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Abstract. AES is one of the most common block ciphers and many
AES-like primitives have been proposed. Recently, many lightweight
symmetric-key cryptographic primitives have also been proposed. Some
such primitives require the diffusion using element-wise XORs, which
are called binary matrices in this paper, rather than that using MDS
matrices because the element-wise XOR is efficiently implemented in a
lightweight environment. However, since the branch number of binary
matrices is generally lower than that of MDS matrices, such primitives
require more rounds to guarantee security against several cryptanalyses.
In this paper, we focus on binary matrices and discuss useful crypto-
graphic properties of binary matrices. Specifically, we focus on AES-like
primitives with binary MixColumns, whose output is computed using
a binary matrix. One of the benefit of AES-like primitives is that four
rounds guarantee B2 differentially and linearly active S-boxes, where B
denotes the branch number of the matrix. We argue that there is a binary
MixColumns in which the lower bound of the number of active S-boxes
is more than B2 in the 4-round characteristic. For some binary matrices,
the lower bound is improved from B2 to B(B + 2).

Keywords: Differential attack · Linear attack · Active S-box · AES-like
primitive · MDS · Binary MixColumns

1 Introduction

Many symmetric key cryptographic primitives, e.g., block ciphers, compression
functions of hash functions, and core functions of authenticated encryptions, have
been proposed. Specifically, AES [1] is one of the most common block ciphers. The
state is represented as a 4×4 matrix whose elements take 8-bit values. After AES
was standardized by NIST, many AES-like primitives have been proposed [2,5,
10,17,19–21]. Their state is represented as an n × m matrix, and its elements
take not only 8-bit values. We call such primitives (n,m)-AES-like primitives.
PHOTON [19] can be considered as (5, 5), (6, 6), . . ., (8, 8)-AES-like primitives,
and PRIMATEs [2], Fides [5], Grøstl [17], LED [20], and Prøst [21] adopt various
(n,m)-AES-like primitives other than (4, 4)-AES-like primitives, for example.
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Table 1. Lower bounds of 4-round (n, m)-AES-like primitives when n ≤ m.

Dimension n Type Best branch number Classical bound Enhanced bound

4 MDS 5 25 -

Binary 4 16 16 (max)

5 MDS 6 36 -

Binary 4 16 17 (max)

6 MDS 7 49 -

Binary 4 16 24 (max)

7 MDS 8 64 -

Binary 4 16 24a

8 MDS 9 81 -

Binary 5 25 32 (max)
a Enhancement is maximized for AES-like primitive with an (7, 7) matrix state.

Recently, many lightweight primitives have been proposed, and they are
expected to perform well in area-constrained and low-power environments as
well as high-end environments. MixColumns in the original AES adopts a 4 × 4
Maximum Distance Separable code (MDS) matrix and its elements only take
‘1’, ‘2’, and ‘3’, which is one of the best choices with respect to the cost of mul-
tiplication in a Galois field and branch number [30]. However, if the area is very
constrained, even the multiplication of an MDS matrix becomes disadvantage
for lightweight implementation. There are two methods for reducing the cost of
multiplication for both lightweight and high-end environments. One involves a
recursive approach [2,19,20] and the other involves a binary matrix similar to
Camellia P-function [3,5,31]. In the recursive approach, an MDS matrix is gen-
erated by an iterating lightweight matrix, and it is superior to classical MDS
matrices for area-constrained lightweight implementation. However, the execu-
tion time tends to be slow, which means that it also requires high power con-
sumption because of the recursive operation [15]. On the other hand, the use of a
binary matrix is also superior to classical MDS matrices for both constrained and
non-constrained environments because it can be implemented only by element-
wise XORs1. Unfortunately, the branch number of a binary matrix is lower than
that of an MDS matrix. For instance, when B denotes the differential and linear
branch number of the matrix, AES-like primitives guarantee at least B2 active S-
boxes in 4-round differential and linear characteristics [10]. Therefore, AES-like
primitives with a binary matrix have fewer active S-boxes than those with an
MDS matrix, and it requires more rounds to guarantee security against several
cryptanalyses.

1 When a matrix is an n×n matrix whose elements take �-bit value, both an MDS and
a “binary” matrices are also represented by binary matrices on (F2)

�n×�n. Then, the
Hamming weight of MDS matrix is always greater than �n2, but that of “binary”
matrix is smaller than �n2.
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Our Contribution. In this paper, we focus on binary matrices and discuss use-
ful cryptographic properties of binary matrices. We specifically focus on AES-like
primitives with binary MixColumns, whose output is computed using a binary
matrix.

If the number of active S-boxes per specific number of rounds increases, we
can efficiently guarantee that the block cipher with fewer rounds has immunity
against several cryptanalyses. In previous design criteria, we only care about the
branch number of binary matrices because the classical proof only guarantees
B2 active S-boxes in the 4-round characteristic. However, we argue that the
classical lower bound is not tight for some binary matrices. Namely, there are
binary matrices such that the lower bound is more than B2.

