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Abstract We consider a Cauchy problem for nonconvex quasi-linear differential 
inclusions in non separable Banach spaces and we prove that the set of 
mild solutions of this problem is dense in the set of mild solutions of the 
convexified problem. 
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1. Introduction 

In this paper we consider quasi-linear differential inclusions of the 
form 

x'(t) E A(t, x(t))x(t) + F(t, x(t)), a.e.([O, TJ), x(O) = a, (1.1) 

where A(t, w) is a linear operator from the real Banach space X in X, 
tEI:= [0, T], w belongs to an open and nonempty set D c X and F 
is a set-valued map from I x X to P(X). 

Qualitative properties and structure of the set of solutions of this 
problem have been studied by many authors ([1], [2], [8], [9], [10], [12J 
etc). In [9J it is shown that if X is a separable Banach space, the set of 
mild solutions of the problem (1.1) is dense in the set of mild solutions 
of the convexified (relaxed) problem: 

x'(t) E A(t,x(t))x(t) + coF(t,x(t)), a.e.([O,TJ), x(O) = a. (1.2) 

If the operator A depends neither on t nor on w the quasi-linear 
inclusions (1.1)-(1.2) reduce to the corresponding semilinear problems 

x'(t) E Ax(t) + F(t, x(t)), a.e.([O, TJ), x(O) = a, (1.3) 
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x'(t) E Ax(t) + coF(t, x(t)), a.e.([O, T]), x(O) = a. (1.4) 

Recently, De Blasi and Pianigiani ([4]) established a relaxation result for 
the problems (1.3), (1.4) in an arbitrary, not necessarily separable, Ba­
nach space X. Even if the general ideas of proving a relaxation theorem 
are still present, the approach in [4J has a fundamental difference which 
consists in the construction of the measurable selections of the multi­
function. This construction does not use classical selection theorems as 
Kuratowsky and Ryll-Nardzewski ([7]) or Bressan and Colombo ([3]). 

The aim of this paper is to extend the result in [4J to the more general 
problem (1.1). We will prove the relaxation property of mild solutions 
for problem (1.1) in an arbitrary space X. The proof of our main result 
follows the general ideas in [4J and [9J. 

2. Preliminaries 

Consider X an arbitrary real Banach space with norm 11.11 and let 
P(X) be the space of all bounded nonempty subsets of X endowed with 
the Hausdorff pseudometric 

dH(A,B) = max{d*(A, B), d*(B, A)}, d*(A, B) = supd(a,B), 
aEA 

where d(x, A) = infaEA Ilx - all, A c X, x E X. 
Let I:- be the o--algebra of the (Lebesque) measurable subsets of R 

and, for A E 1:-, let f-t(A) be the Lebesque measure of A. 
Let Y be a metric space. An open (resp. closed) ball in Y with center 

y and radius r is denoted by By(y, r) (resp. By(y, r)). For any set 
A c Y we denote by coA the closed convex hull of A. In what follows 
B = Bx(O, 1) and 1= [O,lJ. 

A multifunction F : Y -7 P(X) with closed bounded nonempty values 
is said to be dH-continuous at Yo E Y if for every E > 0 there exists 6 > 0 
such that for any y E By (Yo, r) we have dH(F(y), F(yo)) :::; E. F is called 
dH-continuous if it is so at each point Yo E Y. 

Let A E 1:-, with f-t(A) < 00. A multifunction F : A -7 P(X) with 
closed bounded nonempty values is said to be Lusin measurable if for 
every E > 0 there exists a compact set K  C A, with f-t(A\K ) < E such 
that F restricted to K  is dH-continuous. 

It is clear that if F, G : A -7 P(X) and f : A -7 X are Lusin mea­
surable then so are F restricted to B (B c A measurable), F + G and 
t -7 d(j(t), F(t)). Moreover, the uniform limit of a sequence of Lusin 
measurable multifunctions is also Lusin measurable. 

