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Meta-Modelling Techniques Towards
Virtual Production Intelligence
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Abstract Decision making for competitive production in high-wage countries is a
daily challenge where rational and irrational methods are used. The design of
decision making processes is an intriguing, discipline spanning science. However,
there are gaps in understanding the impact of the known mathematical and pro-
cedural methods on the usage of rational choice theory. Following Benjamin
Franklin’s rule for decision making formulated in London 1772, he called “Pru-
dential Algebra” with the meaning of prudential reasons, one of the major ingre-
dients of Meta-Modelling can be identified finally leading to one algebraic value
labelling the results (criteria settings) of alternative decisions (parameter settings).
This work describes the advances in Meta-Modelling techniques applied to multi-
dimensional and multi-criterial optimization in laser processing, e.g. sheet metal
cutting, including the generation of fast and frugal Meta-Models with controlled
error based on model reduction in mathematical physical or numerical model
reduction. Reduced Models are derived to avoid any unnecessary complexity. The
advances of the Meta-Modelling technique are based on three main concepts: (i)
classification methods that decomposes the space of process parameters into fea-
sible and non-feasible regions facilitating optimization, or monotone regions (ii)
smart sampling methods for faster generation of a Meta-Model, and (iii) a method
for multi-dimensional interpolation using a radial basis function network continu-
ously mapping the discrete, multi-dimensional sampling set that contains the pro-
cess parameters as well as the quality criteria. Both, model reduction and
optimization on a multi-dimensional parameter space are improved by exploring the
data mapping within an advancing “Cockpit” for Virtual Production Intelligence.
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6.1 Introduction

Routes of Application
At least two routes of direct application are enabled actually by Meta-Modelling,
namely, decision making and evaluation of description models. While calculating
multi-objective weighted criteria resulting in one algebraic value applies for deci-
sion making, multi-parameter exploration for the values of one selected criterion is
used for evaluation of the mathematical model which was used to generate the
Meta-Model.

Visual exploration and Dimensionality Reduction
More sophisticated usage of Meta-Modelling deals with visual exploration and data
manipulation like dimensionality reduction. Tools for viewing multidimensional
data (Asimov 2011). are well known from iterature. Visual Exploration of High
Dimensional Scalar Functions (Gerber 2010) today focusses on steepest-gradient
representation on a global support, also called Morse-Smale Complex. The scalar
function represents the value of the criterion as function of the different parameters.
As result, at least one trace of steepest gradient is visualized connecting an optimum
with a minimum of the scalar function. Typically, the global optimum performance
of the system, which is represented by a specific point in the parameter space, can
be traced back on different traces corresponding to the different minima. These trace
can be followed visually through the high-dimensional parameter space revealing
the technical parameters or physical reasons for any deviation from the optimum
performance.

Analytical methods for dimensionality reduction, e.g. the well-known Buck-
ingham Π-Theorem (Buckingham 1914), are applied since 100 years for determi-
nation of the dimensionality as well as the possible dimensionless groups of
parameters. Buckingham’s ideas can be transferred to data models. As result,
methods for estimating the dimension of data models (Schulz 1978), dimensionality
reduction of data models as well as identification of suitable data representations
(Belkin 2003) are developed.

Value chain and discrete to continuous support
The value chain of Meta-Modelling related to decision making enables the benefit
rating of alternative decisions based on improvements as result of iterative design
optimization including model prediction and experimental trial. One essential
contribution of Meta-Modelling is to overcome the drawback of experimental trials
generating sparse data in high-dimensional parameter space. Models from mathe-
matical physics are intended to give criterion data for parameter values dense
enough for successful Meta-Modeling. Interpolation in Meta-Modelling changes
the discrete support of parameters (sampling data) to a continuous support. As result
of the continuous support, rigorous mathematical methods for data manipulation are
applicable generating virtual propositions
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Resolve the dichotomy of cybernetic and deterministic approaches
Meta-Modelling can be seen as a route to resolve the separation between cyber-
netic/empirical and deterministic/rigorous approaches and to bring them together as
well as making use of the advantages of both. The rigorous methods involved in
Meta-Modelling may introduce heuristic elements into empirical approaches and
the analysis of data, e.g. sensitivity measures, may reveal the sound basis of
empirical findings and give hints to reduce the dimension of Meta-Models or at
least to partially estimate the structure of the solution not obvious from the
underlying experimental/numerical data or mathematical equations.