In this paper, we exhaustively search n × n binary matrices with n ∈
{4, 5, . . . , 8} and show some instances whose lower bound is more than B2. We
first discuss cryptographic properties of binary matrices. Then, we propose an
algorithm to evaluate a more accurate lower bound by using these properties.
Our algorithm efficiently evaluates the lower bound for a given binary matrix,
and some matrices enhance the lower bound from B2 to B(B + 2). Specifically,
our algorithm finds some binary matrices whose lower bounds become 16, 17,
24, 24, and 32 for n = 4, 5, 6, 7, and 8, respectively. We summarize the enhanced
lower bounds in Table 1. Since the highest branch number of binary matrices
is 4 for n ∈ {4, 5, . . . , 7}, the classical proof only guarantees 16 active S-boxes.
Moreover, since the highest branch number is 5 for n = 8, the classical proof
only guarantees 25 active S-boxes. Therefore, we can enhance the lower bounds
for n ∈ {5, 6, 7, 8}. We also evaluate the limit of the enhancement. We guarantee
that the enhancement in Table 1 is maximized for all (n, n)-AES-like primitives
with n ∈ {4, 5, . . . , 8}. Moreover, for all (n,m)-AES-like primitives with n < m,
we also guarantee that the enhancement is maximized for n ∈ {4, 5, 6, 8}.

2 Preliminaries

2.1 Definitions

Notations. Let x = (x1, x2, . . . , xn) be an n-dimensional vector over F2� . Let
x[j] = (x1[j], x2[j], . . . , xn[j]) be an n-dimensional vector over F2, where xi[j]
denotes the jth bit in xi. Let x̃ ∈ (F2)n be the truncation of x ∈ (F2�)n such that
the ith element of x̃, i.e., x̃i takes 0 if xi = 0 and takes 1 if xi �= 0. The Hamming
weight of xi ∈ F2� is calculated as hw(xi) =

∑�
j=1 xi[j], where the addition is

calculated over Z. Moreover, the Hamming weight of x ∈ (F2�)n is calculated
based on the truncated vector, i.e., it is calculated as hw(x) =

∑n
i=1 x̃i. For any

a ∈ F
n
2 and b ∈ F

n
2 , let a � b if a ∨ b = a, where ∨ denotes a bit-wise OR. Note

that an element in F2� is represented as an �-bit vector in F
�
2, and it is naturally

converted using an appropriate basis.

Active S-boxes. When we evaluate security against differential and linear
cryptanalyses, we often evaluate the number of active S-boxes. An S-box that
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has a non-zero input difference is called a differentially active S-box , and an S-
box that has a non-zero output linear mask is called a linearly active S-box . We
can show the “provable security” against the differential and linear cryptanalyses
by guaranteeing the lower bound of the number of active S-boxes.

The Substitution Permutation Network (SPN) cipher based on the wide trail
design strategy [12] consists of a confusion layer and diffusion layer, where paral-
lel applications of S-boxes and matrix multiplications are used in the confusion
layer and diffusion layer, respectively. When �-bit S-boxes are applied in the
confusion layer, the diffusion matrix M is represented as (F2�)n×n matrix. Let
x ∈ (F2�)n be the input of the diffusion represented by an M . Then, the output
is calculated as yT = MxT . To evaluate the security of the diffusion matrix, we
often focus on the branch number.

Definition 1 (Branch Number [30]). Let M be an n × n matrix over F2� .
Then, a differential branch number of M is defined as Bd = min{hw(x) +
hw(MxT ) | x ∈ (F2�)n \ {0}}. Similarly, a linear branch number of M is defined
as Bl = min{hw(yM) + hw(y) | y ∈ (F2�)n \ {0}}.
Note that Bd and B� is always less than or equal to n + 1. In the following
sections, we only consider differential cryptanalysis unless otherwise noted. For
linear cryptanalysis, similar discussion can be made because of the duality of
these cryptanalyses [27].

We call that two n×n matrices M and M ′ are permutation-homomorphic [24]
to each other if there is a row permutation ρ and a column permutation γ
satisfying ρ(γ(M)) = γ(ρ(M)) = M ′.

Lemma 1 [24]. Let M and M ′ be matrices that are permutation-homomorphic
to each other. Then M and M ′ have the same differential and linear branch
number.

In cryptographic applications, an MDS matrix has good properties and is defined
in the context of coding theory. Its definition is equivalent as the following the-
orem for our context.

Theorem 1 [30]. Let M be an n × n MDS matrix, the differential and linear
branch number is n + 1.

It is very useful to use the MDS matrix in the diffusion layer since the branch
number takes the maximum possible value. However, it is inefficient for light-
weight implementation because the multiplication by the MDS matrix requires
the multiplication in a Galois field. On the other hand, if all elements of the
matrix consist of binary elements, we can efficiently implement the multipli-
cation because it only requires �-bitwise XORs. Unfortunately, such a binary
matrix does not generate an MDS matrix except for the trivial MDS matrix,
i.e., n = 1. Nevertheless, there are concrete ciphers that adopt binary matrices.
For example, Camellia uses an 8× 8 binary matrix [3], and the designers showed
that the maximum branch number of 8×8 binary matrices is 5 from computation
using a PC. Kwon et al. summarized the maximum branch number of binary
matrix with n = 4, 5, 6, 7, and 8 as 4, 4, 4, 4, and 5, respectively, and they call
such matrices Maximum Distance Binary Linear (MDBL) matrices [25].
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2.2 AES-Like Primitives

The state of AES is represented as a 4×4 matrix whose elements take 8-bit values,
i.e., the block length is 128 bits. Many cryptographic primitives use similar state
expressions, and we call them AES-like primitives [2,5,10,17,19–21].