As usual we denote by Ll (I, X) the Banach space of all Bochner 
integrable functions x(.) : I -7 X endowed with the norm Ilx(.)lll 

Ilx(s)llds. In what follows we shall use the following assumptions. 



Quasi-linear differential inclusions 103 

Hypothesis 2.1. a) F : I x X P(X) is a set-valued map with 
closed bounded nonempty values and for any x EX, F(., x) is Lusin 
measurable on I. 

b) There exists an integrable function k(.) E Ll(I, R) such that 

dH(F(t, x), F(t, y)) :::; k(t)llx - yll V(t, x), (t, y) E I x X. 

c) There exists q(.) E Ll(I, R) such that for any continuous function 
x(.) E C(I, D) and any tEl we have 

F(t, x(t)) c q(t)B. 

A family of bounded linear operators U (t, s) on X, 0 :::; s :::; t :::; 1 
depending on two parameters is said to be an evolution system ([11]) if 
the following conditions are satisfied 

1) U(s,s) = 1, U(t,r)U(r,s) =U(t,s) 0:::; s:::; r:::; t:::; T 
2) (t, s) U(t, s) is strongly continuous, i.e. 

limU(t, s)x = x, Vx E X. 
t"'"s 

Hypothesis 2.2. a) X is a real Banach space and D C X is an open 
nonempty set. 

b) For any UEC(I,D) the family of linear operators {A(t,u), tEI} 
generates a unique strongly continuous evolution system Uu(t, s), 
0:::; s:::; t:::; T. 

c) If u E C(I, D), the evolution system Uu(t, s), 0 :::; s :::; t :::; T 
satisfies: 

there exists M 2:: 0 such that IIUu(t, s)11 :::; M, 0 :::; s :::; t :::; T, 
uniformly in u; 

for any u, v E C(I, D) and any wED we have 

By a mild solution of the Cauchy problem (1.1) we mean a function 
x(.) : I X satisfying the following conditons: 

i) x(.) is continuous on I with x(O) = a 
ii) there exists a Lusin measurable function f(.) : I X, Bochner 

integrable such that 

f(t) E F(t, x(t)), Vt E I, 

x(t) = Ux(t, O)a + fat Ux(t, s)f(s)ds, Vt E I. 
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According to [4] in the above definition the Lusin measurability of 
f(.) is equivalent to the (strong) measurability of f(.). 

We recall some results we shall use in the sequel. 
Lemma 2.3. ([4]) Let F : 1 x X -t P(X) be a set-valued map with 
closed bounded nonempty values that satisfies Hypothesis 2.1. Then, for 
any x(.) : 1 -t X continuous, u(.) : 1 -t X measurable and E > 0 we 
have: 

a) the multifunction t -t F(t, x(t)) is Lusin measurable on 1. 
b) the multifunction G : 1 -t P(X) defined by 

G(t) := (F(t, x(t)) + EB) n Bx(u(t), d(u(t), F(t, x(t))) + E) 

has a Lusin measurable selection f : 1 -t X. 
Lemma 2.4. ([9]) Suppose that Hypothesis 2.2 is satisfied and that each 
quasi-linear Cauchy problem 

E A(t, xn(t))xn(t) + fn(t), a.e.([O, T]), xn(O) = a, 

n E N, has a mild solution 

xn(t) = UXn (t, O)a + lot UXn (t, s)fn(s)ds, tEl. 

Suppose, also, that there exists x E C(I, X) and f E L1(1, X) such 
that Xn -t x in C(I, X), fn -t f in L1(1, X) and the set {J} U {fn}nEN 
is integrably bounded by a function m E L1 (I, X). Then, 

x(t) = Ux(t, O)a + lot Ux(t, s)f(s)ds, Vt E 1. 

