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Abstract. We propose the integral prior classification approach for
binary steganalysis which imply that several detectors are trained, and
each detector is intended for processing only images with certain com-
pression rate. In particular, the training set is splitted into several parts
according to the images compression rate, then a corresponding number
of detectors are trained, but each detector uses only an ascribed to it
subset. The testing images are distributed between the detectors also
according to their compression rate. We utilize BOSSbase 1.01 as bench-
mark data along with HUGO, WOW and S-UNIWARD as benchmark
embedding algorithms. Comparison with state-of-the-art results demon-
strated that, depending on the case, the integral prior classification allows
to decrease the detection error by 0.05–0.16.

Keywords: Information hiding · Steganalysis · Support vector
machine · Compression · HUGO · UNIWARD · WOW · Prior
classification · SRM · PSRM

1 Introduction

The classic problem of steganalysis consists in distinguishing between empty and
stego images via a bare detector; at that, all images are subject to processing.
Recently, it was introduced an approach of how to exploit a prior classification
in steganalysis [10], and, within it, there were proposed three possible methods
of selecting a portion of the testing set such that a detection error, calculated
over this subset, may be lower than that calculated over the whole set. In their
paper, the authors also discussed an possibility of splitting the testing set into
several subsets containing images with common (in some sense) properties and
training an individual detector for each subset in order to decrease the detection
error calculated over the whole testing set.

In this paper, we propose a compression-based method of how to turn this
idea in practice. We suggest to split the training image set into several sub-
sets according to their compression rate, then obtain a corresponding number of
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non-trained detectors, and train each of them utilizing a separate subset. During
the testing phase, images with a certain compressing rate should be send to the
detector, which has been trained on the images that have the close compression
rate. The idea of using the compression rate as an indicator for the integral prior
classification came from a well-known fact that noisy images are harder to ste-
ganalyze than plain ones, but noisiness is usually tightly correlated with entropy,
and therefore with the compression rate. So, we guessed that the detectors for
the noisy images should be better trained with noisy images, and the ones for
the plain images should be trained with plain images.

The main hypothesis, which motivated our work, assumes that the detector
preceded by the integral prior classification would be more accurate than the
detector alone. It is worth mentioning, that compression is a very universal tool,
which has been already used in steganalysis, see e.g. [2,8]; however, these papers
are devoted to distinguishing either the basic LSB steganography or to creating
quantitative steganalyzers, while the current paper focuses on binary detection
of the content-adaptive embedding. Moreover, in the earlier papers, the data
compression was exploited for developing the stego detectors themselves, while
in the current paper we do not touch the detectors, and use the compression
methods in order to perform the integral prior classification.

The principle difference between the single prior classification (introduced
in [10]) and the integral prior classification (being introduced in this paper)
consists in the fact that the single prior classification allows to select only a part
of the testing set which would provide higher accuracy, while the integral prior
classification enhances the accuracy estimated over the whole testing set. Thus,
although the single prior classification may obtain a rather large subset, which
would be sent into the steganalyzer, all the same, it discards other images. At the
same time, the integral prior classification assumes that all the testing images
are subject to processing by the detector, keeping us in the traditional scenario.

Using BOSSbase 1.01 [1] as benchmark data along with content-adaptive
embedding methods HUGO [12], S-UNIWARD [5] and WOW [4] as benchmark
embedding algorithms we compare our results against state-of-the-art due to
Holub and Fridrich [6]. Our experiments have confirmed the above hypothe-
sis and demonstrated that prepending the integral prior classification allows to
decrease the detection error of the bare detector by 0.05–0.16. For the sake of
clarity, we want to emphasize that the results of the current paper are compared
against accuracy of the best bare detectors, and not with that of the detectors
accompanied by the single prior classification, because the latter deals only with
the part of the testing set, while the integral prior classification assumes that
the detection error is calculated over the whole testing set.

2 Description of Integral Prior Classification

2.1 General Scheme

A general scheme of how to train the detectors using the integral prior classi-
fication is represented at the Fig. 1. At first, we need to split the training set



136 V. Monarev et al.

Fig. 1. The integral prior classification scheme

into subsets according to the compression rate in order to combine images with
close compression rate in the same subsets. For instance, the first class contains
the most compressed images, and the last class contains the least compressed
images. The number of subsets would define the number of detectors for training.
After the splitting, the detectors are trained: each detector is trained using the
images from a certain subset. In particular, the first detector is trained using
the first subset, the second detector is trained using the second subset etc.