We only focus on the property of AES-like primitives independent of a choice
of S-boxes. For convenience, let � be the bit length of the input and output of
an S-box. We introduce (n,m)-AES-like primitives, where the numbers of rows
and columns are scaled like [8].

Definition 2 ((n,m)-AES-Like Primitives). The AES-like primitives are
parameterized by n and m, where the state is represented as an n × m matrix
and m ≥ n. The round function consists of four component functions: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Each function is defined as follows:

– SubBytes (SB) substitutes each �-bit value in the matrix into another �-bit
value by an S-box.

– ShiftRows (SR) rotates each �-bit value located at row i by i positions to the
left.

– MixColumns (MC) diffuses n �-bit values within each column by a linear func-
tion.

– AddRoundKey (AK) XORs the round key with the state.

Then, the round function of an AES-like primitive is defined as

Y ← (MC ◦ SR ◦ SB)(X) ⊕ RK,

where X, Y , and RK denote the input, output, and round key, respectively. When
a cryptographic permutation is designed, a constant is XORed to the matrix state
instead of a round key.

We also focus on the following MixColumns.

Definition 3 (Binary MixColumns). When the AES-like primitive uses
a binary matrix in the MixColumns, we call such MixColumns binary Mix-
Columns.

Figure 1 shows 4-round AES-like primitives, which are equivalently trans-
formed with regard to counting the number of active S-boxes. When analyzing
4-round AES-like primitives, we divide the primitive into three layers; front,
middle, and back, as shown in Fig. 1. We often focus on the so-called super-S-
box [13,18], which is defined as follows.

Definition 4 (Super-S-box). Let a super-S-box consist of two S-box layers
and one MixColumns. First, n S-boxes are applied. Then, a diffusion matrix M
is applied. Finally, n S-boxes are applied again.

If the branch number of M is B, an active super-S-box has at least B active
S-boxes. Moreover, both the front and the back layers of the AES-like primitives
have m super-S-boxes, respectively.



472 Y. Todo and K. Aoki

front layer middle layer back layer

M

M

M

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

X0W0 Y0 Z0

X1W1 Y1 Z1

Xm-1Wm-1 Ym-1 Zm-1

super-S-box

n

Fig. 1. Proof for 4-round AES-like primitives

Number of Active S-boxes. A good property of AES-like primitives is that
the number of active S-boxes in the 4-round characteristic independent of a
choice of S-boxes and AddRoundKey can be guaranteed2. First, all (n,m)-AES-
like primitives have the following characteristic.

Lemma 2. Let M be an n × n matrix over F2� . Let B be the branch number of
M . When M is adopted in MixColumns of AES-like primitives, there is always
a 4-round characteristic whose number of active S-boxes is lower than or equal
to (n + 1)B active S-boxes.

Proof. Let us focus on the middle layer in Fig. 1. Since the branch number of M
is B, there is always a 4-round characteristic satisfying hw(X0) + hw(Y0) = B.
Then, hw(X0) + hw(Y0) super-S-boxes are active, and each super-S-box has at
most n + 1 active S-boxes. Therefore, there is always a 4-round characteristic
whose number of active S-boxes has at most

(n + 1)hw(X0) + (n + 1)hw(Y0) = (n + 1)(hw(X0) + hw(Y0)) = (n + 1)B.


�
2 Any part of this paper does not consider the trivial characteristic that has no active

S-box.
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Next, let us consider the lower bound of the number of active S-boxes.

Lemma 3 [11]. Let M be an n×n matrix over F2� . Let B be the branch number
of M . When M is applied to the MixColumns in AES-like primitives, there are
at least B2 active S-boxes in the 4-round characteristic.

Lemmas 2 and 3 derive the following theorem.

Theorem 2. Assuming that M is an MDS matrix with branch number B, there
are at least B2 active S-boxes in the 4-round characteristic, and it is tight.

Theorem 2 shows that there is no MDS matrix in which the minimum number of
active S-boxes is more than B2 in the 4-round characteristic. However, if binary
MixColumns is used, there is a possibility that the minimum number of active
S-boxes is more than B2 because B2 < (n + 1)B. For instance, if a 5 × 5 binary
matrix is used, B2 = 16 and (n + 1)B = 24, and there is a possibility that the
minimum number of active S-boxes can be improved to 24.

3 Properties of Binary Matrices

We now discuss useful properties of binary matrices. Let x ∈ (F2�)n \ {0} be the
input difference. Specifically, we focus on the propagation x

M−→ MxT . Assume
that the branch number of M is B, i.e., hw(x̃) + hw(M̃xT ) is at least B. Then,
an enhanced propagation is defined as follows.

