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1. Introduction 

Consider the partial differential equation 

{ -V. (q(x)Vu) = f in 0 C Rd , 

u = 0 on ao. (1) 

We want to use observations of the solution u to recover the coefficient 
q(x). We shall especially treat the case that q(x) has discontinuities and 
is piecewise constant. 

In this work, we shall combine the ideas used in [5J and [2J to use level 
set methods to estimate the coefficient q(x). The level set method was 
first proposed in Osher and Sethian [8J. This method associate a two­
dimensional closed curve with a two-dimensional function. Extensions 
to higher dimensions are also easy, see Ambrosio and Soner [1 J. The 
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advantage of using level set method is that it gives a better tool for 
evolving curves that may disappear, merge with each other, or pinch off 
with each other. 

The level set method has been used for some inverse problems in 
[4, 10], etc. The work of [5] seems to be the first one to apply the level 
set idea to estimate the coefficient q(x) from the equation (1). The work 
of [5] only works when the coefficient q(x) takes two constants values, 
i.e. they can only handle one level set function. Several approaches 
have been proposed to use multiple level set functions (not for inverse 
problems, but for fluid and image problems) [2, 13]. The approach of [2] 
is easy to implement and has been well tested for image segmentation 
problems. In this work, we are trying to use the idea of [2] for the 
parameter estimation problem. See also [11, 12] for some related works 
in using Heaviside functions to identify shapes and boundaries. 

2. Level set methods 

Here, we state some of the details of the level set idea. Let r be a 
closed curve in D. Associated with r, we define ¢ as a signed distance 
function by 

¢(x) = { distance(x, r), 
-distance(x, r), 

x E interior of r 
x E exterior of r, 

In many applications, the movement of the curve r can be described by 
a partial differential equation of the function ¢. The function ¢ is called 
a level set function for r. In fact, ¢ is the unique viscosity solution null 
on r for the following partial differential equation 

1\7¢1 = 1, in D. (2) 

In this work, we shall use the level set method to identify the coeffi­
cient q which is assumed to be piecewise constant. First look at a simple 
case, i.e. assume that q has a constant value ql inside a closed curve r 
and is another constant q2 outside the curve r. Utilizing the Heaviside 
function H(¢), which is equal to 1 for positive ¢ and 0 elsewhere, it is 
easy to see that q can be represented as 

q = qlH(¢) + q2 (1 - H(¢)) . (3) 

In order to identify the coefficient q, we just need to identify a level set 
function ¢ and the piecewise constant values qi. 

If a function has many pieces, then we need to use multiple level 
set functions. This idea was introduced in Chan and Vese [2]. As­
sume that we have two closed curves rl and r2, and we associate the 
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two level set functions <Pj, j = 1,2 with these curves. Then the do­
main Sl is divided into the four pars Sl++ = {XESl, <Pi > 0, <P2 > O}, 
Sl+_ = {XESl, <Pi > 0, <P2 O}, Sl_+ = {XESl, <Pi 0, <P2 > O}, 
Sl __ = {XESl, <Pi 0, <P2 ::; O}. 

Allowing some of the sub domains defined above to be empty, we can 
easily handle the case that the zero level set curves could merge, split 
or disappear. Using the Heaviside function again, we can express q with 
possibly up to four pieces with constant values as 

q = ql H (<Pl)H(<P2) + q2H (<pd(1 - H(<p2))+ 
+q3(1 - H(<Pl))H(<P2) + q4(1 - H(<pl))(l - H(<p2))' 

(4) 

By generalizing, we see that n level set functions give the possibility 
of 2n regions. In that case, q would look like 

q = ql H (<Pi) H (<p2) ... H (<Pn) + 
+q2 (1 - H (<Pi)) H (<P2) ... H (<Pn) + 

(5) 

Even if we need less than 2n distinct regions, we can still use n level 
set functions since some sub domains may be empty. In using such a 
representation, we need to determine the maximum number of level set 
functions we want to use before we start. 

For many practical applications, such kind of a priori information is 
often available or is chosen according the measurements that are avail­
able to us. Also, to ensure ellipticity of equation (1), we need each qi to 
be positive, that is, we assume that there exist 0 < ai < bi < 00 that 
are known a priori such that qi E [ai, bi]. 