During the testing phase, images are distributed between the detectors
according to their compression rate, and each image is processed by the cor-
responding detector. Thus, unlike traditional bare detection scheme, which
employs the detector alone, the integral prior classification assumes that the
given image is sent to the detector which (we expect so), would provide the
least detection error. Certainly, there may be some other ways of distributing
the images (not only basing on the compression rate).

2.2 Detailed Description

In high-level steps, the detection with the integral prior classification is depicted
at the Algorithm 1. The algorithm is injected with the training set X and the
testing set Y. Then a compression method Compress( · ), a number of subsets
L, along with their sizes, size1, . . . , sizeL (size1 + . . . + sizeL = |X |), and
size′

1, . . . , size′
L (size′

1 + . . . + size′
L = |Y|), are chosen.

The Split-Set function (see Algorithm 2) returns L non-intersected subsets
which constitute a partition of the set Z. As you can see (Algorithm 1), this
function is called twice: for splitting the training set X and for splitting the
testing set Y. The first step of this function is compressing every image z ∈ Z in
order to obtain its size after compression |Compress(z)|. At the second step, the
images are sorted according the this value (the sorted row we denote as follows:
z(1), z(2), . . . , z(|Z|)). And at last, the subsets are formed. The first size1 images
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Detection(X , Y)
X — the training image set, Y — the testing image set.

1. Choose the compression function Compress(·);
2. Choose the number of detectors L;
3. Choose the sizes of the training subsets sizel, l = 1, L

(size1 + . . .+ sizeL = |X |);
4. Choose the sizes of the testing subsets size′

l, l = 1, L
(size′

1 + . . .+ size′
L = |Y|);

5. (Subset1, . . . , SubsetL) := Split-Set(X , Compress(·), size1, . . . , sizeL);
6. (Detector1, . . . , DetectorL) := Train-Detectors(Subset1, . . . , SubsetL);
7. (Subset′1, . . . , Subset

′
L) := Split-Set(Y, Compress(·), size′

1, . . . , size
′
L);

8. YEmpty = {}; YStego = {};
9. ForEach y ∈ Y

(a) detectorNumber := Detector-Number(y, Subset′1, . . . , Subset
′
L);

(b) detectionResult := DetectordetectorNumber(y);
(c) If (detectionResult = Empty) YEmpty := YEmpty ∪ {y};

Else YStego := YStego ∪ {y};
Result: YEmpty — empty images (according to the detector);

YStego — images with embedded information

Algorithm 1. High-level scheme of the detector with integral prior classi-
fication

are ascribed to the first subset, the next size2 images are ascribed to the second
subset, and so on; the last sizeL images are ascribed to the last subset.

Then the Train-Detectors function (see Algorithm 3) receives L subsets
and trains L detectors to distinguish between the empty and stego images. The
detectors may be of different types, but, in steganography, usually the support
vector machine or the ensemble classifier are employed. They utilize image fea-
tures such as SRM [3], PSRM [6], SPAM [11] etc.

The testing phase is now divided into two stages: the prior classification
stage and the detection stage. The prior classification stage consists in calling
the Detector-Number function (see Algorithm 4), which returns the detector
number for each image from the testing set Y. This number is obtained according
to the testing set splitting (see step 7 from the Algorithm 1) but there may be
other ways of implementing it.

3 Experimental Results

We performed two types of experiments. Adjustment experiments aimed at
searching for the better parameters, and benchmark experiment were performed
with parameters, chosen during the adjustment experiments, and intended for
comparing our results the state-of-the-art ones.
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Split-Set(Z, Compress(·), L, size1, . . . , sizeL)
Z — the image set to be splitted (the training or the testing set);
Compress(·) — the compression function;
L — the number of the subsets;
sizel, l = 1, L — sizes of the subsets (size1 + . . .+ sizeL = |Z|).

