
9
Performance Study of Shared-Nothing
Parallel Transaction Processing Systems
Jiahong Wang, Jie Li· Hisao Kameda
Institute of Information Sciences and Electronics
University of Tsukuba
Tsukuba Science City, Ibaraki 305, Japan
Tel & Fax: +81-298-59-5521, Email: {wjh, lijie, kameda}@is.tsukuba.ac.jp

Abstract

Processing transactions in parallel brings us a new challenge: how to study the performance behavior
of parallel Transaction Processing (TP) systems with dynamic Two-Phase Locking (2PL) concurrency
control method analytically. In this paper, an analytic model is proposed for shared-nothing parallel
TP systems with dynamic 2PL with the no-waiting policy. In this model, a flow diagram is used for
characterizing the activities of transactions, and the steady-state average values of the variables are
used for analyzing this flow diagram. Using this model, the performance behavior of shared-nothing
parallel TP systems is studied. Analytic results are reported. Simulation experiments are performed
to validate the analysis. The predictions of this model agree well with the simulation results.

Keywords
Analytic model, concurrency control, parallel databases, performance evaluation, parallel transaction
processing, two-phase locking.

1 INTRODUCTION

In recent years shared-nothing parallel Transaction Processing (TP) systems (Stonebrak, 1986) have
become increasingly popular for their cost effectiveness, scalability, and availability. Examples are
DBC/I012 from Teradata (Teradata, 1983), Non-Stop SQL from Tandem (Tandem, 1987), Gamma
at the University of Wisconsin (DeWitt et al., 1986), and Bubba at MCC (Boral et al., 1990). In a
shared-nothing parallel TP system, there are numerous processors connected by an interconnection
network, each of which accesses its own memory. Records of each relation in database are declustered
across disk drives attached directly to each processor. A transaction is divided into subtransa.ctions
that are executed in parallel.

Two-Phase Locking (2PL) with the General Waiting (GW) policy is a widely-used Concurrency
Control (cq method in shared-nothing parallel TP systems. In 2PL with GW policy, a transaction

·COITe!Iponding author

Performance and Management of Complex Communication Networks
T. Hasegawa, H. Takagi & Y. Takahashi (Eds.) © 1998 IFIP. Published by Chapman & Hall

Shared-nothing parallel transaction processing systems 155

is blocked if it requests a data granule locked by another transaction, and the restart is initiated
only when there is a deadlock. Blocking transactions, however, has great negative effect on system
performance (Franaszek et al., 1985) (Tayet al., 1985a) (Thomasian, 1991). Especially, as the level of
data contention increases (e.g., by increasing the multiprogramming level (M), i.e., the total number
of transactions running concurrently in a TP system), the interaction between data contention and
2PL with GW policy causes such a snowball effect that the blocked transactions hold locks that they
have acquired and result in further blocking (Franaszek et al., 1985) (Tay et al., 1985b) (Thomasian,
1991). As a result, data contention thrashing (a sudden degradation in system performance due to the
excessive data contention) may occur. For dealing with the negative effect of 2PL with GW policy, so
far most of the effort has been devoted to the restart-oriented 2PL CC methods (Franaszek et al., 1985)
(Franaszek et al., 1993) (Hsu et al., 1992) (Ryu et al., 1990a) (Tayet al., 1985a). In restart-oriented
2PL CC methods, transactions may be restarted in resolving a lock conflict. A basic restart-oriented
2PL CC method is the 2PL with No-Waiting (NW) policy (Ryu et a1., 1990a) (Tay etal., 1985a). In
2PL with NW policy, a transaction is restarted whenever it attempts to lock a data granule held by
another transaction.

In this paper, we propose an analytic model for studying the performance behavior of shared­
nothing parallel TP systems with dynamic 2PL with NW policy. All the essential factors related with
parallel transaction processing, such as the subtransa.ction initiation, the Two-Phase Commit (2PC)
protocol, the degree of system parallelism, and the access skew, are taken into consideration. In this
paper, we concentrate on modeling data contention. Note that the solutions of our data contention
model can be easily coupled with other standard resource contention models, as done by other studies
(Ryu et al., 1990b) (Tayet al., 1985a) (Yu et al., 1993). Simulation is used to validate the analytic
model. The prediction of the analytic model agree well with the simulation result.

So far numerous analytic models (Chesnais et a1., 1983) (Franaszek et al., 1985) (Tay et al.,
1985a) (Thomasian, 1993) (Yu et al., 1993) have been developed for evaluating CC methods for the
centralized TP systems. For the parallel TP systems, especially for the shared-nothing parallel TP
systems, however, performance evaluation is performed mainly by simulation models or by database
testbeds. To the best of our knowledge, no analytic performance model study has been reported that
involves the evaluation of 2PL in the parallel TP systems. The lack of analytical studies may be
attributed to the complexity of parallel TP systems.

This paper is organized as follows. The model of the system and the notations used in this paper
are given in section 2. All the equations necessary for the analysis of this model are derived in section
3. The analysis of shared-nothing parallel TP systems is provided in sections 4 and 5. In sections 4
and 5 we also report simulation results to validate the analysis. Conclusion is presented in the last
section.

2 DESCRIPTION OF THE MODEL

A closed model of shared-nothing parallel TP systems with a fixed number (M) of activated transac­
tions is adopted. We do not use open models since open models are weak in analyzing the effect of
the maximal degree of transaction concurrency. The performance of the corresponding open· system
can then be obtained by a hierarchical solution method (Thomasian, 1993). This is not done here for
the sake of brevity. Note that in a closed model, a committed transaction is immediately replaced by
a new one.