Definition 5 (Enhanced Propagation). For a binary matrix M ∈ (F2�)n×n

with branch number B, x ∈ (F2�)n \ {0} denotes the input difference of the diffu-
sion by M . We say that the propagation x

M−→ MxT is an enhanced propagation,
when hw(x̃) + hw(M̃xT ) > B.

When we consider all possible propagations from x, the minimum of hw(x̃) +
hw(M̃xT ) is B because of the branch number. However, some propagations have
hw(x̃) + hw(M̃xT ) > B. Moreover, we define the following two propagations.

Definition 6 (Direct and Indirect Propagations). For a binary matrix
M ∈ (F2�)n×n, x ∈ (F2�)n\{0} denotes the input difference of the diffusion by M .
We say that the propagation x

M−→ MxT is a direct (resp. indirect) propagation,
when M̃xT = Mx̃T (resp. M̃xT �= Mx̃T ).

In the direct propagation, M̃xT can be directly calculated from x̃ as Mx̃T . In
the indirect propagation, we cannot calculate M̃xT from only x̃ and have to
calculate it from the difference x.
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3.1 Indirect Branch Number

We now want to evaluate the propagation x
M−→ MxT , and let us consider the

condition in which the propagation becomes an enhanced propagation. We first
define a variant of the branch number as follows.

Definition 7 (Indirect Branch Number). Let M be an n×n binary matrix
over F2� . Let x ∈ (F2�)n \ {0} be the input difference of the diffusion by M .
For all indirect propagations, i.e., all x

M−→ MxT satisfying M̃xT �= Mx̃T , the
indirect branch number denotes the minimum of hw(x̃) + hw(M̃xT ).

We can obtain a useful lemma about the indirect branch number.

Lemma 4. Let M be an n × n binary matrix over F2� . Let B be the branch
number of M , and assume B > 2. Then, the indirect branch number is at least
B + 2.

Proof. Let y be the output vector, i.e., yT = MxT . When the propagation
x

M−→ y is indirect propagation, i.e., ỹT �= Mx̃T , there are always two non-zero
x[i] and x[j] satisfying x[i] �= x[j], and hw(x̃) ≥ hw(x[i] ∨ x[j]). Similarly, let
y[i]T = Mx[i]T and y[j]T = Mx[j]T , and hw(ỹ) ≥ hw(y[i] ∨ y[j]). Without loss
of generality, assume hw(x[j]) + hw(y[j]) ≥ hw(x[i]) + hw(y[i]).

First, assuming that hw(x[j]) + hw(y[j]) ≥ B + 2, the sum of the Hamming
weight of x̃ and that of ỹ is at least B + 2.

Second, assume that hw(x[j])+hw(y[j]) = B+1. When x[j] � x[i], hw(x[i]∨
x[j]) ≥ hw(x[j]) + 1. Moreover, when y[j] � y[i], hw(y[i] ∨ y[j]) ≥ hw(y[j]) + 1.
Therefore, when x[j] � x[i] or y[j] � y[i], the sum of the Hamming weight of x̃
and that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[j]) + hw(y[j]) + 1 = B + 2.

Finally, when x[j] � x[i] and y[j] � y[i],

hw(x[i] ⊕ x[j]) + hw(y[i] ⊕ y[j]) = hw(x[j]) − hw(x[i]) + hw(y[j]) − hw(y[i])
≤ B + 1 − B = 1,

where (y[i] ⊕ y[j])T = M(x[i] ⊕ x[j])T . Therefore, this is contradictory because
the branch number is greater than 2.

Third, assuming that hw(x[j])+hw(y[j]) = B, hw(x[i])+hw(y[i]) = B. With-
out loss of generality, assume hw(x[j]) ≥ hw(x[i]). When hw(x[i]) = hw(x[j]),
hw(x[i] ∨ x[j]) ≥ hw(x[j]) + 1 because x[i] �= x[j]. Moreover, hw(y[i] ∨ y[j]) ≥
hw(y[j]) + 1 because y[i] �= y[j]. Therefore, the sum of the Hamming weight of
x̃ and that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[j]) + 1 + hw(y[j]) + 1 = B + 2.

When hw(x[i]) + 1 = hw(x[j]), then hw(y[i]) = hw(y[j]) + 1. If x[j] � x[i],
hw(x[i] ∨ x[j]) ≥ hw(x[j]) + 1 = hw(x[i]) + 2. Moreover, if y[i] � y[j], hw(y[i] ∨
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y[j]) ≥ hw(y[i]) + 1 = hw(y[j]) + 2. Therefore, when x[j] � x[i] or y[i] � y[j],
the sum of the Hamming weight of x̃ and that of ỹ is at least B + 2. Finally,
when x[j] � x[i] and y[i] � y[j],

hw(x[i] ⊕ x[j]) + hw(y[i] ⊕ y[j]) = hw(x[j]) − hw(x[i]) + hw(y[i]) − hw(y[j])
= 1 + 1 = 2.

Therefore, this is contradictory because the branch number is greater than 2.
When hw(x[i]) + 2 ≤ hw(x[j]), then the sum of the Hamming weight of x̃ and
that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[i]) + 2 + hw(y[i]) = B + 2.