1. Compress every image z ∈ Z and for each image obtain |Compress(z)|.
2. Sort the images according to the value |Compress(z)| so, that i < j

means |Compres(z(i))| < |Compress(z(j))|.
3. Split the set Z into L subsets as follows:

Subset1 = {z(1), . . . , z(size1)};
Subset2 = {z(size1+1), . . . , z(size1+size2)};
Subset3 = {z(size1+size2+1), . . . , z(size1+size2+size3)};
. . .
SubsetL = {z(size1+...+sizeL−1+1), . . . , z(|Z|)}.

Result: Subsets: Subset1, Subset2, . . . , SubsetL.

Algorithm 2. Splitting the set into the several subsets according to their
compression rate

Train-Detectors(L, Subset1, . . . , SubsetL)
L — the number of the detectors;
Subset1, . . . , SubsetL — the training subsets.

1. Obtain L non-trained detectors Detector1, Detector2, . . . , DetectorL;
2. Train Detectorl using the images from Subsetl, l = 1, L.

Result: The L trained detectors Detector1, Detector2, . . . , DetectorL.

Algorithm 3. Detectors training scheme

Detector-Number(y, L, Subset′1, Subset
′
2, . . . , Subset

′
L)

y — the image from the testing set;
L — the number of the testing subsets;
Subset′l, l = 1, L — the testing image set splitting. For l = 1, L

If y ∈ Subset′l
detectorNumber := l;

Result: detectorNumber — the detector which should process y.

Algorithm 4. Obtaining the number of a detector for the given image

3.1 Common Core of the Experiments

Images. During the adjustment experiments the image set from the Break Our
Watermarking System 2 (BOWS2) contest [15] was utilized, and during the bench-
mark experiments—the BOSSbase 1.01 from the Break Our Steganographic Sys-
tem (BOSS) contest [1]. The BOWS2 image set consists of 10000 grayscale images
in PGM format; the size of the images is 512 × 512. The well-known bench-
mark database BOSSbase 1.01 contains 10000 images captured by seven different
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cameras in RAW format. These images had been converted into 8-bit grayscale
format, resized and cropped to the size 512 × 512 pixels.

Preparing the Training and the Testing Sets. The both bases, BOWS2
and BOSSbase, include 10000 images, therefore we prepared the corresponding
training and testing sets in the same way. In order to prepare the training set
X p and the testing set Yp, where p identifies the embedding rate in bpp, the
whole database was divided into two subsets X0 and Y0, where |X0| = 7500 and
|Y0| = 2500. Then by random embedding p bpp into all the images from X0 and
Y0 we obtained X p

1 and Yp
1 correspondingly. The training set was X p = X0 ∪X p

1

and the testing set Yp = Y0 ∪ Yp
1 . Thus, |X p| = 15000 and |Yp| = 5000. Both

sets contain a half of empty images and a half of stego images. Further in the
paper we omit the payload index p (it will not confuse the reader) and designate
the training set as X and the testing set as Y.

Compression Methods. We employed well-known lossless compression meth-
ods LZMA and PAQ. LZMA (Lempel-Ziv-Markov chain-Algorithm) is a method
which uses a dictionary compression scheme [13]. We launched this archiver with
the following script: “lzma -k -c -9”. PAQ is based on the context mixing model
and prediction by partial match [14]. The launching script in our experiments
was “paq -11”.

Detector. We employed a support vector machine as a detector of steganogra-
phy. The Python implementation was taken from [16], where the default para-
meters were used except for the following: the linear kernel, shrinking—turned
on, and the penalty parameter C = 20000.

Embedding Algorithms. In the benchmark experiments, we employed three
embedding algorithms: HUGO, WOW and S-UNIWARD, because exactly these
algorithms were used by Holub and Fridrich in their state-of-the-art paper [6].
HUGO (Highly Undetectable Steganography) is a content-adaptive algorithm
based on so-called syndrome-trellis codes [12]. WOW (Wavelet Obtained
Weights) uses wavelet-based distortion [4], and S-UNIWARD [5] is a simplified
modification of WOW. In the adjusting experiments only HUGO was used.

Feature Set. We utilize Spatial Rich Model (SRM) features [3] as one of the
most popular instruments for steganalysis. The newer Projection Spatial Rich
Model features (PSRM) [6] only slightly decrease the detection error, but signif-
icantly increase complexity. SRM features have a total dimension of 34,671.

