
AirFlip: A Double Crossing In-Air Gesture
Using Boundary Surfaces of Hover Zone

for Mobile Devices

Hiroyuki Hakoda(B), Takuro Kuribara, Keigo Shima,
Buntarou Shizuki, and Jiro Tanaka

University of Tsukuba, Tsukuba, Japan
{hakoda,kuribara,keigo,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract. Hover sensing capability provides richer interactions on
mobile devices. For one such exploration, we show a quick double cross-
ing in-air gesture for mobile devices, called AirFlip. In this gesture, users
move their thumb into the hover zone from the side, and then move it
out of the hover zone. Since this gesture does not conflict with any touch
gestures that can be performed on mobile devices, it will serve as another
gesture on mobile devices with touchscreens where only a limited input
vocabulary is available. We implemented two applications based on Air-
Flip. In this paper, we show the results of a comparative user study that
we conducted to identify the performance of AirFlip. We also discuss the
characteristics of AirFlip on the basis of the results.

Keywords: Hover gesture · Mobile · Input method · In-air gesture

1 Introduction

Mobile devices with hover sensing capability have recently emerged such as
ELUGA P P-03E and AQUOS PHONE ZETA SH-06E. This capability provides
richer interactions on mobile devices. For example, it allows users to unlock
a pattern lock without touching the touchscreen, accordingly enabling secure
authentication because users do not leave their fingerprints on the touchscreen.
Moreover, the capability can be used to detect a finger’s movement above the
touchscreen, i.e., in-air gestures on mobile devices. However, few studies have
explored in-air gestures in comparison with touch gestures on mobile devices.

For one such exploration, we show a quick double crossing in-air gesture for
mobile devices, called AirFlip, which uses side boundary surfaces of the hover
zone. In this gesture, users move their thumb into the hover zone from the
side, and then move it out of the hover zone (Fig. 1). Since this gesture does
not conflict with any touch gestures that can be performed on mobile devices,
it will serve as another gesture on mobile devices with touchscreens where only a
limited input vocabulary is available. In this study, we conducted a comparative
user study with only touch and Bezel Swipe [1] to identify the performance of
AirFlip.
c© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 44–53, 2015.
DOI: 10.1007/978-3-319-20916-6 5



AirFlip: A Double Crossing In-Air Gesture 45

Fig. 1. Overview of AirFlip.

2 Related Work

In-air gestures on various input devices have been explored. For example,
ThickPad [2] is a touchpad that can sense hover gestures with proximity-sensors.
Similarly, Taylor et al. [3] presented a keyboard that senses in-air gestures on the
keyboard. These studies presented in-air gestures on conventional input devices
such as a touchpad and a keyboard. In contrast, we explore in-air gestures above
the touchscreen of mobile devices.

In-air gestures above tabletops have been explored. Interactions in the Air [4]
and Continuous Interaction Space [5] focused on the space above tabletops.
Han and Park [6] proposed hover based zooming interaction above tabletops.
Pointable [7] is an in-air pointing technique on tabletops. Pyryeskin et al. [8]
proposed a system that senses a user’s hand above multi-touch surfaces using
only a diffused surface illumination device. In contrast, we focus on the space
above mobile devices.

In-air gestures above mobile devices have also been explored. Air+Touch [9]
is a synthesis of touch and in-air gestures using an additional depth camera.
Kratz et al. [10] showed a detection algorithm for in-air gestures and the design
space. While these studies utilized hovering in the hover zone, AirFlip utilizes
boundary surfaces of the hover zone. Han et al. [11] proposed Push-Push utilizing
the pressed state and the hover state that does not conflict with a drag operation.
Hover Widgets [12] utilizes movements of a pen above a screen. In contrast,
AirFlip utilizes movements of a finger above a screen.

Crossing has been explored intensively especially to enrich interactions
[13–18]. For example, Bezel Swipe [1] is a drag gesture starting from the bezel
of mobile devices. Nakamura et al. [19,20] proposed a double crossing gesture
for hand gesture interfaces that crosses a target twice. In contrast, AirFlip is a
double crossing in-air gesture that crosses a side boundary surface of the hover
zone twice.

3 Design of AirFlip

AirFlip is a quick double crossing gesture using the boundary surfaces of the
hover zone, and users perform it with the thumb of their holding hand. Fig. 1



46 H. Hakoda et al.

illustrates AirFlip. Users move the thumb into the hover zone from the side,
and then move it out of the hover zone quickly. While current in-air gestures
on mobile devices with hover sensing capability utilize motions such as keeping
or moving their finger within the hover zone, AirFlip utilizes the motion that
crosses the boundary surfaces of the hover zone. Moreover, AirFlip adopts a
double crossing gesture because a single crossing gesture may be incorrectly
recognized when users touch the screen. Due to these designs, AirFlip does not
conflict with conventional touch and in-air gestures.