�
Lemma 4 shows that the indirect propagation is always an enhanced propagation
when B > 2.

3.2 Propagation on Restricted Input and Output Differences

When we consider the propagation x
M−→ MxT , hw(x̃) + hw(M̃xT ) is generally

lower-bounded by branch number. However, if Hamming weight of input differ-
ence or that of output difference is restricted, it is not always lower-bounded by
the branch number, i.e., it may have higher lower bounds.

Lemma 5. Let M be an n × n binary matrix over F2� . Let B be the branch
number. Let x ∈ (F2�)n \{0} be the input difference of the diffusion by M . Then,
assuming that hw(x̃) ≤ 2,

hw(x̃) + hw(M̃xT ) ≥ hw(x̃) + hw(Mx̃T ).

Similarly, assuming that hw(M̃xT ) ≤ 2,

hw(x̃) + hw(M̃xT ) ≥ hw(M−1(M̃x)T ) + hw(M̃xT ).

Proof. We prove the first part of the lemma. Both left- and right-hand sides of
the inequality include the term hw(x̃); thus, it is sufficient to prove hw(M̃xT ) ≥
hw(Mx̃T ). Both M̃xT and Mx̃T can be regarded as a truncated difference, so
we focus on these truncated differences. For the right-hand side, Mx̃T , only F2-
operations are performed. For the left-hand side, M̃xT , we need to consider the
following steps; 1. convert the truncated difference to (full) difference, 2. multiply
matrix M , and 3. reconvert the difference to truncated difference. Therefore, we
need to consider the following “special” operation for truncated differences 0 and
1: 0⊕0 = 0, 0⊕1 = 1, 1⊕0 = 1, and 1⊕1 = 0 or 1. Recall that we are evaluating
Hamming weight. Thus, when 1 ⊕ 1 = 1, the left-hand side is greater than the
right-hand side; otherwise they are equal. The second part of the lemma can be
obtained to substitute x and M with MxT and M−1, respectively. 
�
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Assuming that the Hamming weight of the input difference or that of the output
difference is at most 2, Lemma 5 shows that hw(x̃) + hw(M̃xT ) can be lower-
bounded by the corresponding direct propagation. Therefore, we can effectively
guarantee the lower bound of hw(x̃) + hw(M̃xT ). Specifically, let us consider
the time complexity to guarantee the lower bound. Then, the time complexity
is O(n) when the Hamming weight is at most 1, and it is O(n(n − 1)) when the
Hamming weight is at most 2.

4 Number of Active S-boxes in AES-Like Primitives with
Binary MixColumns

From Lemma 2, there is always a 4-round characteristic whose number of active
S-boxes is lower than or equal to (n + 1)B, and the use of MDS matrices is
the best choice because B2 = B(n + 1). However, if a binary MixColumns is
used, there is a gap between B2 and B(n + 1) since B < n + 1. In this section,
we guarantee more accurate lower bound of the number of active S-boxes in
the 4-round characteristic. Note that our proof is independent of the choice of
S-boxes.

4.1 Intuition of Idea

First, we revisit the proof that there are at least B2 differentially and linearly
active S-boxes in the 4-round characteristic of the AES-like primitives. We focus
on the propagation in the middle layer, and we assume that the ith MixColumns
is active. Then hw(x̃) + hw(M̃xT ) is at least B, and there are at least B active
super-S-boxes in the 4-round characteristic because of the property of SR. Since
every active super-S-box has B active S-boxes, there are at least B2 active S-boxes
in the 4-round characteristic.

Now, we consider an AES-like primitive whose MixColumns uses a binary
matrix with branch number B.

First, we consider the case in which there is an indirect propagation in the
middle layer. Since the indirect branch number is B+2 from Lemma 4, there are
at least B+2 active super-S-boxes in the 4-round characteristic. This also implies
that there are at least B(B + 2) active S-boxes in the 4-round characteristic.

Next, we consider the case in which there is an only direct propagation in the
middle layer. We focus on the number of active MixColumns in the middle layer,
and i active MixColumns denote the case in which i MixColumns are active in
the middle layer. Then, the minimum number of active S-boxes is proven using
different methods depending on the number of active MixColumns. In more
detail, let us consider the following cases, where the notation in Fig. 1 is used,
and Fig. 2 shows the outline. First, we assume i active MixColumns with i ≤ 2.
Then, at most two elements in Wi and Zi are active for any i because of the
construction of SR. Therefore, we effectively guarantee the minimum number of
active S-boxes in every super-S-box using Lemma 5. Next, we assume i active
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Fig. 2. Proof Strategy. When the number of active MixColumns is at most two (see the
left figure), we use a binary matrix M such that super-S-boxes in the front and back
layers always have enhanced propagation. When the number of active MixColumns is
at least three (see the right figure), we use an M such that the characteristics always
have many active super-S-boxes.

MixColumns with i ≥ 3. We choose binary matrices such that the number of
active super-S-boxes is beyond B for all characteristics.

Section 4.2 shows an algorithm to efficiently evaluate a more accurate lower
bound of a given binary matrix.