Detection Error. We measured detection accuracy in a standard manner via
calculating the detection error PE = 1

2 (PFA + PMD), where PFA is the proba-
bility of false alarms, and PMD is the probability of missed detections (see e.g.
[3,7,9,11]).
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3.2 Adjusting Experiments

The goal of this experimental phase is to choose parameters which will be used
in the benchmark experiments in order to compare our results with the state-of-
the-art. The task consists in choosing the following parameters: a compression
method; a number of splitting classes (L); sizes of these subsets.

Due to a long training process of SVM it was infeasible to work over many
possible values of the prior classification parameters in order to search for the
very best of them. That is why we have chosen three reasonable numbers of
the subsets, equal to 2, 3 and 5. The thresholds for the compression rate are
determined by their sizes. Here 5 subsets are of the same size, and 2 or 3 subsets
have been formed by aggregation of the least compressed subsets. Trying L = 2
and L = 3 we had hoped that training the detector on images which are harder
to steganalyze would provide better accuracy. However, the Table 1 demonstrate
that the best accuracy is provided by L = 5.

Table 1. The HUGO detection error (PE) over the whole testing set and over the
subsets separately. BOWS2 image set. Search for the best parameters

LZMA compression PAQ compression

Image set 0.1 bpp 0.2 bpp 0.4 bpp 0.1 bpp 0.2 bpp 0.4 bpp

L = 2, size1 = 3000, size2 = 12000, size′
1 = 1000, size′

2 = 4000

Integral prior
classification

Subset′1 0.75 0.94 0.99 0.85 0.97 0.99

Subset′2 0.50 0.54 0.69 0.49 0.57 0.69

Whole testing set 0.55 0.62 0.75 0.56 0.65 0.75

L = 3, size1 = size2 = 3000, size3 = 9000, size′
1 = size′

2 = 1000, size′
3 = 3000

Integral prior
classification

Subset′1 0.75 0.94 0.99 0.85 0.97 0.99

Subset′2 0.67 0.85 0.95 0.65 0.89 0.97

Subset′3 0.50 0.55 0.67 0.51 0.54 0.64

Whole testing set 0.58 0.69 0.79 0.60 0.69 0.77

L = 5, size1 = size2 = size3 = size4 = size5 = 3000, size′
1 = size′

2 = size′
3 = size′

4 =
size′

5 = 1000

Integral prior
classification

Subset′1 0.75 0.85 0.99 0.74 0.92 1.00

Subset′2 0.67 0.71 0.91 0.54 0.74 0.95

Subset′3 0.57 0.64 0.84 0.53 0.62 0.84

Subset′4 0.56 0.55 0.76 0.52 0.54 0.71

Subset′5 0.49 0.52 0.61 0.51 0.51 0.58

Whole testing set 0.61 0.66 0.82 0.57 0.67 0.82

No prior classification 0.525 0.60 0.77 0.525 0.60 0.77
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3.3 Benchmark Experiments

The goal of this section is to demonstrate that prepending the prior classification
stage (aimed at choosing the appropriate detector for each image), enhances the
stego detectors accuracy. We compare the detection error with the state-of-the-
art data provided by Holub and Fridrich in [6]. Unlike us, they employed the
ensemble classifier [7], which is known to be faster but slightly less accurate
than support vector machine. In order to be more persuasive, we calculated the
detection errors for our support vector machine implementation (without prior
classification) and show that they are close to that for the ensemble classifier.
Anyway, integral prior classification allows to exceed both results.

See Tables 2, 3 and 4, where this comparison is provided for HUGO, WOW
and S-UNIWARD embedding algorithms correspondingly. Prior classification
parameters are as follows (they were chosen during the adjusting experiments):
PAQ compression method; L = 5; size1 = size2 = size3 = size4 = size5 =
3000; size′

1 = size′
2 = size′

3 = size′
4 = size′

5 = 1000.
The results demonstrate that, depending on the case, the integral prior

classification substantially increases the accuracy. The most impressing results
(see HUGO 0.1 bpp, WOW 0.1 bpp, WOW 0.2 bpp, S-UNIWARD 0.1 bpp, S-
UNIWARD 0.2 bpp, S-UNIWARD 0.4 bpp) provide the accuracy decrease for
more than 0.1. In the Tables 2, 3 and 4, we mark out and type in bold those
values which are compared against each other. In particular, we compare the
detection errors obtained for the integral prior classification against the least
errors among the errors of our support vector machine (SVM) implementation
and two Fridrich and Holub results. For example, in the Table 2 for HUGO
0.1 bpp we compare 0.24 against 0.35, and in the Table 3 for WOW 0.4 bpp we
compare 0.08 against 0.17. As you can see, if two implementations provide the
same error they are both marked out.

