the solution proposed by Kolbitsch
et al. has the advantage of matching the behavior graphs in real time, providing
protection on the end host. Naval et al. [10] propose representing the behavior of
a sample as an ordered system call graph and extracting relevant paths, which
are considered features used for classifying the sample as malicious or benign.

Most dynamic malware detection solutions that focus on analyzing the behav-
ior of individual processes are highly vulnerable to a certain type of evasion that
is increasingly used by sophisticated malware and advanced threats. The eva-
sion mechanism is quite simple: instead of executing all the malicious actions
from a single process - which could be more easily detected by advanced security



34 G. Hăjmăşan et al.

solutions - the malicious payload is distributed to multiple, distinct processes,
and may be executed over a long period of time. Because behavior based detec-
tion solutions can not usually detect a process based on a single action, multiple
individual processes, each performing a smaller set of actions, may go unnoticed,
allowing the malware to achieve its target goal undetected.

Ma et al. [8] developed a prototype tool, working at compiler level, that
can generate multiple “shadow” processes from the original malware code. Each
“shadow” process executes some of the payload, such that the original behavior
of a process remains unchanged. Various methods to deliver malware distrib-
uted into multiple files are presented in [11]. Another method of distributing
the malicious payload, presented in [4] consists of injecting parts of the pay-
load into clean processes running on a system. This approach makes cleanup
more difficult because, if only one injected process is terminated, the malware
is capable of reinstantiating itself from another injected process. The distinct
malicious processes may communicate using traditional inter process communi-
cation, supported by the operating system, or through purposely implemented
special mechanisms.

This evasion mechanism is extremely effective especially against detectors
based on API or code flow graph. Since the API calls are distributed to multiple
distinct processes, this type of detectors may have difficulties in matching the
obtained graphs, or may be unable to do so. The effectiveness of distributing
malicious behavior to multiple processes is also recognized by [6,12].

A solution designed to combat multi-process malware is proposed in [5]. In
the approach presented by Ji et al., the actions performed by each process are
represented as feature vectors and then correlated with the actions performed
by its child processes. The correlation phase in malware detection may be a
complex problem, both in terms of implementation and efficiency. Additionally,
this solution does not consider code injection when correlating processes.

Evasion mechanisms such as those previously described represent a strong
argument to show that behavioral-based security solutions need to evolve past
analyzing a single process, individually and in isolation from other entities. Focus
should shift to developing more advanced security solutions, capable of analyzing
each process in the broader context of all the processes executed on a computing
system and taking into account any relations between them.

3 Proposed Solution

A high level view of the proposed solution, illustrating its major components
and the interactions between them is presented in Fig. 1. Our implementation is
intended for the Windows Operating System (OS), but the proposed approach
may be applied for other operating systems.

The essential requirement for a behavioral detection solution is to monitor
the actions performed by processes. This is implemented within the Event Inter-
ceptors. They use mechanisms specific to the Windows OS and are located both
in Kernel Mode and User Mode (UM). In Kernel Mode, the solution uses a



Evasive Malware Detection Using Groups of Processes 35

Event Interceptor Event Interceptor Event Interceptor

Heuristic
Engine

Entity
Manager

Behavior Manager

Scoring
Engine

Cleanup
Module

Heuristics
Database

Scoring
alert

Detection
alert

Event notifications

Fig. 1. Behavioral detection solution

minifilter driver [9] that registers callback routines, which are notified whenever
changes occur in the file system, registry keys or when processes are created.
At User Mode level, the actions are filtered using API interception (hooking)
through a DLL injection [1] into the monitored process. The intercepted actions
are encapsulated in events and sent to the Behavior Manager, consisting of the
Heuristic Engine and the Entity Manager.

The detection is based on behavioral heuristics located in the Heuristic
Engine. A heuristic is an algorithm that analyzes the actions performed by
processes, using the intercepted events. Some heuristics are defined in signature
files and are retrieved by the engine from the Heuristics Database.

The Entity Manager uses information provided by the Event Interceptors,
together with information from some heuristics (e.g. for detecting code injection)
to manage the processes and groups on a system and their relations.

When a heuristic decides a malicious action has been performed, it sends
an alert to the Scoring Engine, where it is evaluated. This component com-
putes scores for the entities that caused the alert and decides whether they are
potentially malicious. If a process or group of processes is considered malicious
a detection alert will be sent to the Cleanup Module. This module is responsible
with taking anti-malware actions against the target entity. The Cleanup Module
and the Scoring Engine use the information provided by the Entity Manager in
order to identify all the relations between the malicious entities.