4.2 Algorithm to Obtain Accurate Lower Bound

We guarantee the lower bound for a given binary matrix M ∈ F
n×n
2� , and

Algorithm 1, the validity of which is shown later in this section, shows the proce-
dure to evaluate a more accurate lower bound. Here, ASi and ASSi are defined
as follows.

Definition 8 (ASi : Accurate lower bound of number of active S-boxes
under i active MixColumns on direct propagation). We only consider
the 4-round characteristic whose propagation does not have the indirect propaga-
tion. For any characteristic with i active MixColumns in the middle layer, ASi

denotes the accurate lower bound of the number of active S-boxes in the 4-round
characteristic.

Definition 9 (ASSi : Accurate lower bound of number of active super-
S-boxes under i active MixColumns on direct propagation). We only
consider the 4-round characteristic whose propagation does not have the indirect
propagation in the middle layer. For any characteristic with i active MixColumns
in the middle layer, ASSi denotes the accurate lower bound of the number of
active super-S-boxes in the 4-round characteristic.

Both ASi and ASSi only focus on characteristics whose middle layer has direct
propagations. Moreover, ASi only focuses on the characteristic whose super-S-
boxes have direct propagations, but the bound B × ASSi takes into account
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Algorithm 1. Algorithm to obtain accurate lower bound
Input: A binary matrix M ∈ F

n×n

2� .
Output: The lower bound of the number of active S-boxes in the 4-round character-

istic.
1: procedure AccurateBound(M)
2: Calculate B as the branch number of M .
3: Calculate AS1 and ASS2 . � See Definitions 8 and 9.
4: if AS1 ≤ min{B × ASS2 , B(B + 2)} then
5: return AS1

6: else
7: Calculate AS2 and ASS3 .
8: if min{AS1 ,AS2} ≤ min{B × ASS3 , B(B + 2)} then
9: return min{AS1 ,AS2}

10: else
11: return min{B × ASS3 , B(B + 2)}
12: end if
13: end if
14: end procedure

characteristics whose super-S-boxes have indirect propagations. Therefore, B ×
ASSi ≤ ASi. Moreover, ASSi monotonically increases as a value of i.

For any binary matrix M with branch number B, the number of active S-
boxes in the 4-round characteristic is lower-bounded by

min{B × ASS1,B(B + 2)}. (1)

Here, B ×ASS1 and B(B +2) denote the lower bound in which the middle layer
has an only direct propagation and indirect propagation, respectively. Note that
since ASS1 = B, the number of active S-boxes is lower-bounded by B ×ASS1 =
B2.

We first calculate AS1 to obtain a more accurate lower bound. Since AS1

only focuses on the characteristic whose propagations do not have indirect prop-
agations and there is at most one active MixColumns, it can be computed by
counting the number of Hamming weights of the column vector of M and M−1

by considering the computation of the multiplication by M and M−1.

AS1 = min
x̃∈F

n
2 \{0}

{
n∑

i=1

(hw((M−1)i)x̃i + hw(Mi)(Mx̃T )i)

}

,

Note that Mi and (M−1)i denote the ith column vector in M and M−1, respec-
tively, and AS1 does not depend on the position of the active MixColumns in
the middle layer. Therefore, we can obtain AS1 with O(2n) time complexity.
Since Lemma 5 enables us only to consider the case of direct propagations, we
can replace B × ASS1 with min{AS1,B × ASS2} in (1). Then, the number of
active S-boxes is lower-bounded by

min{AS1,B × ASS2,B(B + 2)}. (2)
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Note that there is always a characteristic whose number of active S-boxes is
AS1. Therefore, AS1 is a tight lower bound if AS1 ≤ min{B × ASS2,B(B + 2)}.
Otherwise, min{B × ASS2,B(B + 2)} is a new lower bound, but we do not
guarantee whether or not it is tight.

When AS1 > B × ASS2, there is a possibility that the lower bound can
be further improved. Lemma5 shows that we can replace B × ASS2 with
min{AS2,B×ASS3} in (2). Then, the number of active S-boxes is lower-bounded
by

min{AS1,AS2,B × ASS3,B(B + 2)}. (3)

Since both AS2 and ASS2 depend on truncated differentials of two active Mix-
Columns and the difference between positions of two active MixColumns, we
can obtain them with O((n − 1) × 22n) time complexity. Similarly, since ASS3

depends on truncated differentials of three active MixColumns and the dif-
ference among positions of three active MixColumns, we can obtain it with
O((n − 1)(n − 2) × 23n) time complexity. Note that there are always charac-
teristics whose number of active S-boxes is AS2. Therefore, min{AS1,AS2} is
a tight lower bound if min{AS1,AS2} ≤ min{B × ASS3,B(B + 2)}. Otherwise,
min{B×ASS3,B(B+2)} is a new lower bound, but we cannot guarantee whether
or not it is tight. Note that tightness is not efficiently guaranteed because we
cannot use Lemma 5 for three active MixColumns.

For linear cryptanalysis, we also execute the same procedure for the binary
matrix MT because of the duality between differential and linear cryptanaly-
ses (see Appendix A).

5 Best Binary Matrices

We now want to evaluate all n × n binary matrices and efficiently obtain binary
matrices whose number of active S-boxes is maximized in the 4-round charac-
teristic.