156 Part IV Distributed and Parallel Systems

The parallel TP system (Fig. 1) is composed of Z+l nodes connected by an interconnection
network. Each node has its own processor, memory, disks, communication processor, and a copy of
system software. One of these nodes, known as the management node, is designated to handle all
such management functions as transaction initiation, commit, and restart. All these functions are
implemented by the Transaction Manager (TM) that resides at management node. The other Z nodes
are the data processing nodes. We refer to these data processing nodes as the node 1, node 2, ... ,
and node Z. The managerment node is referred to as the node Z+1. All the data processing nodes
have the same hardware configuration, and thereby have the same processing capacity.

The database, which consists of D data granules, is partitioned among Z data processing nodes
(DeWitt et al., 1986), one partition per node. Z is thereby the degree of declustering (DD) of the
database, which reflects the degree of system parallelism. A data granule, as a lockable unit of data,
consists of a group of records. All data granules have the same size, i.e., the same number of records.

Figure 1: A shared-nothing parallel TP system.

The complexity of 2PL in shared-nothing parallel TP systems makes it practically impossible to
find an exact analytic solution to its performance evaluation problem, even for extremely simplified
cases. We extend the mean-value approach presented by Tay et al. (Tay et al., 1985a) (Tay et al.,
1985b), where a flow diagram (Fig. 2) is used to chart the progress of transactions, and only the
steady-state average values of the variables, instead of the instantaneous values, are used. By ignoring
the probability distributions and avoiding the dynamics, analytic complexity is reduced. The accuracy
of the results, however, may be reduced accordingly, especially for a system with much larger variations
in arrivals and services. This is a weakness in our mean-value approach. It is argued, however, that
the average performance of the system is thereby estimated. The flow diagram of a shared-nothing
parallel TP system with dynamic 2PL with NW policy is shown in Fig. 2. In the following we explain
this flow diagram. Notations used here are summarized at the end of this section.

The transactions that have been committed or aborted are said to be at the initiating stage, which
corresponds to the management node. The transactions that are being committed are said to be at
the committing stage. The residence time of the transactions at the initiating (resp. committillg) stage
is assumed to be TTM (resp. Tern')' We assume that the transactions at the committing stag .. can
always be committed successfully.

A transaction is initiat.ed at the initiating stage by transaction manager. Transaction manager
initiates a transaction by splitting it into Z subtransactions and sending these subtransactions to the
data processing nodes by a broadcast message, one subtransaction per node. A subt.ransaction is

Shared-nothing parallel transaction processing systems 157

Figure 2: Flow diagram for a shared-nothing system with dynamic 2PL with NW policy. We refer
to the node identified by NJ,i in this diagram as stage (/,1). NJ,i for 0 ~ i ~ kJ is the number of
subtransactions holding i locks at node f NJ,k/+! is the number of subtransactions holding kJ locks
and waiting for its siblings for starting 2PC protocol. a J,i is the abort rate of subtransactions at stage
(/,.); cJ,; is the rate at which subtra.nsactions enter stage (/,.); t and a are transaction throughput a.nd
abort rate respectively.

called a sibling of the other subtra.nsactions. Subtransaction at node I for I = 1,2, ... , Z is assumed
to access kJ distinct gra.nules from node f. Since we can always auange the node number so that
k" ~ kh if Ii < 12, as a trick of the analysis, we assume that k/J ~ kh if Ii < h. Granules are
accessed uniformly and locked in exclusive mode (Ryu et al., 1990b) (Tayet al., 1985a) (Thomasian,
1993). Note that by distinguishing kl1 from kh we can characterize the access-skew of transactions to
data processing nodes. Also note that the stage (1, k, + 1) in Fig. 2 is ignored, since by the assumption
that kl1 ~ k/2 if Ii < 12, NUl+! is zero.

A subtransaction accessing kJ gra.nules consists of kJ + 2 steps. In Fig. 2, step i at node /is
represented by a graph node identified by NJ,i' The Oth step performs subtransaction initialization
and the first lock request for the first granule to be accessed. In the ith step (1 ~ i ~ kJ - 1),
the subtransaction accesses a granule to a disk, proceeds with a period of CPU usage for processing
this granule, and then requests a lock for the next gra.nule to be accessed. The kJ th step, after the
subtransaction completes its granule accessing and processing, leads to entering the last step, i.e.,
the wait-for-commit step kJ+l. The last step in turn leads to starting a 2PC protocol. Note that
until all the su btransactions of a transaction are completed, this transaction cannot be committed,
i.e., 2PC protocol cannot be started. Therefore those subtransactions that have completed all their
datarprocessing have to wait at their last step for their siblings to be completed.

A subtransaction acquires a lock if it is available, and proceeds with the execution of the next
step; otherwise the corresponding transaction, and thus all its subtransactions are aborted. The
aborted transaction is replaced immediately by a new transaction. Note that in real-life systems,
the transaction that encounters a lock conflict is aborted and will be restarted after its blocker is
committed or aborted by itself, and its place is taken by another transaction. This is equivalent to
the situation that the aborted transaction is restarted with a new sequence of lock requests (Tay et
al., 1985a) (Thomasian, 1993).

In order to simplify our model, the following assumption is introduced: If a sublransaclion en­
counters a lock conflict, its siblings can be informed of this fact with little delay compared with the

158 Part IV Distributed and Parallel Systems

duration 0/ a transaction step. This assumption seems restrictive. However, this is not really so. Let
us consider a shared-nothing parallel TP system with processor speed of 100MIPS, disk service time
of l3ms, and a high bandwidth interconnection network which introduces negligible delay (Franaszek
et al., 1993). Then the duration of a transaction step, denoted by C., can at least be estimated as
14ms. Since 2PL with NW policy is a restart-oriented CC method, provisions are made to reduce
the overhead of restarting a transaction. We postulate that a lock conflict message is broad casted to
all the related nodes from the node where the lock conflict occurs, and such a message is assigned a
high scheduling priority. Then the communication delay, denoted by Ce, is at most O.lms (the CPU
overhead to send and receive a message is taken to be 5000 instructions (Franaszek et al., 1993). Then
Ce/C. is only 0.0071 that is negligibly small. Therefore this assumption is acceptable.