6.2 Meta-Modelling Methods

In order to gain a better insight and improve the quality of the process, the pro-
cedure of conceptual design is applied. The conceptual design is defined as creating
new innovative concept from simulation data (Currie 2005). It allows creating and
extracting specific rules that potentially explain complex processes depending on
industrial needs.

Before applying this concept, the developers are validating their model by
performing one single simulation run (s. Application: sheet metal drilling) fitting
one model parameter to experimental evidence. This approach requires sound
phenomenological insight. Instead of fitting the model parameter to experimental
evidence multi-physics, complex numerical calculations can be used to fit the
empirical parameters of the reduced model. This requires a lot of scientific mod-
elling effort in order to achieve good results that could be comparable to real life
experimental investigation.

Once the model is validated and good results are achieved, the conceptual design
analysis is then possible either to understand the complexity of the process, opti-
mize it, or detect dependencies. The conceptual design analysis is based on sim-
ulations that are performed on different parameter settings within the full design
space. This allows for a complete overview of the solution properties that contribute
well to the design optimization processes (Auerbach et al. 2011). However the
challenge rises when either the number of parameters increases or the time required
for each single simulation grows.

Theses drawbacks can be overcome by the development of fast approximation
models which are called metamodels. These metamodels mimic the real behavior of
the simulation model by considering only the input output relationship in a simpler
manner than the full simulation (Reinhard 2014). Although the metamodel is not
perfectly accurate like the simulation model, yet it is still possible to analyze the
process with decreased time constraints since the developer is looking for ten-
dencies or patterns rather than values. This allows analyzing the simulation model
much faster with controlled accuracy.

Meta-modelling techniques rely on generating and selecting the appropriate
model for different processes. They basically consist of three fundamental steps: (1)
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the creation and extraction of simulation data (sampling), (2) the mapping of the
discrete sampling points in a continuous relationship (interpolation), and (3) visu-
alization and user interaction of this continuous mapping (exploration)

1. Sampling
2. Interpolation
3. Exploration.

6.2.1 Sampling

Sampling is concerned with the selection of discrete data sets that contain both
input and output of a process in order to estimate or extract characteristics or
dependencies. The procedure to efficiently sampling the parameter space is
addressed by many Design of Experiments (DOE) techniques. A survey on DOE
methods focusing on likelihood methods can be found in the contribution of Ferrari
et al. (Ferrari 2013). The basic form is the Factorial Designs (FD) where data is
collected for all possible combinations of different predefined sampling levels of the
full the parameter space (Box and Hunter 1978).

However for high dimensional parameter space, the size of FD data set increases
exponentially with the number of parameters considered. This leads to the well-
known term “Curse of dimensionality” that was defined by Bellman (Bellman 1957)
and unmanageable number of runs should be conducted to sample the parameter space
adequately. When the simulation runs are time consuming, these FD design could be
inefficient or even inappropriate to be applied on simulation models (Kleijnen 1957).

The suitable techniques used in simulation DOE are those whose sampling
points are spread over the entire design space. They are known as space filling
design (Box and Hunter 1978), the two well-known methods are the Orthogonal
arrays, and the Latin Hypercube design.

The appropriate sample size depends not only on the number of the parameter
space but also on the computational time for a simulation run. This is due to the fact
that a complex nonlinear function requires more sampling points. A proper way to
use those DOE techniques in simulation is to maximize the minimum Euclidean
distance between the sampling points so that the developer guarantees that the
sampling points are spread along the complete regions in the parameter space
(Jurecka 2007).

6.2.2 Interpolation

Theprocess inwhich the deterministic discrete points are transformed into a connected
continuous function is called interpolation. One important aspect for the Virtual
Production Intelligence (VPI) systems is the availability of interpolating models that

72 W. Schulz and T.A. Khawli



represent the process behavior (Reinhard 2013), which are the metamodels. In VPI,
metamodeling techniques offer excellent possibilities for describing the process
behavior of technical systems (Jurecka 2007; Chen 2001) since Meta-Modelling
defines a procedure to analyze and simulate involved physical systems using fast
mathematicalmodels (Sacks 1989). Thesemathematical models create cheap numeric
surrogates that describe cause-effect relationship between setting parameters as input
and product quality variables as output for manufacturing processes. Among the
available Meta-Modelling techniques are the Artificial Neural Networks (Haykin
2009), Linear Regression Taylor Expansion (Montgomery et al. 2012) Kriging (Jones
1998; Sacks 1989; Lophaven 1989), and the radial basis functions network (RBFNs).
RBFN is well known for its accuracy and its ability to generate multidimensional
interpolations for complex nonlinear problems (Rippa 1999; Mongillo 2010; Orr
1996).ARadialBasis Function Interpolation represented inFig. 6.1 below is similar to
a three layer feed forward neural network. It consists of an input layer which is
modeled as a vector of real numbers, a hidden layer that contains nonlinear basis
functions, and an output layer which is a scalar function of the input vector.