Fig. 2. Rotation gesture by twirling user’s thumb.

AirFlip has two variations: just flipping the thumb (Fig. 1) and twirling the
thumb (Fig. 2). The former is suitable as a trigger of a single action and thus
can be used as a button; the latter is suitable to adjust a continuous value such
as a rotational angle of a map.

4 Implementation

We implemented AirFlip as an Android application that monitors hover events.
Currently, sensing capability in Android devices begins to generate hover events
when a user’s finger enters the hover zone and continues to generate them until
the user’s finger leaves the zone. Therefore, AirFlip is recognized when hover
events begin to appear and then disappear quickly (600 ms in our current imple-
mentation).

However, AirFlip is incorrectly recognized in näıve implementation for the
following two reasons. First, AirFlip is recognized when users tap the screen
because hover events occur before and after a tap. To address this problem,
AirFlip is ignored when a touch event occurs within 50 ms after hover events
disappear. Second, AirFlip is recognized when users are searching for a target
to touch because their thumb tends to enter and leave the top boundary of the
hover zone frequently in this context. To address this problem, AirFlip is ignored
when their thumb leaves the hover zone more than 600 ms after their thumb has
entered it. These realize stable recognition of both AirFlip and conventional
touch gestures.



AirFlip: A Double Crossing In-Air Gesture 47

5 Application

We present two applications of AirFlip. To test these application, we used
ELUGA P P-03E (Android 4.2.2) as a mobile device with hover sensing capability.

5.1 Rotating a Map in Map Applications

We implemented a map viewer that adopts AirFlip. In this application, users can
rotate a map by using AirFlip (Fig. 3); users can change the direction of rotation
by changing the direction of twirl. Note that in conventional map applications,
users touch an area of a map with two fingers and drag both fingers in a circular
motion to rotate it. In contrast, users can rotate a map by using only one hand:
i.e., users hold a device with one hand and perform AirFlip using the thumb of
that hand.

5.2 Switching Tabs in Web Browsers

Users can use AirFlip to switch tabs to the next (Fig. 4). In conventional web
browsers, users need to open a list and choose a tab from it. In contrast, users
can switch tabs (i.e., go to the next tab and go back to the previous tab) quickly
in this application, because AirFlip is only a double crossing gesture. Users can
change the direction of switching by changing the direction of twirl.

6 Evaluation

We conducted a user study to measure the speed and usability of AirFlip. The
user study is designed to measure the above metrics under the assumption that
users browse web pages by selecting links and switch tabs in a web browser
repeatedly.

6.1 Participants

Fourteen participants took part in the experiment as volunteers. However, we
eliminated the data of two participants because we failed to collect their exper-
imental data correctly. As the result, we used the data of 12 participants (eight
males and four females) aged from 20 to 25 (mean = 22.7; SD = 1.29). They all
used their mobile devices on a daily basis and were all right-handed. They had
been using mobile devices for 11 to 99 months (mean = 34.8; SD = 24.9).

6.2 Apparatus

We used a mobile device (ELUGA P P-03E, OS: Android 4.2.2, size: height
132 mm × width 65 mm × thick 10.9 mm) with an approximately 4.7 in. touch-
screen (resolution: 1080 × 1920 pixels).



48 H. Hakoda et al.

Fig. 3. Rotating a map in map applications.

Fig. 4. Switching tabs in web browsers.

6.3 Methods

We compared the performance of the following three methods for switching tabs:

AirFlip. The participants switch tabs by AirFlip. They move their thumb into
the hover zone from the right side, and then move it out of the hover zone
quickly. A hover trajectory is displayed on the display of the device as visual
feedback when users perform AirFlip.

Bezel Swipe. [1] The participants switch tabs by Bezel Swipe. They start a
swipe gesture from the right bezel to the left. A touch trajectory is displayed
on the display of the device as visual feedback when users perform Bezel
Swipe.

Touch. The participants switch tabs by tapping one of the tabs.

6.4 Procedure

We asked the participants to sit on a chair and hold a mobile device in their
right hand. To control the experimental conditions between participants, we also
asked the participants to hold the device without supporting it by using a desk or
their bodies. We asked the participants to perform this user study as accurately
and rapidly as possible.



AirFlip: A Double Crossing In-Air Gesture 49

Fig. 5. Overview of the application for the user study. In this user study, there are two
tabs in the web browser.