The processing time of each step other than the last one is taken to be T. By Twe denote the service
demand for physical resources at each data processing node, such as accessing a disk, processing a
granule, initiating a subtransaction, aborting a subtransaction, and sending a message. The processing
time of the last step is derived from T. Given all the related service demands, T can be estimated by
analytic solution or simulation.

Note that in this paper T, TTM, and Tcmt are assumed to be given constants. It means that
there are unlimited hardware resources and no software bottlenecks in the system (Franaszek et al.,
1985) (Tay et al., 1985a) (Thomasian, 1993). This, in effect, factors out the influence of the resource
contention, so that the effect of the data contention itself can be studied. Note that the resource
contention is not ignored. In fact, the solution of our data contention model can be easily coupled
with other standard resource contention models to obtain the overall system performance (Tayet al.,
1985a) (Tay et al., 1985b). However, this is given here for the sake of brevity.

The notations to be used are summarized below, unless otherwise specified, 1 :s; / :s; z.

M
MTM

Mcmt

MDP
Z
D

DJ
K
kJ
TTM
Tcmt

T
T/,ktH

a/,;

c/,;

N/,;
ry,;

Pj,;
t
a

number of transactions (multiprogramming level)
number of transactions at the initiating stage
number of transactions at the committing stage
number of transactions at the data processing stages
number of data processing nodes in the interconnection network
database size
size of the database partition at node /
transaction size, i.e., the number of lock requests per transaction
su btransaction size at node /
residence time of transactions at the initiating stage
residence time of transactions at the committing stage
residence time of su btransactions at stage (I,.), 0 :s; i :s; k /
residence time of su btransactions at stage (I, k/ + 1)
abort rate of subtransactions at stage (J,t1, 0 :s; i :s; k/ + 1
rate at which subtransactions enter stage (I,.), 0 :s; i :s; 1:, + 1
number of subtransactions at stage (J,.). 0 :s; i:S; k/ + 1
lock conllict probability when requesting the i+1th lock at stage (I,.), 0 :s; i < k/;
or the lock conllict probability at stage (I,.). i = k/, k/ + 1, which are 0
abort probability of the subtransaction at stage (I,.). 0 :s; i :s; k/ + 1
transaction throughput
transaction abort rate

Shared-nothing parallel transaction processing systems 159

3 ANALYSIS OF THE MODEL

In this section we analyze the system described in section 2. First we derive all the basic equations.
On the basis of these basic equations, throughput t, abort rate a, and other performance measures
can be obtained.

3.1 Basic equations

Under the assumption that the granules at a node are accessed uniformly, considering that a transac­
tion does not request the locks that it already holds, we have

DC _{ gf=:~~ forf=1,2, ... ,Z i=O,l, ... ,kJ-l,
rJ' - [[

" 0 otherwise,
(1)

where G J = L:~~I(jNJ,;) + kJNJ,k t +! + kJMcmt is the number of locks held by the subtransactions at
node f. Note that here we used a fairly standard assumption: Compared with the number of locks heid
by all the subtransactions in node J, the number of locks that a subtransaction requires can be ignored
(Ryu et ai., 1990b) (Tay et ai., 1985a) (Thomasian, 1993) (Yu et ai., 1993). When a subtransaction
at node f acquires all its kJ locks, it goes through with stage (I, kl), and enters the waiting stage
(I, kl + 1) so as to synchronize with the other siblings. Transactions at stage (f, kJ) and (I,k, + 1)
no longer request any locks, and therefore they cannot encounter lock conflicts.

By (1), the probability for a transaction to encounter a lock conflict is eventually independent of
the number of locks it holds. For the sake of simplicity, hereafter we use PJ to represent the lock
conllict probability of transactions at node f.

By the Little's law we have
MTM = (a+t)TTM'
Mcml = tTemt,

lor f=1,2, ... ,Z i = 0, 1, .•• , kl'
for f=1, 2, ... ,Z i=kl+!'

(2)

(3)

Since the number of transactions in the system is held constant (M), considering that a transaction
eventually accesses each node by means of generating one and only one subtransaction at it, we have

t,+!

MDP = L NJJ for f = 1,2, ... ,Z.
;=0

By using (2) and (4) we have

According to the flow conservation law, and considering that aJ,i = CI,iP;,i

i-I

(4)

(5)

(6)

CJ,i = CJ,i-1 - al,i-I = CJ,O II (1 - PJ,;) for 1=1,2, ... ,Z; i=1,2 ... ,kJ + 1. (7)
;:0

160 Part IV Distributed and Parallel Systems

By using (3) a.nd (7) we ha.ve

i-I

N/,i = N/,o II (1- Pi) lor 1=1,2, ... ,Zj i=1,2,oo. ,k/.
j=O

Note tha.t N/,kl+1 rema.ins unsolved.

(8)

k • 1
Let I be a. node such tha.t IE {1, 2, .•. , Z}, by (5) a.nd (8) we ha.ve MDP = N/,O"'£i;O llj:;,o

(1- Pi) + N/,kl+1! recall tha.t N 1,k.+1 = O. Therefore

N _ MDP - N!,kl+1
/,0 - kl i-I .