The output of the network f(x) is given by:

f ðxÞ ¼
Xn
i¼1

wihi xð Þ ð6:1Þ

where n; hi;wi correspond to number of sampling points of the training set, the ith
basis function, and the ith weight respectively. The RBF methodology was intro-
duced in 1971 by Rolland Hardy who originally presented the method for the multi-
quadric (MQ) radial function (Hardy 1971). The method emerged from a cartog-
raphy problem, where a bivariate interpolates of sparse and scattered data was
needed to represent topography and produce contours. However, none of the
existing interpolation methods (Fourier, polynomial, bivariate splines) were satis-
factory because they were either too smooth or too oscillatory (Hardy 1990).
Furthermore, the non-singularity of their interpolation matrices was not guaranteed.
In fact, Haar’s theorem states that the existence of distinct nodes for which the
interpolation matrix associated with node-independent basis functions is singular in

Fig. 6.1 Architecture of Radial Basis Function Network (RBFN). Solve for the weights wi Given
the parameter values xi, the base functions hi(x) and the scalar output f(x) the
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two or higher dimensions (McLeod 1998). In 1982, Richard Franke popularized the
MQ method with his report on 32 of the most commonly used interpolation
methods (Franke 1982). Franke also conjectured the unconditional non singularity
of the interpolation matrix associated with the multi-quadric radial function, which
was later proved by Micchelli (Micchelli 1986). The multi-quadric function is used
for the basis functions hi:

hi xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x� xið ÞT x� xið Þ

r2

s
ð6:2Þ

where xi and r represent the ith sampling point and the width of the basis function
respectively. The shape parameter r controls the width of the basis function, the
larger or smaller the parameter changes, the narrower or wider the function gets.
This is illustrated in Fig. 6.2 below.

The learning of the network is performed by applying the method of least
squares with the aim of minimizing the sum squared error with respect to the
weights wi of the model (Orr 1996). Thus, the learning/training is done by mini-
mizing the cost function

C ¼
Xn
i¼1

yi � f xið Þð Þ2 þ
Xn
i¼1

k � w2
i ! min ð6:3Þ

where k is the usual regularization parameter and yi are the criterion values at points i.
Solving the equation above

Fig. 6.2 Multi-quadric
function centered at xi = 0
with different widths r = 0.1,
1, 2, 8
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w ¼ HTHþ K
� ��1

HTy ð6:4Þ

with

H ¼
h1 x1ð Þ h2 x1ð Þ . . . hn x1ð Þ
h1 x2ð Þ h2 x2ð Þ . . . hn x2ð Þ
..
. ..

. . .
. ..

.

h1 xnð Þ h2 xnð Þ . . . hn xnð Þ

2
6664

3
7775 K ¼

k 0 . . . 0
0 k . . . 0
..
. ..
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. ..

.

0 0 . . . k

2
664

3
775 ð6:5Þ

and

y ¼ y1; y2; . . .; ynð Þ ð6:6Þ

The chosen width of the radial basis function plays an important role in getting a
good approximation. The following selection of the r value was proposed by
Hardy (1971) and taken over for this study:

r ¼ 0:81 � d; d ¼ 1
n

Xn
i¼1

di ð6:7Þ

and di is the distance between the ith data point and its nearest neighbor.

6.2.3 Exploration

Visualization is very important for analyzing huge sets of data. This allows an
efficient decision making. Therefore, multi-dimensional exploration or visualization
tools are needed. 2D Contour plots or 3D cube plots can be easily generated by any
conventional mathematical software. However nowadays, visualization of high
dimensional simulation data remains a core field of interest. An innovative method
was developed by Gebhardt (2013). In the second phase of the Cluster of Excellence
“Integrative Production Technology for High-Wage Countries” the Virtual Pro-
duction Intelligence (VPI). It relies on a hyperslice-based visualization approach that
uses hyperslices in combination with direct volume rendering. The tool not only
allows to visualize the metamodel with the training points and the gradient trajec-
tory, but also assures a fast navigation that helps in extracting rules from the
metamodel; hence, offering an user-interface. The tool was developed in a virtual
reality platform of RWTH Aachen that is known as the aixCAVE. Another inter-
esting method called the Morse-Smale complex can also be used. It captures the
behavior of the gradient of a scalar function on a high dimensional manifold (Gerber
2010) and thus can give a quick overview of high dimensional relationships.
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6.3 Applications

In this section, the metamodeling techniques are applied to different laser manu-
facturing processes. The first two applications (Laser metal sheet cutting and Laser
epoxy cut) where considered a data driven metamodeling process where models
where considered as a black box and a learning process was applied directly on the
data. The last two applications (Drilling and Glass Ablation) a model driven
metamodeiling process was applied.