3. The parameter identification problem 

We shall try to identify the coefficient q from a measurement of u on 
a sub domain n. We shall perform the numerical tests both for the case 
that n = Sl and the case that n c Sl. In case that n = Sl, existence and 
uniqueness of the inverse problem is already known. For general cases, 
studies about existence and uniqueness are still missing in the litera­
ture. In this work, the parameter identification problem is formulated 
as a least-square minimization problem and then we propose to use the 
augmented Lagrangian method to solve the least-squares minimization 
problem with the equation as constraint. 

We start by defining the equation error of equation (1) as e = e(q, u) E 
HJ(Sl) which is the variational solution of 

(Ve, Vv) = (qVu, Vv) - (I, v), \Iv E HJ(Sl). (6) 
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Here and later (.,.) denotes the L2-innerproduct over n. We will also use 
the notation 1/·11 to denote the asociated norm. For a given q and a given 
u, we say that they satisfy the equation (1) if and only if e(q,u) = O. In 
order to solve our inverse problem, we shall try to find a q and u such that 
e(q, u) = 0 and also fits the measurements u best among all admissible 
functions q and u. Using the level set functions, the coefficient q will be 
represented as functions of the level set functions <Pj and the piecewise 
values qi and the minimization problem we need to solve takes the form 

minu (-21 I/u - Ul/i2(s1) +,s t r IV' H (<pj) IdX) , (7) 
q.,<p), i=l } 0. 

under the conditions e(q, u) = 0, 1V'<pjl = 1, Vj. 

In the above q is a function of <Pj and qi. The constraint e(q, u) = 0 
makes sure the equation error is zero. The first term tries to min­
imize the deviation between the calculated u and measured U, while 

In IV' H (<pj) Idx in the second term is referred to as a regularization 
term. In case that n is a one-dimensional domain, then In IV' H (<pj) Idx 
equals to the number of points that the level set functions <Pj equals 
zero. If n is two-dimensional, it is the length of the zero level set curves 
of <pj. For three-dimensional cases, then it is the area of the zero level 
set surfaces of <pj. 

To solve (7), we use the augmented Lagrangian formulation, and the 
corresponding Lagrangian functional L : R2n X [Lip(n)]n x HJ(n) x 
HJ(n) f-r R is 

L(qi' <Pj, u, A) = I/u - Ul/i2(s1) + 

+,st l lV'H(<pj)ldx + l/V'el/ 2 - (V'A, V'e). 
j=l 0. 

(8) 

The Lagrangian multiplier A is only trying to enforce the equation con­
straint e(q, u) = O. The other constraints 1V'<pjl = 1 will be enforced by 
some other methods well developed for the level set methods. Due to the 
fact that the <pj'S are the viscosity solutions for the Eikonal equation, it 
is not easy to enforce them by the Lagrangian multiplier method. 

In order to find a minimizer for the minimization problem (7), we 
shall use an algorithm of the type of the Lancelot method which will be 
given later in this section. The algorithm needs the derivatives of the 
Lagrangian functional with respect to the minimization variables. 
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3.1. Calculation of V qiL 

The derivative of L with respect to qi is 

From (6), it follows that the derivative of \7e with respect to qi is 

Taking v to be ce - .\ gives 

8L (8q ) 
8qi = 8qi \7u, \7(ce -.\) . 

It is trivial to calculate the derivative of q with respect to qi when using 
equation (5). 

3.2. Calculation of V rpj L 

For clarity of the presentation, we shall first calculate the Gateaux 
derivative of the regularization term, i.e. we first calculate the Gateaux 
derivative for the following functional 

Here and later, J denotes the Dirac-function. To get the derivative of R 
with respect to <Pj in the direction /-Lj, we proceed 

Applying Greens formula to the last term which can be theoretically 
verified by replacing the delta function by a smooth function and then 
passing to the limit, we will get that 
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which indicates that 

oR \1rPj 
0rPj = -o(rPj)\1 . l\1rPjl· 

Denote the Gateaux derivative of L with respect to rPj in the direction 
/-lj as . /-lj. The Gateaux derivative in this case is 

. /-lj = C ( \1 e, \1 (:;j . /-lj) ) - (\1 A, \1 (:;j . /-lj ) ) + f3 . /-lj 

( oe ) oR = \1orPj ·/-lj,c\1e- \1A +f3orPj ./-lj. 