"'£i=O nj =o(1 - Pj,j)
Hence,

then by (1) we ha.ve Ii for /=1,2,00.,Z

Pi = (MDP - N/,kl+1) r::~l [m;:;,Ml- Pj)] + k/N/,kl+1 + klTcmtt
/ D "~I ni.-1 (1 _ p • .) D/ J £...=0)=0 I,)

We next derive N/,kl+1 for 1=2,3, .. . ,Z. By (3) a.nd (7) we ha.ve

N kl
NI,kl+1 = C/,kl +1T/,kl+1 = .f.'o II (1- Pi)T/,kl +1 lor 1=2,3, ... ,Z.

j=O

(9)

(10)

(11)

There a.re two unknown qua.ntities in (11): Pi,j' a.nd T1,kl+1' First we derive TI,kl+1, the residence time
of a. su btra.nsa.ction a.t stage (I, k / + 1). This problem ca.n be solved by considering both successfully
completed a.nd a.borted tra.nsa.ctions. For a. successfully completed tra.nsa.ction, since kl ~ kl for a.ny

node J, TI,kl +1 ca.n be expressed a.s (kl + I)T - (k/ + 1)T, i.e., (kl - kIlT. For a.n a.borted tra.nsa.ction,
the a.rrival time to sta.ge (I, kl + 1) is (k/ + I)T. In the time interval t::.T = (kl - kIlT it is a.borted.
By the a.ssumption tha.t ki ~ k, if i < I, for a.ny given 1(2 :::; I :::; Z), only the subtra.nsa.ctions a.t
stage (i,z) for i < I a.nd 0 :::; z < ki ca.n a.bort the subtra.nsa.ction a.t stage (I,k! + 1). This is beea.use
subtra.nsa.ctions a.t other stages ha.ve finished their da.ta. a.ccesses when subtra.nsa.ction a.t node I enters

stage (I, kl+ I). When the subtra.nsa.ction a.t node lenters its stage (I,k/+ 1), the rema.ining number
of lock-requesting steps of the subtra.nsa.ction a.t node i is ki - k 1 - 1. Therefore

lor i=1,2, ... ,Z; 0::; j < k;,
otherwise.

We next derive the a.bort proba.bility Pj,i a.nd a.bort ra.te a/,i for I:;: 1,2, .•. , Z a.nd i = 0,1, ... , k,.
A tra.nsa.ction, a.nd therefore all its subtra.nsa.ctions a.re a.borted ea.ch time one of these subtra.nsa.ctions

Shared-nothing parallel transaction processing systems 161

encounters a lock conflict. For a 8ubtransaction, it is aborted directly if it encounters a lock conflict; or
aborted indirectly if one of its siblings encounters a lock conflict. The direct abort probability is just the
lock conflict probability lj. The indirect abort probability is calculated by 1 - nf=1 #,(1 - ej,iPJ).
Then the abort probability and abort rate are respectively

Z
Pi,; = 1 - II (1 - ej,iPj) for f=1,2, ... ,Z i = 0,1, ... , k],

j=1

a"i = C"iPi,i for f=1,2, ... ,Z i= O,I, ... ,k,.

3.2 Transaction throughput and abort rate

(13)

(14)

Two performance measures with which we are concerned are transaction throughput and abort rate of
the system. By the assumption that ki ~ k, if i < I, node 1 has the maximal stage number. If a
transaction is not aborted at node 1, it will be committed successfully. The transaction throughput
is thereby entirely determined by node 1. Therefore

t = N1,k,.
T

(15)

Similarly, the transaction abort rate can also be determined by node 1 solely. By (3), (13), and (14)
we obtain

k,-1 k,-1 110,-1 [Z]
a = E al,i = E Cl,iPf,i = T E N1,i(1 - II (1 - ej,iPj» .

;=0 i=O ;=0 j=l
(16)

4 PERFORMANCE ANALYSIS IN THE CASE OF NO ACCESS
SKEW

In this section, we examine a shared-nothing parallel TP system with the assumption that all the
subtransactions of a transaction have the same size (k), i.e., no access skew occurs. A comparison
between analytical results and simulation results is also included in this section. In the case of no

access skew, Pi.k' Pi,Hl' and N"k+l are equal to 0 for any nodef; the subtransaction size is calculated
by k = K/Z; the sizes of database partitions are calculated by D, = D/Z; lj, is equal to PJ. for any
nodes II and h.

Let (1 _lj)Z = q,. Note that q" is equal to qJ, for any nodes II and h. and all of them are
represented by q. By using (5), (6), (8), (9), (10), (13), (IS), and (16) we have

If, [(I-I+l)T. ~~, i4,' + kTernt(l- q)qk]
':";=0 4 + lIZ _ 1 - 0

(1- qHl)T + (1- q)[TTM + qkTcmtl q - , (17)

M(l- q)1
t = (1 _ qk+l)T + (1 - q)[TTM + qkTcmtl' (18)

M(I- q)(1 -I)
(19)

About the derivation of equations (17), (18), and (19), see the appendix given at the end of this
paper. Given K, M, Z, D, T, TTM, and Tern!! we can solve equations (17), (18), and (19) by numerical
methods for q" t, and a. We can then compute lj from lj = 1 _ q;'z.

162 Part IV Distributed and Parallel Systems

4.1 Comparisons with simulation results

Now we compare the results from the analytic model with estimates from a simulator. The simulator
is a preliminary version of that presented by Wang et al. (Wang et al., 1997). For simplifying our
simulator, we assumed that if a subtransaction encounters a lock conflict, its siblings can be informed
of this fact with little delay compared with the duration of a transaction step. We have examined
this in section 2 and found that this assumption has little effect on simulation results. In addition,
the service times of CPUs and disks are taken to be constants. For each simulation result, relative
half-width of 5% about the mean value were calculated using a batch means method at 95% confidence
level. The results of our comparisons are given in Figs. 3(a) and 3(b). From these figures we can
see that the analysis captures the characteristics (i.e., transaction abort rate and throughput) of the
shared-nothing parallel TP systems well.