In a broader perspective such a solution should be integrated (as a last line
of defense) in a modern security application, together with other components
such as URL blocking, firewall, classic AV signatures, etc.

3.1 The Management of Groups

In order to function effectively, the solution must have a complete overview
of the running processes. To accomplish that, the Entity Manager maintains
a collection of processes executing on the client system. The Entity Manager
dynamically updates this collection to reflect the addition of new processes in
response to process creation, and the removal of other processes in response to
process termination. The Entity Manager divides the processes in the collection
into one or multiple groups and maintains a set of associations indicating the



36 G. Hăjmăşan et al.

P1

P5

P6 P7

P8 P14

P15

P2

P9

P11

P10

P12

P3

P13

P4

P14

P15

G1 G2 G3 G4

G5

G6

G7

G8

G9

G10

G11

Fig. 2. Groups of processes

groups each of those process belongs to. An example illustrating multiple groups
of processes is presented in Fig. 2.

Categories of Processes. Processes are divided into three distinct categories:
group creators - illustrated using triangles, group inheritors - circles and unmon-
itored processes - squares. By assigning a category - or a role - to each process,
the groups of processes are much easier to identify and manage. Smaller groups,
consisting of processes that are actually related, can be created, avoiding the cre-
ation of a single, large group per system. The category which a process belongs
to is identified based on certain features of the respective process. Examples of
such features are the file path, the digital signature or a hash computed for the
executable file corresponding to the process.

Relations of Processes. The solid arrows indicate process creation, while the
dashed arrows indicate code injection. The direction of each arrow indicates
the direction of the relationship between the respective entities. For example,
process P6 is a child of process P5 while process P7 has injected code into process
P14. Groups of related processes are represented as dashed lines, encircling those
processes, and are denoted as Gi, i ∈ {1, 11}. For example, P1 is the sole member
of group G1, while G5 contains processes P5 . . . P8, P14 and P15.

Group creators are processes that are known to create other processes, not
necessarily related to them. As their name suggests, whenever a process from this
category spawns a process, a new group will be created, initially consisting of the
child process. This category includes, among others, winlogon.exe, svchost.exe,
cmd.exe and other processes or services of the OS, Windows Explorer, Total
Commander and similar file manager applications, Internet Explorer, Firefox,
Chrome and other browsers. When a group creator spawns a process a new
group is created (e.g. group creator P1 creates group G5 when it spawns P5).



Evasive Malware Detection Using Groups of Processes 37

Processes that are unmonitored by the security application include the var-
ious components of the security solution and certain components of the OS,
for example csrss.exe and smss.exe on the Windows OS. These processes are
implicitly treated as group creators.

The group inheritor category includes the majority of user processes, as well
as processes that are unknown or are not identified as group creators. Whenever
a group inheritor spawns a process or injects code into another process, the other
process is included in the same group as the group inheritor (e.g. process P6 is
included in the same group with its parent process, P5; P14 is included in the
same group as process P7, as a result of receiving injected code from P7).

The category of a process is updated in response to certain events or when
it becomes part of a group. In Fig. 2, process P14 was initially a group creator,
as shown in group G11. At a later moment, it received code injected by process
P7, a member of G5. As a result, process P14 was included in the group of the
injector process, G5, and was re-marked as a group inheritor.

A process may also simultaneously belong to multiple groups, due to code
injection. However, such situations are not so frequent. In the example illustrated
in Fig. 2, process P14 has become a group inheritor and is included in both G5

and G11 groups, as described above. When process P14 - now a group inheritor
- spawns the new process P15, the latter will be included in both the G5 and
G11 groups. In other words, changing the category of a process impacts how the
processes it spawns or injects code into are handled.

The groups of processes are managed by the Entity Manager, which receives
notifications from various Event Interceptors whenever an event related to the
life cycle of a process occurs. Process life cycle events consist of process creation,
code injection and process termination. If the event indicates the creation of
a new process, the Entity Manager determines whether the parent process is
a group inheritor or not, in order to assign the newly created process to the
appropriate group. If the parent is a group inheritor, the manager will add
the child process to the parent’s group and will mark it as a group inheritor.
Otherwise, the manager determines if the parent process is a group creator. If so,
a new group will be created and the child process will be added to that group.