The goal of this section is to highlight the importance of using the proper
metamodeling technique in order to generate a specific metamodel for every pro-
cess. The developer should realize that generating a metamodel is a user demanding
procedure that involves compromises between many criteria and the metamodel
with the greatest accuracy is not necessarily the best choice for a metamodel. The
proper metamodel is the one which fits perfectly to the developer needs. The needs
have to be prioritized according to some characteristics or criteria which was
defined by Franke (1982). The major criteria are accuracy, speed, storage, visual
aspects, sensitivity to parameters and ease of implementation.

6.3.1 Sheet Metal Cutting with Laser Radiation

The major quality criterion in laser cutting applications is the formation of adherent
dross and ripple structures on the cutting kerf surface accompanied by a set of
properties like gas consumption, robustness with respect to the most sensitive
parameters, nozzle standoff distance and others. The ripples measured by the cut
surface roughness are generated by the fluctuations of the melt flow during the
process. One of the main research demands is to choose parameter settings for the
beam-shaping optics that minimize the ripple height and changes of the ripple
structure on the cut surface. A simulation tool called QuCut reveals the occurrence
of ripple formation at the cutting front and defines a measure for the roughness on
the cutting kerf surface. QuCut is developed at Fraunhofer ILT and the department
Nonlinear Dynamics of Laser Processing (NLD) at RWTH Aachen as a numerical
simulation tool for CW laser cutting taking into account spatially distributed laser
radiation. The goal of this use case was to find the optimal parameters of certain
laser optics that result in a minimal ripple structure (i.e. roughness). The 5 design
parameters of a laser optic (i.e. the dimensions of vector in formulas (6.1–6.5))
investigated here are the beam quality, the astigmatism, the focal position, and the
beam radius in x and y directions of the elliptical laser beam under consideration.
The properties of the fractional factorial design are listed in Table 6.1.

The selected criteria (i.e. y-vector in formulas (6.3–6.5)) was the surface
roughness (Rz in µm) simulated at a 7 mm depth of an 8 mm workpiece. The full
data set was 24948 samples in total. In order to assess the quality of the mathe-
matical interpolation, 5 different RBFN metamodels were generated according to 5
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randomly selected sample sets of size 1100, 3300, 5500, 11100 and 24948 data
points from the total dataset. As shown in Fig. 6.3, the metamodels are denoted by
Metamodel (A–E). Metamodel F, which is a 2D metamodel with a finer sampling
points denoted by the blue points, is used as a reference for comparison.

A 2fold cross-validation method was then used to give the quality of meta-
modeling, where 10 % of the training point sample was left out randomly of the
interpolation step and used for validation purposes. The Mean Absolute Error
(MAE) of the criterion surface roughness and the coefficient of determination (R2)
were then calculated and compared to each other. The results are listed in Table 6.2
below.

Table 6.1 Process design domain

Beam Parameters Minimum Maximum Sampling Points

Beam Quality M2 7 13 7

Astigmatism [mm] 15 25 9

Focal position [mm] −8 20 11

Beam Radius x-direction [µm] 80 200 6

Beam Radius y-direction [µm] 80 200 6
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Fig. 6.3 2D Contour Plots of different metamodels at M2 = 10, Astigmatism = 25 mm, Beam
Radius y = 134 µm. The polynomial linear regression metamodel (F) on the right contains more
sampling points and is shown here for evaluation of the metamodel quality (A–E)
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The results show that the quality of the metamodel is dependent on the number
of sampling points; the quality is improved when the number of training points is
increased. As visualization technique contour plots were used, which in their
entirety form the process map. The star-shaped marker, denoting the seed point of
the investigation, represents the current cutting parameter settings and the arrow
trajectory shows how an improvement in the cut quality is achieved. The results
show that in order to minimize the cutting surface roughness in the vicinity of the
seed point, the beam radius in the feed direction x should be decreased and the focal
position should be increased Eppelt and Al Khawli (2014) In the special application
case studied here the minimum number of sampling points with an RBFN model is
already a good choice for giving an optimized working point for the laser cutting
process. These metamodels have different accuracy values, but having an overview
of the generated tendency can support the developer with his decision making step.