The derivative of e with respect to rPj in the direction /-lj is 

(10) 

From (5), it is easy to calculate the Gateaux derivative -II; . /-lj. For 
simplicity of the presentation, let us take the case that we only have 
two level set functions. Then q takes the form (4). Consequently, the 
Gateaux derivative for the function rPj in a direction /-lj is 

:;1 . /-l1 = [(q1 - q3)H(rP2) + (q2 - q4)(1 - H(rP2)]O(rP1)/-l1 (11) 

:;2 . /-l2 = [(q1 - q2)H(rP1) + (q3 - q4)(1- H(rP1)]O(rP2)/-l2. (12) 

3.3. Calculation of V uL 

We perturb u to u + w and try to calculate the Gateaux derivative 
of L with u in the direction w. First note that 

(\1 . w) , \1V) = (q\1w, \1v), Vv E HJ(O), 

and 

. w= (u - u,w)£2(n) + C (\1e, \1 . w)) - (\1A' \1 . w)) 

= (u - u,w)£2(n) + (\1(ce- A), \1 . w)). 
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Combining the above two equalities, it is true that 

. w = (u - il, w)P(O) + (V(ce - A), qVw). 

This indicates that 

= (u - il)Xo - V· (qV(ce - A)), 

where Xo is the characteristic function for the subdomain D, i.e. 

Xo(x) = 1 if xED and Xo(x) = ° if x tt D. 

3.4. An algorithm of Lancelot type 

To solve the minimization problem (8) we will use a Lancelot type 
algorithm, as described in Conn, Gould and Toint [3J. In our case, the 
algorithm can be written as follows 

Algorithm 1 Choose qP, cfJJ, uO as initial guess for the solution, and 

set AO = 0, k = 0. Also chose initial tolerances Em > 0, Ee > 0, and the 
parameters c > 0, fJ > 0, w > 1. 

Then iteratively do the following steps: 

1. Find an approximative minimum (qf+1, cfJj+1, u k+1) of equation 

(8) such that IIVq;+1,.pJ+l,uk+1LII ::; Em· 

2. If IIVel1 < Ee , update A by Ak+1 = Ak - ce ( qf+1, cfJj+1, u k+1) , 

else update c by c t- wc. 

3. Decrease Em, Ee , and set k t- k + 1. 

In the first step of the iteration, we actually try to solve the minimiza­
tion problem. Since A is not solved for, neither do we need to drive IIV LII 
to zero. The second step checks to see if the equation error is sufficiently 
small, and if so is the case, A may be updated. Should the error not 
be small, the penalty parameter c is increased, making the augmented 
Lagrangian functional more dominated by the IIVel12 term. With these 
steps, we can decrease the tolerances, and go to the next iteration. 

For the minimization problem, one may chose any suitable method for 
nonlinear, unconstrained problems, such as the method of steepest de­
scent, the non-linear conjugate gradients, or the Quasi-Newton methods. 
Steepest descent methods, while being simple to implement, are known 
for giving low performance, and the Quasi-Newton methods needs care­
ful implementation and provisions to limit memory usage, but they often 



196 ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS 

yield excellent performance. In our case, the nonlinear conjugate gradi­
ents method was found suitable. It has good performance, low memory 
usage, and is easy to implement. See [7] for more information regarding 
these methods. 

There are some aspects of our minimization that require additional 
explanation. We compute the composite derivative of L, that is a vector 
consisting of V' q;,l, then V' </J7,l and finally V' uk,l. This makes us minimize 

L with all the unknowns simultaneously. The reason for doing this in­
stead of optimizing each unknown separately is that the latter approach 
is equivalent to a coordinate descent method, giving poor convergence. 
However, there may be problems finding an optimal steplength for this 
composite search direction, ie. cPj may require a smaller steplength than 
u. By defining 

u = SU, s> 0, 

and using u in the optimization, the rate of convergence may be im­
proved. We have in our experiments chosen s experimentally. 

We also need to enforce constraints on qi and cPj. The former is just to 
set qi = min{max{qi' ai}, bi}, while for the latter we would try to ensure 
that 

lV'cPJ+11 = 1, cPJ+l = ° on rj. 
For a one-dimensional problem, this can easily be done, but in higher 
dimensions we can use methods described in Osher and Fedkiw [9], and 
Smereka, Sussman, Fatemi and Osher [6]. There are fast and cheap 
algorithms to solve this problem, see [6, 9]. 