Figure 3 presents a real-world example using a TrojanSpy.MSIL1 malware.
During the two minutes the sample was run, it launched multiple processes,
including cmd.exe and reg.exe (used to modify registry). Under normal circum-
stances, cmd.exe is a group creator, but because the first process in the group
is a group inheritor, all its descendant processes become group inheritors.

If the process life cycle event is a code injection, the Entity Manager will
determine if it represents a trusted injection. Usually, each code injection event
is considered suspicious, possibly indicating a malicious action. However, some
processes of the OS may, in some specific situations, legitimately inject code into
other processes. These situations should not be considered malicious in order to
avoid false positives. The Entity Manager attempts to match the details of the
code injection event to a whitelist, containing details of legitimate injections.

1 MD5 hash: 0x143FCC07CEB0F779FF1E204CEF4A20D6.



38 G. Hăjmăşan et al.

1 sample.exe

2RegAsm.exe

3

RegAsm.exe

4

RegAsm.exe

5 xporchw.exe

6

cmd.exe

7
scripted

sandbox.exe

9
xpsrchw.exe

8

RegAsm.exe

10

cmd.exe

11reg.exe

12

cmd.exe

13reg.exe

. . .

Repeats
53 times

118 cmd.exe

119 reg.exe

Fig. 3. TrojanSpy:MSIL malware

If the current event is not recognized as a known kind of legitimate injection,
the Entity Manager will add the processes receiving the injected code to the
group of the process performing the code injection. Then the injected process
is marked as a group inheritor, even if initially it was categorized as a group
creator.

If the analyzed event indicates the termination of a process, that process
is marked as dead. However, it will not be removed from a group until all the
other processes in that group have terminated. This strategy will allow a security
solution to perform a comprehensive cleanup of the protected system, eliminating
even evasive malware that, for instance, only spawn child entities and then exit.

3.2 Heuristics

The proposed security solution relies on behavioral heuristics to analyze the
actions performed by processes, based on the information provided by Event
Interceptors. Whenever a heuristic identifies that a targeted action is being per-
formed, it triggers an alert to the Scoring Engine. Each alert consists of several
information about the detected action and the entity that performed it. An alert
also has an associated score, that is used to evaluate the potential of a process
or group of being malicious.

Some of the actions that can be identified using heuristics are: creating a
copy of the original file, hiding a file, injecting code into another process, cre-
ating a startup registry key such that the malicious application will be exe-
cuted after a system restart, deactivating some critical OS functionalities (e.g.
Windows Update), terminating critical processes or processes associated with
security solutions or modifying an executable file belonging to the OS.

Figure 4A illustrates a heuristic that listens for events to identify six actions
in a certain time order. If these actions are identified, the heuristic will trigger



Evasive Malware Detection Using Groups of Processes 39

P1

A1

A2

A3

A4

P2

P3

A5

A6

P4

Time

A1

A2

A3

A4

A5

A6

Time

A1

A2

A3, A4, A5

in any order

A6

(A) (B)

Fig. 4. Heuristic’s logic example

an alert. In the proposed solution the logic of the heuristic is implemented in
two ways, as function-callbacks or as heuristic signatures, depending on the com-
plexity of the heuristic. In the first case the heuristics are procedures (functions)
that are called whenever an event that they registered for occurs. The second
one uses signatures to store the logic of simpler heuristics and an engine that
tries to match the signatures with the intercepted events.

If a heuristic listens for actions performed only by a process it is called
process heuristic. If it listens for actions performed by all the processes inside a
group it is called group heuristics. An example of group heuristic is illustrated
in Fig. 4B. Whenever processes P1 . . . P4 perform actions A1 . . . A6 in a specific
order, such a heuristic will trigger an alert for the group that contains, among
others, processes P1 . . . P4. Process creation is illustrated as a zigzagged arrow.
The life history of each process is represented as a solid vertical line. For example,
process P1 terminates after it spawns process P2. Process P3 becomes a part of
the illustrated group in response to receiving injected code from P2. Some actions
of the respective processes are not part of the heuristic presented in Fig. 4B, for
example the spawning of process P4 by process P3, mainly because they are not
invariants between multiple executions.

The sequence of actions A1 . . . A6 describes a ransomware attack.
Ransomware is a type of malware that encrypts a set of files on the user’s computer
and demands a ransom payment in order to recover the files. It has become very
popular recently among malware authors, because it represents an almost sure
source of revenue. In this example, the malicious actions are distributed among a
group of processes P1 . . . P4. Each member of the malicious group performs only
a small amount of these actions. The actions performed by the ransomware are:
A1 : dropping a copy of itself on disk, A2 : launching a copy of itself, A3 : deleting
backup (shadow) files, A4 : injecting code into another process, A5 : enumerating
and encrypting files, A6 : displaying a message demanding the ransom.