9 r-~----~--~----~------~~--'
8

7

6

5

4

3

2

Ana: DD~.Df_15000.k_30
81m: DD-4.Df-15000.k-30 •
Ana: DD-8.Df=7500.k-15
81m: DD-8.Df-7500.k-15

Ana: DD-12.Df-SOOO.k-10
81m: DD-12.Df-5000.k-10

oL-~~~--~~~~--~--~
o 5 10 15 20 25 30 35 40 45 50

Multiprogramming level

Figure 3(a): Comparisons with simulation results in the case of no access skew (Ana: analysis; Sim:
simulation): Abort rate (D=60000, K=120, T=1.0, TTM=1.5, Tcmt=2.0).

0.7

0.6

0.5

I
0.4

0.3

0.2

0.1

0

-0.1
0

__ ~ __ -A------~

a: DD_.Df=15000.k=3O
81m: DD_.Df_15000.k_3O •
Ana: DD_8.Df_7500.k_15
81m: DD_8.DI_7500.k=15

Ana: DD_12.Df_5000.k_10
I : 0 _1 Of 5 k- 0 •

5 10 15 20 25 30 35 40 45 50
Multiprogramming level

Figure 3(b): Comparisons with simulation results in the case of no access skew (Ana: analysis; Sim:
simulation): Throughput (D=60000, K=120, T=1.0, TTM=1.5. Tcmt=2.0).

4.2 Abort rate and degree of declustering

Here we examine the relation between the abort rate and the degree of declustering (DD) of the
database. Figure 4 shows that abort rate increases with increasing DD. We think this is. because

Shared-nothing parallel transaction processing systems

18 r---~----~--~----~--~----~---'

16

14

12

MPL=10
MPL=30
MPL-SO
MPL-70

10 _•

:/~~ 2 ___ --

0L.::==========:::====::;:::::~
o 5 10 15 20 25

Degree of declustering
30 35

Figure 4: Abort rate vs. DD (D=60000, K=96, T=l.O, TTM=1.5, Tern!=2.0).

163

the parallel execution pattern (Le., a transaction proceeds in DD data access flows) tends to cause a
high lock conflict rate. The larger the DD, the higher the lock conflict rate. Because for 2PL with
NW policy, a transaction is aborted whenever it encounters a lock conflict, it can be expected that a
larger DD causes a higher abort rate. Other kinds of restart-oriented locking-based CC methods are
expected to behave in the same way, since they also abort transactions on the basis of lock conflicts.
From the above observation we see that a successful restart-oriented CC method for the centralized
TP system is not necessarily a successful CC method for the shared-nothing parallel TP system, since
it may not take the DD into consideration. In shared-nothing parallel TP systems, more attention
should be paid to DD, since the abort rate is affected by it.

4.3 Throughput and degree of declustering

Furthermore, we examine the relation between the transaction throughput and the degree of decluster­
ing (DD) of database. Figure 5(a) shows that throughput increases with increasing DD. We think this
is because the work per processor is reduced. Note that although increasing DD leads to an increase
in abort rate (see Fig. 4) that tends to waste a lot of work and decrease throughput, the reduced work
when increasing DD, however, prevails. Also note that here the effect of the resource contention is not
taken into account; otherwise the results may be different. Figure 5(b) shows throughput characteris­
tics when the additional overhead of the parallel processing is taken into account. Here TTM and Tern!

are defined to be PI. DD and P2. DD, respectively. PI and P2 are two positive real numbers. Figure
5(b) tells us that there is a tradeoff between the benefit of a large D D and the additional overhead
incurred by this large DD.

Next we derive some important conditions for preventing data contention thrashing by considering
the equation (17), (18), and (19). Let Z, k, T, TTM, and Tcm! be given constants,let A = MIDI, and
let I1(M,Dt) be the predicted value of performance measure 11 given Mand DI, then q(pM,pDt) = q(M,Dt),

t(pM,pDt) = pt(M,Dt), and a(pM,pDt) = pa(M.D/) for any P > O. Therefore for any given k, the predicted

data contention thrashing point has the same A value. Let it be Am.,,(k). Then MIDI should. be less
than or equal to Amox(k), so that data contention thrashing should not occur (see Tay et al., 1985a).

Furthermore, assume Z, T, TTM, and Tern! to be 8, 1.0, 1.5, and 2.0 respectively. We attempt to
find the relationship between A x(k) and k in this case. We can obta,in the A ,,(k) corresponding to
every given k. Let Am.x(k). f(k) = 1, where f(k) is a polynomial in k. By using the Mathematica (see

164 Part IV Distributed and Parallel Systems

2.5 r--~-~--~-~--~-~=----.

2

1.5

0.5

MPL=20 -­
MPL-40 -­MPL-BO .. _._ ..
MPL=BO -

o L-_~_~ __ ~_~ __ ~_~_~

o 5 10 15 20 25 30
Degree of declusterlng

35

Figure 5(a): Throughput VB. DD (D=60000, K=96, T=l.O, TTM=1.5, Tcmt=2.0).

I
::: r--~-~/--~.-__ -.. -.. ~~ ... :::-._."" ... ~_", ... ::: ... ::-... -... -.~~._.-.:--,

O.B

0.6

0.4

,,"

MPL-20 -
MPL-40 -~-.
MPL_BO .. ---

0.2 L-.lL-~_~ __ ~_~ __ ~_~_~

o 5 10 15 20 25 30 35
Degree of daclusterlng

Figure 5(b): Throughput VB. DD with consideration of the additional overhead of parallel processing
(D=60000, K=96, T=1.0, Pl=O.l, 1'2=0.2, TTM=PI • DD, Tcmt=P2 • DD).

section 3.8 of Wolfram, 1991) we found that when f(k) is 1.00388k2, the fit is good. Data contention
thrashing tends to occur when Ak2 is greater than 1/1.00388, or 0.996135. Because D, = D/Z and
k, = K/Z, a shared-nothing parallel TP system in this case should satisfy inequality !!f!f- ~ 0.996135.