5.1 Efficient Search

The number of n × n binary matrices is 2n2
, and e.g., since 264 for n = 8, it is

infeasible to exhaustively evaluate allmatrices. However, in the application toMix-
Columns, we usually prefer to use binary matrices with the highest branch number.
Therefore, we exhaustively search binary matrices with the highest branch number
from n = 4 to n = 8 by using a similar technique to that by Guo et al. [16].

Fact 1. For binary matrices with n = 4, 5, 6, 7, and 8, the numbers of binary
matrices with the highest differential and linear branch number are 4! ≈ 24.6,
22 × 5! ≈ 211.4, 49032 × 6! ≈ 225.1, 279631988 × 7! ≈ 240.4, and 18527040 × 8! ≈
239.4, respectively.

Moreover, we only consider invertible binary matrices.
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Algorithm 1 requires much time complexity. Note that there is always a char-
acteristic whose number of active S-boxes is equal to AS1. Then, the lower bound
of the number of active S-boxes is always upper-bounded by at most AS1. There-
fore, we first exhaustively search all binary matrices with the highest branch
number and only evaluate AS1. Table 2 shows AS1, where columns in DC and
those in LC have AS1 of M and that of MT , respectively. Columns in DC corre-
sponds to the case for differential characteristics and columns in LC corresponds
to the case for linear characteristics. Moreover, Table 2 does not include the case
in which AS1 for DC is greater than that for LC. When the number of columns is
greater than or equal to the number of rows, we can calculate AS1 independent
of the number of columns. Therefore, from Table 2, we obtain the following fact.

Table 2. AS1 of all MDBL matrices with n = 4, 5, . . . , 8.

n DC LC # of matrices

4 16 16 24

5 16 16 2160

5 17 17 480

6 16 16 5650560

6 16 17 4364640

6 16 18 1011600

6 16 19 15840

6 16 20 2160

6 17 17 9405360

6 17 18 2821680

6 17 19 90720

6 18 18 2586240

6 18 19 244800

6 18 20 27360

6 19 19 275040

6 19 20 54720

6 20 20 103680

6 21 21 11520

6 22 22 2880

6 24 24 720

7 16 16 22453467120

7 16 17 43355400480

7 16 18 34791593760

7 16 19 9488802960

7 16 20 1606162320

7 16 21 70817040

7 16 22 2716560

7 16 24 90720

7 17 17 126753399360

7 17 18 132789625920

n DC LC # of matrices

7 17 19 49796596080

7 17 20 10055893680

7 17 21 640024560

7 17 22 27649440

7 17 23 70560

7 18 18 200729783520

7 18 19 105763669200

7 18 20 29003380560

7 18 21 2736417600

7 18 22 160644960

7 18 23 1547280

7 18 24 594720

7 19 19 88863979680

7 19 20 36434255760

7 19 21 5529872880

7 19 22 483537600

7 19 23 9051840

7 19 24 1149120

7 20 20 24798715200

7 20 21 6400180080

7 20 22 923988240

7 20 23 33405120

7 20 24 3417120

7 21 21 3160795680

7 21 22 795795840

7 21 23 60490080

7 21 24 4929120

7 21 25 10080

7 22 22 445440240

7 22 23 64506960

n DC LC # of matrices

7 22 24 9671760

7 22 25 50400

7 23 24 6325200

7 23 25 161280

7 24 24 4969440

7 24 25 30240

7 25 25 40320

8 25 25 126252403200

8 25 26 99931668480

8 25 27 9902471040

8 25 28 214462080

8 25 29 1290240

8 26 26 191120630400

8 26 27 58113216000

8 26 28 3361276800

8 26 29 38868480

8 27 27 53379285120

8 27 28 9583176960

8 27 29 503193600

8 27 30 1612800

8 28 28 7646042880

8 28 29 1739808000

8 28 30 16450560

8 29 29 1305642240

8 29 30 37900800

8 30 30 109992960

8 30 31 33546240

8 31 31 229985280

8 31 32 1290240

8 32 32 5806080

DC: # of differentially active S-boxes, LC: # of linearly active S-boxes
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Fact 2. For all 4-round (n,m)-AES-like primitives, AS1 is upper-bounded by
16, 17, 24, 25, and 32 for n = 4, 5, 6, 7, and 8, respectively.

Therefore, there are not exist binary matrices such that the lower bound is 17,
18, 25, 26, and 33 for n = 4, 5, 6, 7, and 8, respectively.

Finally, we exhaustively search all n × n binary matrices. First, we evalu-
ate AS1, and if AS1 is not maximum possible, we prune the matrix. Then, we
evaluate the accurate lower bound by using Algorithm1. If we can find a binary
matrix whose lower bound is the same as AS1, it is one of the best binary matri-
ces. On the other hand, if we cannot find such a matrix, we also evaluate binary
matrices whose AS1 is not maximum possible by using Algorithm1.