4. Numerical experiments 

In our numerical tests, we will consider three cases. First, the qi's 
are all known, and we try to identify cPj and U; then we perturb qi, and 
attempt to identify cPj and u with qi fixed. Thirdly, we add noise to il, 
and try to identify cPj and u while qi is known. 

The equation we will use is 

-V'. (qV'u) 
u 

27r2 sin(7rx) sin (7rY) , in 0 
0, on 80. 

(13) 

Here, 0 = (0,1) x (0,1). All experiments are done with a uniform, 2D 
mesh of 0, with 24 x 24 elements. The numerical parameters used are 
f3 = 10-7 , C = 5 . 10-6 , W = 1.1, s = 25. All the Figures show the zero 
level sets of the exact and of the computed cPl (in the lower-left corner) 
and cP2 (in the upper-right corner) in the various situations that we have 
considered. 
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(a) Initial (b) Final 

Figure 1. Drawing of the zero level set curves for equation (13). The dashed lines 
are the exact zero level sets, and the solid lines are the computed solution. This 
is the first case, and convergence was attained after about 300 iterations. Also, 
Iluh - uI12 1.1906.10-4 at time of convergence. 

------------

(a) Coefficient q- (b) Coefficient q+ 

Figure 2. The dashed lines are the exact zero level sets, and the solid lines are the 
computed solution. This is the second case, with perturbed qi'S and we start with 
the same initial levelsets as in the first case. For q-, it took about 350 iterations 
to converge, and Iluh - ul12 1.3027· 10-4 at that time, while for q+ it only took 
about 100 iterations, and here Iluh - ul12 1.1182· 10-4 • Since the discontinuities 
are smaller in this latter case, this quicker convergence is expected. 
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:[>0: 0 I: 
\ 1 I ' 

: : !J' : 
I I I I 
I r I I 

______________ i _: 
, , ' , ., 
1- ___________________ • ___ '_-

" - - -
b ___________ _______ ______ _ 

(a) Noise amplitude 10-2 (b) Noise amplitude 5.10-3 

(c) Noise amplitude 10-3 

Figure 3. The dashed lines are the exact zero level sets, and the solid lines are the 
computed solution. Here is the third case, with noise added to fl. After about 100 
iterations, we had convergence, and the error lIuh -u112 was about 1.7251.10-4 ,1.5019. 
10-4 and 1.4223.10-4 for noise amplitudes of 10-2 ,5. 10-3 and 10-3 respectively. 
More noise made it generally impossible to get convergence, and with less noise the 
solution was not distinguishable from the case without noise. 
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We shall use q given as follows. ql = 1 when (PI, (h :::; 0, q2 = 1 + 21/ 3 

when (PI :::; 0, <P2 > 0, q3 = 1 + 22/3 when <PI > 0, <P2 :::; 0, and finally 
q4 = 3 when <PI, <P2 > 0. <PI is positive within the union of the following 
rectangles 

{x, y:3/ 4<x<7 /8, 1/8<y<7/8} U {x, y : 1/8<x<7/8, 3/ 4<y<7 /8}, 

and <P2 is likewise positive within this union 

{x,y:1/8<x<1/4, 1/8<y<7/8} U {x,y: 1/8<x<7/8, 1/8<y<1/4}. 

In all cases, we let n extend from the boundary of n and into the 
interior by a length of 1/3 from all sides. In the remainder, we let n be 
coarser than n by a factor of two. Thus we have complete observations 
u along the boundary, and coarser observations in the interior. Note 
that IIV'ull ° near the center of n. Because of this, we cannot easily 
identify q in the center since for IIV'ull = 0, q is no longer unique. 

Solving for the first case yields the results in Figure 1, which are quite 
accurate. 

For the second case, we will use the two sets of qi coefficients q- and 
q+, and they are given as follows. qt = ql ± 0.1, = q2 ± 0.051, 
qi = q3 =t= 0.05, q4 = q4 ± O.l. 

Note that the perturbations in q- create larger jumps, while in q+ 
the jumps are smaller. The results are in Figure 2, and we see that it 
is easier to identify q+ rather than q- due to smaller jumps. Also note 
that the deviations from Figure 1 are small. 

We now come to the third case where we will add noise to our ob­
servations, and try find <Pj and u. Adding normally distributed noise of 
varying magnitude gives us the results in Figure 3. Having larger noise­
magnitude than 10-2 makes it generally hard to get convergence, while 
a noise-magnitude of less than 10-3 hardly makes much of an impact on 
our case. 
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