The same experiments as above have been done with TTM and Tcmt being varied from 1.0 to 5.0
with step 1.0 respectively for Z E {2,8,16}, and Tbeing fixed at 1.0. The equation A....x(k). f(k) = 1
remains true with f(k) = C1(Z,T,TTM, Tcmt).k2+C2(Z,T,TTM, Tcmt).k3 , whereC1(Z,T, TTM, Tomt)
and C2(Z, T, TTM, Tomt) (hereafter we use C1 and C2 to represent them for simplicity) are two constants
given Z, T, TTM, and Tomt . In fact, when TTM is not greater than 1.5, it is enough for f(k) to be
C1k2. Then M/D, * [C1k2 +C2k3] should be less than or equal to 1.0. Considering that DJ = D/Z
and k, = K/Z, the following inequality should be satisfied

MK2 C2K
DZ • (C1 +--z) ~ 1.0. (20)

Next we consider the case when ZP'j is very small. If ZP'j is small enough (e.g., 0.05), then
(1 - P'j)Z approximates to 1 - ZPJ. Let the latter be q, then we have (see appendix about the

Shared-nothing parallel transaction processing systems 165

derivation)

¥rf [(1- qk+l)T * ~~, ;q; + k1'cmt{1- q)qk]
L.,,-o q + q _ 1 = O.

(1- qk+l)T + (1- q)[TTM + qkTcmtl

Let A' = M Z/ D" and let O(M,DtlZ) be the predicted value of performance measure 0 given M and
D,/Z, then q(pM,pDtlZ) = q(M,DJlZ), t(pM,pDJlZ) = pt(M,D,IZ), and a(pM,pDt/Zl. = pa(M,DtlZ) for any

p > O. Therefore for any given k, the predicted data contention thrashing point has the same A' value.

Let it be A:nax(k). Then MZ/D, should be less than or equal to A:n.x(k). Similarly as above, the
following inequality should be satisfied in this case

MK2 e'K
lJ * (C; + +) ~ 1.0. (21)

If TTM is small enough (e.g., 1.5), it is enough for f(k) to be C:k2 , then the inequality becomes

MK2 c: lJ ~ 1.0. (22)

In brief, a shared-nothing parallel TP system using 2PL with NW policy should satisfy inequality
(20). Especially, if ZP'j is less than 0.1, it may also attempt to maintain inequality (21). In the latter
case, if TTM is less than 2.0, the predicted data contention thrashing point tends to be independent
of the degree of declustering, and is solely determined by M, D, and K, as shown in inequality (22).
It should be noted that the effect of the resource contention is not included in the data contention
thrashing; otherwise the thrashing would occur sooner than indicated by these inequalities.

From the above inequalities we know that data contention thrashing is more sensitive to k than
to M. A large DD can reduce k, and therefore can relieve data contention thrashing, at least from the
viewpoint of the effect of k. Furthermore, the reduced k can help to increase M without incurring data
contention thrashing. In addition, the shared-nothing parallel TP system is very susceptible to access

skew, since access skew tends to increase Ie.

5 PERFORMANCE ANALYSIS IN THE CASE OF ACCESS SKEW

In section 4 we analyzed a shared-nothing parallel TP system without access skew. In this section
we examine the impact of access skew on system performance. We assume that transactions access
database according to b-20 rule. For example, by the 80-20 rule, 80% of the accesses goes to 20% of
the database. The node number Z is fixed to be 5 (recall that Z is equal to DD in our model). A
transaction consists of five subtransactions, one subtransaction per node. One of these subtransactions
accesses lK * b%J granules from the first node. Each of the other subtransa.ctions accesses a quarter
of the remaining granules from the corresponding node. The database is partitioned among all these

five nodes. Transaction size (K) is set to 40. b is set to 80, 60, 40, and 20 in turn. A large b means a
high level of access skew. When b is 20, no access skew occurs. Database size (D) is set to be 20000.
The sizes of database partitions are calculated by D, = D / Z.

Let 9 be a node in node set {2,3,4,5}. Now we derive all the necessary equations. By (10), we have

(23)

166

From (ll) and (12)

From (9)

From (13)

From (8) and (9)

Part IV Distributed and Parallel Systems

1
1-(I-Pi')(I-P;)4 i=O,I, ... ,kg-l,
Pf i=kg ,kg +l, ... ,kl -l,

= 1-(1-Pf)(I-P;)4 i=O,l, ... ,kg-l,
el,k.Pf i = kg.

N . _ MDP m:~(1- ~,j)
I,. - "k, nl - I (1 P?)

£"/=0 j=o - l,j

i = 1,2, ... ,kl •

Then (15) and (16) can be rewritten as

MDP m~;;;t(1 - ~Jl t - --- <-.:~--"-"-'--
- T E;':'o n~:~(1 - ~Jl '

(24)

(25)

(26)

(27)

(28)

Given K, M, Z, D, T, TTM, and Tern!, we can solve equation (23), (24), (25), (26), (27), (28) and
(6) by numerical methods for PI, Pg, t, and a.

5.1 Comparisons with simulation results

The same simulation experiments as that presented in section 4.1 were done with the parameter
settings for the comparisons here. The results are given in Figs. 6(a) and 6(b). These figures show
again that the analysis captures the characteristics of the data contention and the shared-nothing
parallel TP system, even though the access skew occurs.

5.2 Results and discussion

Figure 7(a) shows the effect of access skew on throughput. From this figure we see that access skew
degrades throughput. This result coincides with rules given in section 4.3, which states that data­
contention thrashing is very sensitive to access skew, since access skew increases k. From Fig. 7(b),
however, we see that access skew helps to reduce abort rate. If resource contention is taken into
account, such a decrease in abort rate may help to increase throughput.