40 G. Hăjmăşan et al.

Individually, each action A1 . . . A6 may be performed legitimately by a clean
application. For example, dropping a copy of itself on disk or launching it (actions
A1 and A2) are commonly performed by installers. Additionally, deleting backup
files (action A3) may be performed by certain tools or the Operating System
to free disk space. Many clean applications perform code injection (action A4)
for various purposes, such as adding functionalities to an existing, previously
released product. Most applications for management of media libraries can legit-
imately enumerate or modify certain files (action A5). Finally, displaying a mes-
sage to the user (action A6) is specific to almost every GUI application.

An experienced behavior-based detection researcher may observe that a more
generic heuristic is possible, that triggers when the group executed the action A3

or A4, but the presented heuristic was extended for the sake of the example. Also,
one may observe that the flexibility granted by using such heuristics may allow
detecting various versions, variants or an entire class of malware. For example,
the heuristic presented in Fig. 4 triggers an alert for the CTB Locker2 sample,
whose group is presented in Fig. 5. Regardless of how the actions A1 . . . A6 are
distributed among processes within the group, if they are executed in the same
order as presented in Fig. 4A, the heuristic will trigger an alert on the group.

Heuristic’s Evaluation. The Scoring Engine receives scoring alerts from the
Heuristic Engine whenever a heuristic determines that the occurrence of an event
indicates a malicious action. Based on these alerts, the Scoring Engine maintains
and updates the aggregated scores for the involved entities, process or group.
Depending on the heuristic, the alert can influence the aggregated scores of a
single process, of a group of processes or of both types of entities.

Using these scores, the Entity Manager determines whether a malware is
present on the client system (e.g. a score threshold is reached). When this
happens a detection alert is sent to the Cleanup Module, that will take the
actions necessary to remove the malicious component from the system. Using

1 sample.exe

2wordpad.exe 3 sample.exe

4 svchost.exe

5 sample.exe

6sample.exe 7
sample.exe

(encryption)

Code
Injection

Fig. 5. CTB Locker ransomware

2 MD5 hash: 0x82F941FBD483E0684DAED99F006488F1.



Evasive Malware Detection Using Groups of Processes 41

1

sample.exe

2

sample.exe

3 sample.exe

4

sample.exe

5 sample.exe

6

sample.exe

7

sample.exe

8

sample.exe

9

sample.exe

10

sample.exe

11

sample.exe

12

sample.exe

13sample.exe 14 sample.exe

15

sample.exe

16

sample.exe

Fig. 6. Trojan-PSW malware

these evaluation methods, even if malicious actions are distributed between sev-
eral members of a group, and the aggregated scores corresponding to each indi-
vidual processes are not sufficient to trigger a detection, the group-wide score
may exceed the detection threshold. This is very useful for malware such as the
Trojan-PSW3 sample, illustrated in Fig. 6. This malware creates many processes
from the same executable file, each having different command line arguments,
distributing its payload in this way.

3.3 Remediation

In order to assure the best protection of a system, once a malicious entity is
detected, whether it is a process or group of processes, all traces of that entity
must be removed from the system and any changes performed by it must be
undone. The Cleanup Module is responsible for taking such actions, based on
information received from the Scoring Engine and the Entity Manager.

When the module receives the detection alert, it will first identify the process
that triggered the detection and determine if it belongs to a single group or to
multiple groups. If the suspect process belongs to a single group, the module will
proceed to clean the entire group of that process, by applying the appropriate
cleanup operation on each member of that group. Cleanup operations usually
start with suspending or terminating the execution of the targeted entity. Then,
the operation may continue with deleting the disk files that contain the code
of that entity and undoing or rolling back a set of changes performed by the
respective entity, such as changes to a registry of the OS or to the file system. In
some situations, malicious activities may be related to a code injection event. In
that case, the Cleanup Module terminates the process that received the injection.
Special attention should be given to situations where a malware uses a clean
process of the OS to carry out part of a malicious attack through code injection.

3 MD5 hash: 0x609614B508622E90EEEDAA875226FEA4.



42 G. Hăjmăşan et al.

1 sample.exe

2 sample.exe

3onils.exe 4 cmd.exe

5onils.exe

6

rundll32.exe

7

explorer.exe

8

rundll32.exe

9

rundll32.exe

10

wshost.exe

Code
injection

C.I. C.I. C.I.