3. The main result 

In order to prove our main result we need the following lemma which 
is a quasi-linear version of Lemma 4.2 in [4], obtained for linear differ­
ential inclusions. The proof can be easily performed through the same 
arguments employed to establish Lemma 4.2 in [4]. 
Lemma 3.1. We assume that Hypotheses 2.1-2.2 are satisfied. Let 
a E X and let y(.) : 1 -t X be a mild solution of the relaxed problem 
(1.2). Then, for any 0 < (7 < 1 there exists a mild solution xo(.) : 1 -t X 
of the Cauchy problem 

X'(t)EA(t,x(t))x(t)+F(t,x(t))+<Pu(t)B, a.e.([O,T]), x(O) = a, (3.1) 

where <Pu(.) E L1(1, [0,00)) with J5 <Pu(t)dt < 2(7, such that 

Ilxo(t) - y(t)11 < (7, Vt E 1. 



Quasi-linear differential inclusions 105 

Our main result states that the set of mild solutions of the problem 
(1.1) is dense in the set of mild solutions of the convexified (relaxed) 
problem (1.2). 

Theorem 3.1. We assume that Hypotheses 2.1-2.2 are satisfied. Let 
a E X and let y(.) : I ---+ X be a mild solution of the convexified problem 
(1.2). Then, for every  > 0 there exists a mild solution x(.) : I ---+ X of 
the problem (1.1) such that: 

Ilx(t) - y(t)11 < €, Vt E I. 

Proof. Let y(.) : I ---+ X be an arbitrary mild solution of the Cauchy 
problem (1.2) and let 0 <  < 1. We define 

L(t) := lot M(llall + Ilqlh +  + k(s))ds, tEl. 

Fix (J such that 0 < (J < Let <Pu(.) E L1(I, [0, (0)) such 

that <Pu(t)dt < 2(J. 
By Lemma 3.1 there exists a mild solution xo(.) I ---+ X of the 

problem (3.1) such that: 

Ilxo(t) - y(t)11 < (J, Vt E I. (3.2) 

By definition of mild solution xo(.) is continuous, xo(O) = a and there 
exists a Lusin measurable function fo(') : I ---+ X, Bochner integrable 
such that 

fo(t) E F(t, xo(t)) + <Pu(t)B, tEl, (3.3) 

xo(t) = Uxo(t, O)a + lot Uxo(t, s)fo(s)ds, tEl. (3.4) 

Let (In = 2:+2 and po(t) := d(Jo(t), F(t, xo(t))), tEl. 
Since xo(.) is continuous, by Lemma 2.3 there exists a Lusin measu­

rable function II (.) : I ---+ X satisfying, for tEl, 

lI(t) E (F(t, xo(t)) + lB) n Bx(Jo(t), d(Jo(t), F(t, xo(t))) + (J1) 

Hence II (.) is also Bochner integrable on I. Define Xl (.) : I ---+ X by 

X1(t) = Uxo(t, O)a + lot Uxo(t, s)lI(s)ds, Vt E I. 

By reccurence, we construct a sequence {xn}n of continuous functions 
Xn : I ---+ X, n 2: 2 given by 

xn(t) = UXn _ 1 (t, O)a + lot UXn _ 1 (t, s)fn(s)ds, tEl, (3.5) 
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with fn(.) : f -t X a Lusin measurable function satisfying, for t E f, 

fn(t)E(F(t, Xn-l (t) )+O"nB)nBx(fn-l (t), d(fn-l (t), F(t, Xn-l (t)))+O"n). 
(3.6) 

From (3.6), for n 2:: 2, we obtain 

Ilfn(t) - fn-l (t) II ::; d(fn-l (t), F(t, Xn-l (t))) + O"n ::; 

::; d(fn-l(t), F(t, Xn-2(t))) + dH(F(t, Xn-2(t)), F(t, Xn-l(t))) + O"n 

::; O"n-l + k(t)llxn-l(t) - xn-2(t)11 + O"n· 

Since O"n-l + O"n < O"n-2 we deduce, for n 2:: 2, that 

Ilfn(t) - fn-l(t)11 ::; O"n-2 + k(t)llxn-l(t) - xn-2(t)lI· (3.7) 

Define r(t) := M JJ(po(s) + O")ds, t E f. 
One has 

IIXl(t) - Xo(t) II ::; lot IIUxo(t, s)fr(s) - Uxo(t, s)fo(s) lids ::; 

::; M lot (po(s) + O")ds = r(t) 

Clearly, by (3.3) po(t)::;CPu(t), VtEf, hence Po (t)dt::; CPu(t)dt<20". 
Thus, r(l) = M + O")ds < 3MO". 