6.3.2 Laser Epoxy Cut

One of the challenges in cutting glass fiber reinforced plastic by using a pulsed laser
beam is to estimate achievable cutting qualities. An important factor for the process
improvement is first to detect the physical cutting limits then to minimize the
damage thickness of the epoxy-glass material. EpoxyCut, also a tool developed at
Fraunhofer ILT and the department Nonlinear Dynamics of Laser Processing
(NLD) at RWTH Aachen, is a global reduced model that calculates the upper and
lower cutting width, in addition to other criteria like melting threshold, time
required to cut through, and damage thickness. The goal of this test case was to
generate a metamodel to the process in order to: (i) minimize the lower cutting
width; (ii) detect the cutting limits; and (iii) to efficiently generate an accurate
metamodel and at the same time use the minimal number of simulation runs. The
process parameters are the pulse duration, the laser power, the focal position, the
beam diameter and the Rayleigh length. In order to better understand the idea of the
smart sampling technique, the focal position, the beam diameter, and the Rayleigh
length were fixed. In order to generate a fine metamodel, a 20 level full factor
design was selected, this leads to a training data set that contains 400 simulation
runs in total illustrated as small white round points in Fig. 6.4.

Table 6.2 Data of the
metamodels Metamodel MAE/[µm] R2

A 7 13

B 15 25

C −8 20

D 80 200

E 80 200
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The metamodel takes the discrete training data set as an input, and provides the
operator with a continuous relationship of the pulse duration and laser power
(parameters) and cutting width (quality) as an output.

In order to address the first goal which is to minimize the lower cutting width,
the metamodel above allows a general overview of the the 2D process model.

It can be clearly seen that one should either decrease the pulse duration or the
laser power so that the cutting limits (the blue region determines the no cut region)
are not achieved. The second goal was to include the cutting limits in the Meta-
modelling generation. When performing a global interpolation techniques, the
mathematical value that represents the no cutting regions (the user set it to 0 in this
case) affects the global interpolation techniques.

To demonstrate this, a Latin Hypercube Design with 49 training points was used
(big white circles) with an RBFN interpolation. The results are shown in Fig. 6.5
below.

From the results in Fig. 6.5, the developer can totally realize that process that
contains discontinuities, or feasible and non-feasible points (in this case cut and no
cut) should be classified first into feasible metamodel and a dichotomy metamodel.

Fig. 6.4 EpoxyCut process
map generated on a 20 full
factorial grid

Fig. 6.5 An RBFN metamodel with Latin Hypercube design (49 sampling points) on the left, is
compared to the EpoxyCut with a Relative Error in % shown to the right
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The feasible metamodel improves the prediction accuracy in the cut region and
the dichotomy metamodel states whether the prediction lies in a feasible or a non-
feasible domain. This is one of the development fields that the authors of this paper
are focusing on.

To address the third goal which is to efficiently generate an accurate metamodel
and while using the minimal number of simulation runs. A smart sampling method
at the department Nonlinear Dynamics of Laser Processing NLD at RWTH is
currently being developed and will be soon published. The method is based on a
classification technique with a sequential approximation optimization where train-
ing points are being iteratively sampled based on defined statistical measures. The
results are shown in Fig. 6.6 below.

6.3.3 Sheet Metal Drilling

As example for heuristic approaches a reduced model for sheet metal drilling has
been implemented based on the heuristic concept of an ablation threshold. The
calculated hole shapes have been compared with experimental observations. Finally,
by exploring the parameter space the limits of applicability are found and the relation
to an earlier model derived from mathematical physics is revealed. Let Θ denote the
angle between the local surface normal of the sheet metal surface and the incident
direction of the laser beam. The asymptotic hole shape is characterized by a local
angle of incidence Θwhich approaches its asymptotic valueΘTh .The reduced model
assumes that there exists an ablation threshold characterized by the threshold fluence
Fth which is material specific and has to be determined to apply the model.

cosHThF ¼ FTH ;HTh ¼ 0 for F\FTH ð6:8Þ

Fig. 6.6 An RBFN metamodel with smart sampling algorithm (also 49 sampling points) on the
left, is compared to the EpoxyCut with a Relative Error in % shown to the right
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One single simulation run is used to estimate the threshold fluence FTh where the
width of the drill at the bottom is fitted. As consequence the whole asymptotic
shape of the drilled hole is calculated and is illustrated in Fig. 6.7 below.