Figure 7(c) compared the throughputs obtained when considerin,g all the nodes as a whole and
when considering the hot node (i.e., node 1) only. This figure tells us that when the level of access

Shared-nothing parallel transaction processing systems

12

10

8

6

4

2

analysis. 80-20
simulation. 80-20

analysis. 60-20
simulation. 60-20 ..

analysis. 40-20
simulation. 40-20

o~~~--~--~------~--~--~--~
o 10 20 30 40 50 60 70 80

Multiprogramming level

167

Figure 6(a): Comparisons with simulation results in the case of access skew: Abort rate (Z=5,
D=20000, K=40, T=1.0, TTM=1.5, Tcml=2.0).

'S .g;
~

t=.

1.2

0.8

0.6

0.4

0.2

-.-- ~----­
.. -.... ~-

10 20 30 40 50 60 70 80
Multiprogramming level

Figure 6(b): Comparisons with simulation results in the case of access skew: Throughput (Z=5,
D=20000, K=40, T=1.0, TTM=1.5, Tcml=2.0).

skew becomes high enough, e.g., 60-20 in our experiments, throughput tends to be determined solely
by the hot nodes. We think at that time, rules presented in section 4.3 are also applicable if there is
no access-skew in the hot nodes. In addition, Fig. 7(c) tells us that a system with high level of access
skew is equivalent in throughput to such a system that only includes the hot nodes.

6 CONCLUSION

We have proposed an analytic model for studying the performance behavior of shared-nothing parallel
TP systems with dynamic 2PL with NW policy. All the essential factors of shared-nothing parallel TP
systems, such as subtransaction initiation, 2PC protocol, degree of declustering, and access skew, were
taken into consideration. The results from the analytic model were compared with the estimates from
a simulation model. By simulation experiments we see that the analysis captures the characteristics
of shared-nothing parallel TP systems well.

By applying the proposed model to analyze the performance of shared-nothing parallel TP systems,

168 Part IV Distributed and Parallel Systems

we derived some important conditions among transaction size, database size, multiprogramming level
(M), and the degree of declustering (DD) for avoiding data contention thra.shing. It is shown that these
conditions should be satisfied so that the system works sa.fely. If they are violated, data contention
thra.shing tends to occur.

By our observation, data.-contention thra.shing is more sensitive to transaction size K and sub­
transaction size k than to M. To keep both K and k small is important. A large DD is beneficial since
it helps to reduce k. Accordingly, M can be increa.sed a.s large a.s possible. It wa.s shown that, however,
too large a DD is unacceptable due to the additional overhead brought by it.

It wa.s found that a larger DD leads to a higher abort rate. This means that in selecting the
restart-oriented CC method for shared-nothing parallel TP systems, DD is an important performance
factor. On the contrary, given a restart-oriented CC method, DD cannot be increased unlimitedly.
An inadequate DD would cause a high lock conflict rate, and ha.s negative effect on shared-nothing
parallel TP systems.

We also noted that our model ha.s some limitation. In the model, it is a.ssumed that a transaction
gets some data granules from every node. In some ca.ses of real-life systems, however, some nodes may
not accessed at all. As the future work, we intend to take this fact into our model. In addition, more
accurate simulation experiments should be performed.

Shared-nothing parallel transaction processing systems 169

2.2
2

1.8
1.6

I
1.4
1.2

i!=- 0.8
0.6
0.4
0.2

0
Nosk .. w 40-20 60-20 80-20

Deg of access skew

Figure 7(a): Throughput vs. access skew (Z=5. D1=4000. Dg=4000. T=l.O. TTM=1.5. Tcmt=2.0.
K=40).

12 r-----------~----------~--------_, t---------------____ ~M~P~L-20 ---
10 ~.-.:.:.

~;;t::g --:::::-
8 I 6 - ... - -.--... -.-.---... ---.-..... -

4 __ . ____ .. _____ . ___________________ ~

2

o ~--------~--------~--------~ No skew 40-20 60-20 60-20
Deg of acae .. sk_

Figure 7(b): Abort rate vs. access skew (Z=5. Dl=4000. Dg=4000. T=l.O. TTM=1.5. Tcm,=2.0.
K=40).

1.2
1.1

0.9

I
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

all nodes. 40-20 --­
hot nod ... 40-20 •
all nodea. 60-20 --
hot nod ... 60-20 •
all nodes. 80-20 -­
hot nod ... 80-20 •

•• __ •• - ••• - - - ----•••• -.-.---.-••• --.-••• _ ••• _Od.'

10 15 20 25 30 35 40
Multiprogramming level

Figure 7(c): Throughput vs. access skew - considering all the nodes and the hot nodes respectively
(D1=4000. D,=4000. T=1.0. TTM=1.5, Tcml=2.0, K=40).

170 Part IV Distributed and Parallel Systems

7 REFERENCES

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart, B., Smith, M.,
and Valduriez, P. (1990) Prototyping Bubba, a highly parallel database system. IEEE Trans.
Knowledge Data Eng., 2, I, 4-24.

Chesnais, A., Gelenbe, E., and Mitrani, I. (1983) On the Modeling of Parallel Access to Shared
Data. Commun. ACM, 26, 3,196-202.

DeWitt, D.J., Gerber, R., Graefe, G., Hey tens, M., Kumar, K., and Muralikrishna, M. (1986)
GAMMA - A high performance dataflow database machine. Proc. 12th VLDB ConI., Tokyo,
Japan, 25-28.

Franaszek, P.A., and Robinson, J.T. (1985) Limitations of Concurrency in Transaction Processing.
ACM Trons. Database Sys., 10, I, 1-28.

Franaszek, P.A., Haritsa, J.R., Robinson, J.T., and Thomasian, A. (1993) Distributed Concurrency
Control Based on Limited Wait-Depth. IEEE Trans. Parallel Distributed Sys., 4, 11, 1246-1264.

Hsu, M., and Zhang, B. (1992) Performance Evaluation of Cautious Waiting. ACM Trons. Database
Sys., 17, 3, 477-512.