5.2 Examples

Table 3 shows each example of binary matrices with an enhanced lower bound.
When n = 4, there is no binary matrix such that the lower bound of the

number of active S-boxes is enhanced. On the other hand, for n > 4, we find
such matrices. Specifically, when n = 5, 6, and 8, the enhancement is maximized
because of Fact 2. When n = 7, we cannot obtain binary matrices such that
the number of active S-boxes is lower-bounded by 25. However, for m = n, we
also exhaustively evaluate the lower bound of AS2 and AS3 because there is
always a characteristic whose number of active S-boxes is AS2 or AS3. As a
result, since there is no binary matrix such that the number of active S-boxes
is lower-bounded by 25, the enhancement is maximized. For (7,m)-AES-like
primitives with 7 < m, it may be possible that the number of active S-boxes is
lower-bounded by 25. However, since Lemma 4 only guarantees 4×6 = 24 active
S-boxes, we have to consider the indirect propagation in the middle layer if we
guarantee that the number of active S-boxes is lower-bounded by 25.

5.3 Future Work

Essentially, binary matrices with enhanced lower bound tends to have high Ham-
ming weight. For the lightweight implementation, it is important to consider
binary matrices that we can compute the multiplication with low XOR count.
We have to consider good trade-off.

Our algorithm deeply utilizes the structure of an AES-like primitive and its
properties, and this accelerates the algorithm to compute the bounds and derives
good matrices. On the other hand, our algorithm is customized for 4-round AES-
like primitives, and the mixed-integer linear programming approach [28] seems
useful for more round primitives.

We focused on the number of active S-boxes, which implies “provable
security” [22] against differential and linear cryptanalyses. Towards the ulti-
mate security against differential and linear cryptanalysis, there is a long way to
evaluate our construction. Differential [26], linear hull [29], and plateau charac-
teristics [14] are the topic of this area. Moreover, a “good” cipher should have
a similar security level for each cryptanalysis. Therefore, the next problem we
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Table 3. Examples of binary matrices with enhanced lower bound.

Binary matrix 4× 4 5× 5 6× 6 7× 7 8× 8

Example

⎡
⎢⎢⎢⎢⎣

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0

1 0 1 1 0

1 1 0 1 1

1 0 1 0 1

0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0

1 1 1 1 0 1

1 1 0 1 1 1

0 1 1 1 1 1

1 1 1 0 1 1

1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0

1 1 0 1 0 1 0

1 0 1 0 1 1 1

1 1 0 1 1 0 0

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0

1 1 1 0 0 1 1 0

1 0 1 1 1 1 1 0

1 1 1 1 0 0 1 1

0 1 0 1 1 0 1 1

1 1 0 1 1 1 0 1

1 0 0 0 1 1 1 1

0 1 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lower bound 16 17 24 24 32

need to analyze is to confirm security against other cryptanalyses, e.g., impossi-
ble differential [4], integral [23], and zero-correlation cryptanalyses [6].

6 Conclusion

We investigated the number of active S-boxes in differential and linear charac-
teristics for 4-round AES-like primitive with binary MixColumns. The number
is lower-bounded by B2 when the branch number of the binary MixColumns
is B. However, we showed that the lower bound is not always tight for AES-like
primitives with binary MixColumns. To analyze the bound, we first introduced
enhanced propagation and (in)direct propagations, and showed useful properties
of binary matrix. Then, we showed how to evaluate an accurate lower bound for
a given binary matrix. As a result, we showed that some binary matrices enhance
the lower bound from B2 to B(B+2). Specifically, for (n,m)-AES-like primitives
with n = 5, 6, 7, and 8, we find binary matrices whose lower bound is 17, 24,
24, and 32, respectively. Moreover, we also evaluated the limit of the enhance-
ment, and the enhancement is maximized for all (n, n)-AES-like primitives with
n ∈ {4, 5, . . . , 8}. Moreover, for all (n,m)-AES-like primitives with n < m, we
also guarantee that the enhancement is maximized for n ∈ {4, 5, 6, 8}.

A Duality Between Differences and Linear Masks

The duality between differential and linear cryptanalyses was pointed out, and
several meanings of duality are known [7,27]. When constructing a differential
characteristic, we should know the differential propagation rule for XOR and
branch operation. That is, Δz = Δx⊕Δy, where z ← x⊕y, and Δx = Δy = Δz,
where x ← z and y ← z. For linear cryptanalysis, we have Γx = Γy = Γz, where
z ← x ⊕ y, and Γx ⊕ Γy = Γz, where x ← z and y ← z [9,27]. We generalize
this propagation rule to any linear transformation.

Let M ∈ F
n×n
2 be a binary matrix, and let x ∈ F

n
2 be the input of the

diffusion represented by an M . Then, let y ∈ F
n
2 be the output of the diffusion



Wide Trail Design Strategy for Binary MixColumns 483

represented by M as yT = MxT . For the differential propagation, (Δy)T =
M(Δx)T trivially holds. For the linear mask propagation, we want to know the
linear mask Γx and Γy ∈ F

n
2 such that Γy •y = Γx•x with probability 1. Using

the matrix multiplication, the equation can be written as ΓyyT = ΓxxT . That
is, Γy(MxT ) = (ΓyM)xT = ΓxxT . Thus, ΓyM = Γx ⇔ MT (Γy)T = (Γx)T

should hold and is the propagation rule for the linear mask.
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