C.I.

Fig. 7. ZBot malware

In this case, the module may terminate the respective clean process, but it should
not delete its executable file so that no damages are made to the OS. An example
for this case is the ZBot4 malware, illustrated in Fig. 7, which injects code into
multiple clean processes.

If the suspect process belongs to multiple groups, the Cleanup Module
attempts to identify which of those groups is malicious. For example, it could
determine how the suspect process became a member of each group: by process
creation or code injection. Next, by identifying which heuristic triggered the
detection, the Cleanup Module could determine what action the suspect process
has performed. For example, we consider a suspect process that is member of
a first group via process creation and a member of a second group via code
injection. The Cleanup module will attempt to determine the source of the code
that was executing when the scoring alert that caused the detection was trig-
gered. If the alert was triggered while the suspected process was executing code
from its main executable module, the Cleanup Module will determine that the
first group is malicious. Otherwise, if the injected code was being executed, the
Cleanup Module will determine that the second group is the malicious one. If the
malicious group is successfully identified, the module will proceed with cleaning
that group. Otherwise, it will only clean the suspect process, to prevent potential
data loss for the user in case of a false positive detection.

4 Technical Results

When evaluating a security solution the detection rate, false positive rate and
performance impact are the most important criteria to be considered. A good
security solution must have a high detection rate, a low false positive rate and
unnoticeable performance impact.

4 MD5 hash: 0x43A6DD7D5BE93F4E5224940C67E40FF8.



Evasive Malware Detection Using Groups of Processes 43

4.1 Detection Tests

A comparison between the detection rate of the group based approach and a
non group based solution is presented. The detection tests were performed in a
virtual environment consisting of machines running Windows 8.1. Each sample
was run for two minutes in the virtual machine, then the results were collected
and the execution was ended. For false positives tests, each sample was run for
ten minutes in the virtual machine before terminating the execution.

For the detection test, two malware collections were used, the first consist-
ing of ransomware that were collected in November 2016, while the other con-
tains malware samples collected from various sources like: honeypots, spam email
attachments, infected WEB sites and URLs used to spread malware in Novem-
ber 2016. The clean samples (for the false positive test) are popular applications
used in 2016.

Table 1. Malware detection test

Samples Detected
(no groups)

Detected
(no groups)

Detected
(with groups)

Detected
(with groups)

47933 37054 77.3% 42142 87.91%

16490 13084 79.34% 13935 84.5%

Table 1 shows that the detection was improved for both collections with
10.61% and 5.16%. This shows that at least 5% of the malware in both collec-
tions are multi-component or multi-process, thus proving the need of changing
the detection approach to a group based solution. This amount may not seem
much at first glance, but such small differences make the distinction between an
average security solutions and a good, competitive one.

Table 2. False positive test

Samples Detected
(no groups)

Detected
(no groups)

Detected
(with groups)

Detected (with groups)

1128 10 0.88% 10 0.88%

The results of the false positives test, presented in Table 2, show that the
number of false positives does not change when augmenting the security solution
with group awareness. This is due to the fact that the groups generated for
legitimate applications usually contained a small number of processes with few
triggered heuristics.



44 G. Hăjmăşan et al.

4.2 Limitations of the Solution

The implementation of the solution involves maintaining in memory a set of
information associated to each process in a group until the group is terminated.
For some samples, such as the TrojanSpy.MSIL sample the memory requirements
are high. This can be prevented by detecting the sample before the process
group contains too many processes or for clean processes, by simply making
that process a group creator.

Clean processes are added to malware groups because malware use such
processes to perform different actions (e.g. reg.exe to access the registry). This
problem indicates that a whitelist is needed, that will be consulted when clean-
ing the infected system to prevent any data loss for the user or producing any
damages to the Operating System.

The solution can only detect samples which interact on the current machine.
If by some means a process uses an external (i.e. not on the same machine)
communication channel to force the creation of another process on the original
machine the Entity Manager can not link the parent with the child and it is not
able to create the group correctly.

Finally the solution is limited by the platform it runs on. Because Windows
does not keep a strict relation between child processes and parent processes,
managing groups can prove to be difficult, requiring OS specific knowledge. Fur-
thermore, because Windows allows code to be injected in a trivial way and does
not provide a synchronous notification for when injections occur, detecting all
code injection methods is also considerably hard. The proposed solution attempts
to solve this issue by identifying the most common methods for injecting code
through dedicated heuristics.