Table 2. The HUGO detection error (PE). BOSSbase 1.01

Image set 0.1 bpp 0.2 bpp 0.4 bpp

Integral prior classification Subset′1 0.01 0.01 0.00

Subset′2 0.17 0.05 0.01

Subset′3 0.21 0.11 0.03

Subset′4 0.34 0.18 0.08

Subset′5 0.46 0.30 0.19

Whole testing set 0.24 0.13 0.06

No prior classification
(whole testing set)

Our implementation:
SVM+SRM

0.35 0.27 0.15

Holub and Fridrich [6]:
Ensemble+SRM

0.36 0.25 0.12

Holub and Fridrich [6]:
Ensemble+PSRMQ1

0.35 0.23 0.11
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Table 3. The WOW detection error (PE). BOSSbase 1.01

Image set 0.1 bpp 0.2 bpp 0.4 bpp

Integral prior classification Subset′1 0.02 0.01 0.00

Subset′2 0.20 0.08 0.01

Subset′3 0.25 0.13 0.06

Subset′4 0.30 0.18 0.11

Subset′5 0.44 0.29 0.20

Whole testing set 0.24 0.13 0.08

No prior classification
(whole testing set)

Our implementation:
SVM+SRM

0.38 0.29 0.21

Holub and Fridrich [6]:
Ensemble+SRM

0.39 0.31 0.19

Holub and Fridrich [6]:
Ensemble+PSRMQ1

0.38 0.29 0.17

Table 4. The S-UNIWARD detection error (PE). BOSSbase 1.01

Image set 0.1 bpp 0.2 bpp 0.4 bpp

Integral prior classification Subset′1 0.01 0.00 0.00

Subset′2 0.21 0.04 0.00

Subset′3 0.29 0.14 0.02

Subset′4 0.33 0.20 0.11

Subset′5 0.41 0.37 0.16

Whole testing set 0.25 0.15 0.06

No prior classification
(whole testing set)

Our implementation:
SVM+SRM

0.37 0.30 0.17

Holub, Fridrich [6]:
Ensemble+SRM

0.41 0.31 0.20

Holub, Fridrich [6]:
Ensemble+PSRMQ1

0.39 0.30 0.18

4 Conclusion

In this paper we have proposed the integral prior classification approach aimed at
increasing the stego detectors accuracy. Although the basic idea of this approach
is rather definite, it may have many possible implementations. For instance, it
may be interesting (and, what is more important, it might lead to constructing
even more accurate detectors) to classify images not according to their compres-
sion rates but some how else.

In the adjusting experiments we considered only three variants of the training
image set splitting. Nevertheless, it was enough to reach the goal of our research
and to demonstrate that prepending the integral prior classification before



Prior Classification for Enhancing Steganalyzers Accuracy 143

detection allows to exceed the accuracy of the state-of-the-art detectors. Thus,
one of the possible future work directions may consist in conducting some the-
oretical research in order to elaborate recommendations of how to choose the
number of subsets along with their size which would provide the better accuracy
without necessity of heavy adjusting experiments.

It is worthwhile to notice, that in order to determine which detector would
process which image, in the current implementation the testing set was splitted
into several equal-size parts. However, it is not quite convenient if the testing
images arrive one by one, unless we are able to wait until a sufficient quantity
accumulates. That is why, in such a case the detector’s number can be established
according to the compression rates thresholds, instead of the testing set splitting.

The integral prior classification approach extends the single prior classifica-
tion approach [10], which is intended for only selecting images which can be
reliably detected and discards other images, though the selected images may
constitute a rather large subset. The main idea of our extension is employing
several detectors, each of which processes a certain testing subset or, in other
words, images with special properties.

The efficiency of the integral prior classification has been demonstrated for
HUGO, WOW and S-UNIWARD utilizing the BOSSbase 1.01 images. Depend-
ing on the payload and the embedding algorithm, the detection error decrease,
comparing to the state-of-the-art, amounted to 0.05–0.16.
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