Finally, classification of sheet metal drilling can be performed by identification
of the parameter region where the drill hole achieves its asymptotic shape. It is
worth to mention, that for the limiting case of large fluence F � Fth the reduced
model is well known from literature (Schulz 1986, 1987) and takes the explicit
form:

dz xð Þ
dx

¼ F
FTH

; z xThð Þ ¼ 0;F � FTh ð6:9Þ

where z(x) are is the depth of drilled wall and x is the lateral coordinate with respect
to the laser beam axis.

6.3.4 Ablation of Glass

As an example for classification of a parameter space we consider laser ablation of
glass with ultrashort pulses as a promising solution for cutting thin glass sheets in
display industries. A numerical model describes laser ablation and laser damage in
glass based on beam propagation and nonlinear absorption as well as generation of
free electrons (Sun 2013). Free-electron density increases until reaching the critical
electron density qcrit ¼ ðx2mee0Þ=e ¼ 3:95� 1021 cm�3; which yields the ablation
threshold.

The material near the ablated-crater wall will be modified due to the energy
released by high-density free-electrons. The threshold electron density ρdamage for
laser damage is a material dependent quantity, that typically has the value
ρdamage = 0.025 ρcrit and is used as the damage criterion in the model. Classification
of the parameter region where damage and ablation takes place reveal the threshold
in terms of intensity, as shown in Fig. 6.8 below, change from an intensity threshold
at ns-pulses to a fluence threshold at ps-pulses.

Fig. 6.7 Cross section and
shape (solid curve) of the drill
hole calculated by the reduced
model for sheet metal drilling
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6.4 Conclusion and Outlook

This contribution is focused on the application of the Meta-Modeling techniques
towards Virtual Production Intelligence. The concept of Meta-modelling is applied
to laser processing, e.g. sheet metal cutting, sheet metal drilling, glass cutting, and
cutting glass fiber reinforced plastic. The goal is to convince the simulation ana-lysts
to use the metamodeling techniques in order to generate such process maps that
support their decision making. The techniques can be applied to almost any eco-
nomical, ecological, or technical process, where the process itself is described by a
reduced model. Such a reduced model is the object of Meta-Modeling and can be
seen as a data generating black box which operates fast and frugal. Once an initial
reduced model is set then data manipulation is used to evaluate and to im-prove the
reduced model until the desired model quality is achieved by iteration. Hence, one
aim of Meta-Modeling is to provide a concept and tools which guide and facilitate
the design of a reduced model with the desired model quality. Evalu-ation of the
reduced model is carried out by comparison with rare and expensive data from more
comprehensive numerical simulation and experimental evidence. Finally, a Meta-
Model serves as a user friendly look-up table for the criteria with a large extent of a
continuous support in parameter space enabling fast exploration and optimization.

The concept of Meta-Modeling plays an important role in improving the quality
of the process since: (i) it allows a fast prediction tool of new parameter settings,
providing mathematical methods to carry out involved tasks like global optimiza-
tion, sensitivity analysis, parameter reduction, etc.; (ii) allows a fast user interface
exploration where the tendencies or patterns are visualized supporting intuition; (iii)
replaces the discrete data of current conventional technology tables or catalogues
which are delivered almost with all the manufacturing machines for a good oper-
ation by continuous maps.

Fig. 6.8 Cross section and shape (solid curve) of the drill hole calculated by the reduced model
for sheet metal drilling
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It turns out that a reduced model or even a Meta-Model with the greatest
accuracy is not necessarily the “best” Meta-Model, since choosing a Meta-Model is
a decision making procedure that involves compromises between many criteria
(speed, accuracy, visualization, complexity, storage, etc.) of the Meta-Model
quality. In the special application case studied here the minimum number of
sampling points with a linear regression model is already a good choice for giving
an optimized working point for sheet metal cutting, if speed, storage and fast
visualization are of dominant interest. On the other hand when dealing with high
accuracy goals especially when detecting physical limits, smart sampling tech-
niques, nonlinear interpolation models and more complex metamodels (e.g. with
classification techniques) are suitable.

Further progress will focus on improving the performance of generating the met-
amodel especially developing the smart sampling algorithm, and verifying it on
other industrial applications. Additional progress will focus on allowing the crea-
tion of a metamodel that handles distributed quantities and not only scalar quanti-
ties. Last but not least, these metamodels will be interfaced to global sensitivity
analysis technique that helps to extract knowledge or rules from data.
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