By reccurence, we shall prove that, for n 2:: 1, one has 

(L(t))n-l 
IIxn(t) - xn-l(t)11 ::; r(t) (n _ I)! Vt E f. (3.8) 

For n = 1 the inequality is already proved. 
Assuming that (3.8) is valid for n, we show that (3.8) holds for n + 1. 

Using (3.5)-(3.8) one has 

I IXn+1(t) - xn(t)ll::; IIUxn(t,O)a -UXn_1(t,0)all+ 

lot IIUxn (t, s )fn+l (s) - UXn _1 (t, s )fn( s) lids ::; 

::;Mllaillotllxn(s)-Xn_l (s )llds+ IotllUxn (t, s)fn+1(s)-UXn (t, s)fn(s)llds+ 

+ lot IIUxn(t,s)fn(s) -UXn_1(t,s)fn(s)llds::; 

::;Mllall lot IIxn(s) - xn-l(s)I'ids + M lot IIfn+1(s) - fn(s)lIds+ 
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+ lot Mllfn(r)ll(lt IIXn(S) - Xn-l(s)llds)dr:::; 

:::;Mllaillotllxn( s )-Xn-l (S) Ilds+ M lo( O"n-l +k(s )llxn(s )-Xn-l (S) I J)ds+ 

+ lotM(llqlll +O"n)llxn(s)-Xn-l (s) lids:::; lot[M(llall+llqllr +O"n-2)+ 

+Mk(s)lllxn(s) - xn-l(s)llds :::; lot L'(s)llxn(s) - xn-l(s)llds :::; 

:::; rt L'(s)r(s) (L(s))n-l ds < r(t) (L(t))n. 
Jo (n -1)! n! 

From (3.8) we obtain 

Therefore 

Ilxn(t) - xo(t)11 :::; L Ilxk(t) - Xk-l(t)11 :::; 

n-l (L(t))k 
:::; r(t) L , < r(l)eL (l). 

k=l k. 

IIXn(t) - xo(t)11 :::; 3MeL(1)0", tEl. 

On the other hand, from (3.4) it follows that 

(3.9) 

From (3.10) it follows that the sequence {xn}n converges uniformly 
on I to a continuous function, x(.) : I --? X. 

In view of of (3.7) we have 

Ilfn+1(t) - fn(t)11 :::; O"n-l + k(t)r(l) (L(l?)n, tEl, (3.6) 
n. 

which implies that the sequence {fn}n converges to a Lusin measurable 
function f(.) : I --? X. From (3.6) it follows that 

Ilfn(t)11 :::; Ilq(t)11 + 1 Vt E I,n E N, 

hence f is Bochner integrable on I. 
Letting n --? 00 and using Lemma 2.4 we conclude that x(.) is a mild 

solution of the Cauchy problem (1.1). 
From (3.9) we infer that 

Ilx(t) - xo(t)11 :::; 3MeL (1)0", tEl. (3.9) 
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Finally, from the last estimation, (3.2) and the choice of (T we deduce 

Ilx(t) - y(t)11 ::; Ilx(t) - xo(t)11 + Ilxo(t) - y(t)11 ::; 

::; (3M + l)eL (l)(T < E, tEl 

and the proof is complete. 

Remark 3.3. When the operator A depends neither on t nor on w 
problem (1.1) reduces to problem (1.3) and Theorem 3.1 yields known 
results, namely Theorem 4.1 in [4]. 
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