Each participant was told the goals of the user study. We also explained
how to perform the three methods. Then a participant practiced each method
for more than one minute. The user study started when the participant pressed
the “Start” button displayed on the device’s touchscreen. First, she touched a
button randomly displayed on a cell in the 3 × 3 grid (Fig. 5). After that, she
switched tabs by using one of the methods. In each session, she performed 18
trials (9 places × 2 tabs). She completed three sessions for each method. Thus,
she performed 162 trials (3 sessions × 3 methods × 9 places × 2 tabs) in this
user study.

The order of methods was counter-balanced across participants. After all
trials were finished, we asked the participants to complete a questionnaire:
they answered four five-point Likert scale questions (1 = strongly disagree,
5 = strongly agree) and gave reasons for their scores. The participants took
about 20 min to complete this user study.

6.5 Results and Analysis

Figure 6 shows task completion time of all methods, which is defined as the elapsed
time between pressing a button and switching tabs. As this figure shows, the fastest
method was Touch (476 ms) and the second fastest was Bezel Swipe (479 ms).
AirFlip was 912 ms, approximately 1.9 times slower than the other methods.

Figure 7 shows the results of questionnaires. Interestingly, while the accuracy
of AirFlip is subjectively evaluated as the lowest, the participants felt AirFlip
to be a quick gesture because its quickness is evaluated positively (4.0). On the
other hand, by taking into account that AirFlip is rated the same as Touch
in terms of easiness and preference, the participants were not considered to be
satisfied with AirFlip. We analyzed the comments from the participants and
found that this was due to too much incorrect recognition of AirFlip (that is,
the system failed to recognize AirFlip while users believed they performed the



50 H. Hakoda et al.

Fig. 6. Task completion time for all methods.

Fig. 7. The questionnaire results for the three methods (5-point Likert scale).

gesture correctly). Eleven participants mentioned this problem. Moreover, high
variance of task completion time would be caused by this problem. Consequently,
if we can reduce such errors of AirFlip, its performance may improve.

7 Discussion

While we found much incorrect recognition lowered the performance of AirFlip in
the evaluation, we considered that two factors of this problem can be addressed
to improve the performance.



AirFlip: A Double Crossing In-Air Gesture 51

7.1 Accidental Touching

We observed that participants often touched the touchscreen accidentally while
performing AirFlip. This problem may have been caused by the hover zone being
too narrow: hover zone is so low that hovering a finger above the screen may
be difficult for users because they need to keep hovering their thumb in the
hover zone when they perform AirFlip. In the questionnaire, the participants
commented that the height of the hover zone is difficult to determine, and too
low to perform AirFlip. Therefore, the performance of AirFlip will be improved if
the hover sensing capability of mobile devices is improved to sense user’s fingers
at higher positions.

Moreover, we plan to attach a protective case to a mobile device shown in
Fig. 9. This case is designed so that its side is higher than the surface of the device.
With this case, users will be able to use AirFlip by flipping the side of the case.

Fig. 8. Incorrect perception of thumb’s posi-
tion. Red circles show positions of hover events
when users incorrectly thought that they had
moved their thumb out of the hover zone; red
rings show required trajectory to perform Air-
Flip (Color figure online).

Fig. 9. A mobile device
in a protective case. Users
move their thumb into the
hover zone by flipping the
side of the case.

7.2 Incorrectly Thinking One’s Thumb Has Moved Out of the
Hover Zone

We also observed that participants incorrectly perceived that they had moved
their thumb out of the hover zone (Fig. 8a) to perform AirFlip although the
thumb stayed within the hover zone (Fig. 8b). In this case, AirFlip was not
recognized because hover events continued to occur. To address this problem,
we plan to provide users with feedback such as vibration when users move their
thumb out of the hover zone. Accordingly, users can be made aware of the
boundary surfaces of the hover zone and thus can perform AirFlip stably.

8 Conclusion

We presented a quick double crossing in-air gesture for mobile devices called Air-
Flip. We conducted a user study to measure its performance. From the results,



52 H. Hakoda et al.

AirFlip is slower than the other methods. The data and the participants’ com-
ments suggest this result is caused by incorrect recognition of AirFlip due to
an inability to sense user’s fingers in high positions. For immediate future work,
we plan to incorporate a haptic feedback and measure the performance of Air-
Flip using a protective case whose side is higher than the surface of the device.
Furthermore, we also plan to implement a mobile device with hover sensing capa-
bility that can sense user’s fingers in higher positions by using a vision-based
approach.