5 Conclusions

We highlighted the problem of evasive, multi-process malware and proposed
shifting the focus from evaluating the behavior of individual processes to eval-
uating and correlating the actions of related processes. We presented real-world
malware samples, in order to better exemplify the behavior of multi-process mal-
ware. The proposed solution detected all these samples and constructed their
groups correctly.

We described how groups of related processes are constructed, by dividing
the processes into creators and inheritors. We presented the way groups are
influenced by process creation and code injection events. We introduced group-
based behavioral heuristics, described how the behavior of processes and groups
is evaluated and how detected entities can be cleaned.

A major contribution of our solution is that it automatically correlates the
behavior of individual processes within a group, thus eliminating the need for
a distinct correlation phase, as presented in [5], which is both costly and com-
plex. As a result, the heuristics are easier to develop, the evaluation is more
straightforward and cleanup is better performed.



Evasive Malware Detection Using Groups of Processes 45

We implemented the presented concepts into a behavior-based solution and
compared this approach to a non-group solution. The improvement was quite
consistent: the detection rate was increased with over 10% for the ransomware
samples test, a type of malware known to be highly evasive (multi-process).

References

1. Blunden, B.: The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the
System. Jones and Bartlett Publishers Inc., USA (2009)

2. Devesa, J., Santos, I., Cantero, X., Penya, Y.K., Bringas, P.G.: Automatic
behaviour-based analysis and classification system for malware detection. In: ICEIS
2010 - Proceedings of the 12th International Conference on Enterprise Information
Systems, AIDSS, Funchal, Madeira, Portugal, 8–12 June 2010, vol. 2, pp. 395–399
(2010)

3. Elhadi, A.A.E., Maarof, M.A., Barry, B.I.: Improving the detection of malware
behaviour using simplified data dependent API call graph. Int. J. Secur. Appl.
7(5), 29–42 (2013)

4. Ispoglou, K.K., Payer, M.: malWASH: washing malware to evade dynamic analysis.
In: Proceedings of the 10th USENIX Conference on Offensive Technologies, WOOT
2016, pp. 106–117. USENIX Association, Berkeley (2016)

5. Ji, Y., He, Y., Jiang, X., Cao, J., Li, Q.: Combating the evasion mechanisms of
social bots. Comput. Secur. 58(C), 230–249 (2016)

6. Ji, Y., He, Y., Zhu, D., Li, Q., Guo, D.: A mulitiprocess mechanism of evad-
ing behavior-based bot detection approaches. In: Huang, X., Zhou, J. (eds.)
ISPEC 2014. LNCS, vol. 8434, pp. 75–89. Springer, Cham (2014). doi:10.1007/
978-3-319-06320-1 7

7. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effec-
tive and efficient malware detection at the end host. In: Proceedings of the 18th
Conference on USENIX Security Symposium, SSYM 2009, pp. 351–366. USENIX
Association, Berkeley (2009)

8. Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.C.: Shadow attacks: automatically evad-
ing system-call-behavior based malware detection. J. Comput. Virol. 8(1–2), 1–13
(2012)

9. MSDN: file system minifilter drivers. http://msdn.microsoft.com/en-us/library/
windows/hardware/ff540402%28v=vs.85%29.aspx

10. Naval, S., Laxmi, V., Rajarajan, M., Gaur, M.S., Conti, M.: Employing program
semantics for malware detection. IEEE Trans. Inf. Forensics Secur. 10(12), 2591–
2604 (2015)

11. Ramilli, M., Bishop, M.: Multi-stage delivery of malware. In: 5th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 91–97, Octo-
ber 2010

12. Ramilli, M., Bishop, M., Sun, S.: Multiprocess malware. In: Proceedings of the 2011
6th International Conference on Malicious and Unwanted Software, MALWARE
2011, pp. 8–13. IEEE Computer Society, Washington, DC (2011)

http://dx.doi.org/10.1007/978-3-319-06320-1_7
http://dx.doi.org/10.1007/978-3-319-06320-1_7
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540402%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540402%28v=vs.85%29.aspx

	Evasive Malware Detection Using Groups of Processes
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 The Management of Groups
	3.2 Heuristics
	3.3 Remediation

	4 Technical Results
	4.1 Detection Tests
	4.2 Limitations of the Solution

	5 Conclusions
	References