Ryu, I.K., and Thomasian, A. (1990a) Performance Analysis of Dynamic Locking with the No­
Waiting Policy. IEEE Trans. Softw. Eng., 16, 6, 684-698.

Ryu, I.K., and Thomasian, A. (1990b) Analysis of Database Performance with Dynamic Locking.
J. ACM, 37, 3, 491-523.

Stonebraker, M. (1986) The Case for Shared Nothing. Database Eng. Buli., 9, 1, 4-9.

Tandem Database Group (1987) NonStop SQL, A distributed, high-performance, high-reliability
implementation ofSQL. Proc. 2nd Workshop on High PerloNTIance Transaction Systems, Asilo­
mar, CA, 60-104.

Tay, V.C., Suri, R., and Goodman, N. (1985a) A Mean Value Performance Model for Locking in
Databases: The No-Waiting Case. J. ACM, 32, 3, 618-651.

Tay, V.C., Goodman, N., and Suri, R. (1985b) Locking Performance in Centralized Databases. ACM
Trons. Database Sys., 10, 4, 415-462.

Teradata (1983) DBCjl012 Data Base Computer Concepts &. Facilities. Document No. C02-001-00,
Teradata Corp ..

Thomasian, A. (1991) Centralized Concurrency Control Methods for High-End TP ACM SIGMOD
Rec., 20, 3, 106-115.

Thomasian, A. (1993) Two-Phase Locking Performance and Its Thrashing Behavior. ACM Trons.
Database Sys., 18,4,579-625.

Wang, J., Li, J., and Kameda, H. (1997) Simulation Studies on Concurrency Control in Parallel
Transaction Processing Systems. Parallel Computing, 23, 6, 755-775.

Shared-nothing parallel transaction processing systems 171

Wolfram, S. (1991) Mathematica, a system for doing mathematics by computer (second edition),
Addison-Wesley Publishing Company, Inc ..

Yu, P.S., Dias, D.M., and Lavenberg, S.S. (1993) On the Analytical Modeling of Database Concur­
rency Control. J. ACM, 40,4,831-872.

Appendix
In this appendix we explain briefly the derivations of the equations (17), (18), and (19) used in section
4. By (10), we have

~ _ MDP Lf=1 [iIl~:~(I-ljJl] kTcmtt l f- 2 Z
J - D k rri-I () + D Jor -1, , ... , .

J Li=O j=o 1 - Pi.j J

By (13)

Pj,i = 1 - (1 - PJ)z for f=1,2, ... ,Z; i=O,l, ... ,k-1.

Therefore

DC MDP D=I [iIl~:Ml- PJ)Z] kTcmtt
"1 = k' 1 + -- for f=1,2, ... ,Z.

DJ Li=OI1j:o(l- PJ)Z DJ

Let (1 - PJ)Z = qJ, note that qlt is equal to q" for any node h and h. By (6), the above equation
can he rewritten as

k .
[M - TTM(a + t) - Ternt t] Li=l iqj lIZ kTcmtt _ 1 _ 0 f

D ~k i + qj + Dj - for =1,2, ... ,Z.
J L..i=O qj

(A-I)

From (8) and (9)

From (15), (16), (5) and (6)

t = Nl,/< = M - TTM(a + t) - Tcmtt (1- ql)qf
T T l-qf+l '

(A-2)

_ 1- (1- Pf)Z[M _ N]_ 1- ql (M _ MDP(I- qdqt)
a - T DP I'/< - T DP 1 _ q~+l

_ M - TTM(a + t) - Terntt (1- ql)(1 - qt)
- T 1- q~+l

(A-3)

Then by solving equations (A-I), (A-2) and (A-3) we can derive the equations (17), (18), and (19).
Note that q is used instead of qj here. By (A-2) and (A-3) we have

l-q""
a= --k-t.

q
(A-4)

172 Part IV Distributed and Parallel Systems

Then by (A-2) and (A-4) we have the equation (18)

t _ M(l - q)t/'
- (1- rf+1)T+ (1- 'I) [TTM + qkTcmtJ'

by (A-4) and (18) we have the equation (19)

M(l- '1)(1 _ qk)
a = (1-t/'+1)T+ (1- q)[TTM + qkTcm!l'

and by (18), (19) and (A-I) we have the equation (17)

~ [(1- qk+1)T * ~;, i9.' + kTcm!(1- q)t/']
'£"' •• 0 9 + ql/Z _ 1 = O.

(1- rf+1)T + (1 - q)[TTM + qkTem!l

8 BIOGRAPHY

Jiahong Wang is now a foreign researcher in the Institute of Information Sciences and Electronics,
University of Tsukuba, Japan. From 1998, he will be an Assistant Professor in the Faculty of Software
and Information Sciences, Iwate Prefectural University, Japan. His research interests include con­
currency control, transaction processing, distributed/parallel systems, and modeling and performance
evaluation.

Jie Li has as been with the Institute oflnformation Sciences and Electronics, University of Tsukuba,
Japan, since 1993, where he is currently an Associate Professor. His research interests are in dis­
tributed/parallel computing, mobile computing, and modeling and performance evaluation. He is a
member of IEEE and ACM. He is serving as a manager of the Study Group on System Evaluation of
the Information Processing Society of Japan.

Hisao Kameda received the B.Sc., M.sc., and D.Sc. degrees all from the University of Tokyo,
Tokyo, Japan. Presently he is a Professor at the Institute of Information Sciences and Electronics,
University of Tsukuba, Japan. He has been conducting research on operating system design principles,
operating system scheduling. performance measurement and queueing analysis of computer systems,
software reliability. distributed processing, etc. He has also been continuously interested in general
systems implications of computer systems. He is now the Chairman of the Study Group on System
Evaluation of the Information Processing Society of Japan.