References

1. Roth, V., Turner, T.: Bezel swipe: conflict-free scrollingand multiple selection on
mobile touch screen devices. In: Proceedings of CHI 2009, pp. 1523–1526 (2009)

2. Choi, S., Gu, J., Han, J., Lee, G.: Area gestures for a laptop computer enabled by
a hover-tracking touchpad. In: Proceedings of APCHI 2012, pp. 119–124 (2012)

3. Taylor, S., Keskin, C., Hilliges, O., zadi, S.,Helmes, J.: Type-hover-swipe in
96 bytes: a motion sensing mechanical keyboard. In: Proceedings of CHI 2014,
pp. 1695–1704 (2014)

4. Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., Butz, A.:
Interactions in the air: adding further depth to interactive tabletops. In: Proceed-
ings of UIST 2009, pp. 139–148 (2009)

5. Marquardt, N., Jota, R., Greenberg, S., Jorge, J.A.: The continuous interaction
space: interaction techniques unifying touch and gesture on and above a dig-
ital surface. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P.,
Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 461–476.
Springer, Heidelberg (2011)

6. Han, S., Park, J.: A study on touch and hover based interaction for zooming. In:
CHI EA 2012, pp. 2183–2188 (2012)

7. Banerjee, A., Burstyn, J., Girouard, A., Vertegaal, R.: Pointable: an in-air pointing
technique to manipulate out-of-reach targets on tabletops. In: Proceedings of ITS
2011, pp. 11–20 (2011)

8. Pyryeskin, D., Hancock, M., Hoey, J.: Comparing elicited gestures to designer-
created gestures for selection above a multitouch surface. In: Proceedings of ITS
2012, pp. 1–10 (2012)

9. Chen, X.A., Schwarz, J., Harrison, C., Mankoff, J., Hudson, S.E.: Air+Touch:
interweaving touch and in-air gestures. In: Proceedings of UIST 2014, pp. 519–525
(2014)

10. Kratz, S., Rohs, M.: HoverFlow: expanding the design space of around-device inter-
action. In: Proceedings of MobileHCI 2009, pp. 4:1–4:8 (2009)

11. Han, J., Ahn, S., Lee, G.: Push-Push: a two-point touchscreen operation utilizing
the pressed state and the hover state. In: Proceedings of UIST 2014 Adjunct,
pp. 103–104 (2014)

12. Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.: Hover
widgets: using the tracking state to extend the capabilities of pen-operated devices.
In: Proeedings of CHI 2006, pp. 861–870 (2006)

13. Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E.: Control menus: excecution and
control in a single interactor. In: Proceedings of CHI EA 2000, pp. 263–264 (2000)

14. Guimbretiére, F., Winograd, T.: FlowMenu: combining command, text, and data
entry. In: Proceedings of UIST 2000, pp. 213–216 (2000)



AirFlip: A Double Crossing In-Air Gesture 53

15. Accot, J., Zhai, S.: More than dotting the i’s — foundations for crossing-based
interfaces. In: Proceedings of CHI 2002, pp. 73–80 (2002)

16. Dragicevic, P.: Combining crossing-based and paper-based interaction paradigms
for dragging and dropping between overlapping windows. In: Proceedings of UIST
2004, pp. 193–196 (2004)

17. Luo, Y., Vogel, D.: Crossing-based selection with direct touch input. In: Proceed-
ings of CHI 2014, pp. 2627–2636 (2014)

18. Chen, C., Perrault, S.T., Zhao, S., Ooi, W.T.: BezelCopy: an efficient cross-
application copy-paste technique for touchscreen smartphones. In: Proceedings of
AVI 2014, pp. 185–192 (2014)

19. Nakamura, T., Takahashi, S., Tanaka, J.: Double-crossing: a new interaction tech-
nique for hand gesture interfaces. In: Lee, S., Choo, H., Ha, S., Shin, I.C. (eds.)
APCHI 2008. LNCS, vol. 5068, pp. 292–300. Springer, Heidelberg (2008)

20. Nakamura, T., Takahashi, S., Tanaka, J.: The selection technique of hand gesture in
large screen environment: proposal of double-crossing and comparison with other
techniques. Inst. Electron. Inf. Commun. Eng. Trans. J96-D(4), 978–988 (2013)
(in Japanese)


	AirFlip: A Double Crossing In-Air Gesture Using Boundary Surfaces of Hover Zone for Mobile Devices
	1 Introduction
	2 Related Work
	3 Design of AirFlip
	4 Implementation
	5 Application
	5.1 Rotating a Map in Map Applications
	5.2 Switching Tabs in Web Browsers

	6 Evaluation
	6.1 Participants
	6.2 Apparatus
	6.3 Methods
	6.4 Procedure
	6.5 Results and Analysis

	7 Discussion
	7.1 Accidental Touching
	7.2 Incorrectly Thinking One's Thumb Has Moved Out of the Hover Zone

	8 Conclusion
	References


