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Abstract 
Recently, there has been frequent discussion of whether communication traffic is long­
range dependent or not. This paper gives another insight to this issue by discussing the 
problem of estimating the tail probability P(Q > x) of a Gaussian fluid queue under finite 
measurement of input processes. 

We show that if the mean m and the autocovariance function {A(t)}09~T of an input 
rate process can be estimated from traffic data of a finite length, P(Q > x) for x in 
a finite interval can be evaluated by an approximation formula determined only from 
m, {A(t)}09~T and the output rate c . This result implies that as long as we evaluate 
P(Q > x) in a finite region of x, it is not important whether the input rate process is 
long-range dependent or not. 

We also apply the approximation formula to the performance evaluation of an ATM 
multiplexer with VBR Video traffic. We see that A(t) can be estimated in a sufficient 
range to evaluate P(Q > x) for x in the practical range and that the formula provides a 
good approximation except for a scale parameter. 
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1 INTRODUCTION 

Recently it has been reponed that local area network traffic and VBR (Variable Bit Rate) 
video traffic exhibit long-range dependence [Beras 95, Lela 94). Many traffic models pro­
posed so far, for example J:\Jarkovian-type traffic models [Ster 91, Heym 92, Addi 94) and 
Gaussian-type input rate processes [Kobas 95, Debi 95], are not long-range dependent. 
They are essentially Markovian and short-range dependent. Self-similar processes such 
as fractional Gaussian noises [Mand 68) are typical long-range dependent processes, and 
they have therefore been proposed as models of such traffics [Beras 95). 

Generally speaking, however, it cannot be determined from traffic data of a finite length 
whether the traffic is long-range dependent or not in a rigorous sense. We can only guess 
whether it is long-range dependent or not by using RIS analysis or variance-time analysis. 

In this paper, we discuss this problem from another point of view by using a fluid queue 
with a stationary Gaussian input rate process Rt and a constant output rate c. We call 
this queue a Gaussian fluid queue. 

According to [Bene 63, Duffs 95], the tail probability of the queue-length distribution 
P(Q > x) is represented as 

P(Q > x) = P(sup Wt > x), (1) 
t>O 

where 

The stochastic process Wt is completely characterized by J.L = c - m and {A(t)}o<t<oo, 
where m is the mean of R t and A(t) is its autocovariance function. Therefore P(SUPt>o-Wt > 
x) can be thought as a function of x, J.L and {A(t)}o9<OO: 

P(sup Wt > x) = F(x, J.l, {A(t)}o<t<oo). 
t>O -

If SUPt>o Wt > x for a large x, then under a mild condition it it likely that Wt reaches the 
level x in a neghborhood of to, say, at which P(Wt > x) attains its supremum [Duffs 95, 
Kou 97). We denote by I\:(x) the point t* as a function of x: 

,..(x) = argsupP(Wt > x). 
t>O 

(2) 

Since the probability that Wt reaches the level x out of the neighborhood of t* = I\:(x) 
is negligible, P(SUPt>o Wt > x) for x in a finite interval (a, b) can be estimated from the 
behavior of {Wt}09~T with T such that sUPa<x<bl\:(X) < T < 00. Note that the process 
{Wt}o9~T is characterized by J.L and {A(t)}09~T. Thus if I\:(x) is also determined from 
J.L and {A( t )}09~T' then we see that the tail probability P( Q > x) is approximated by a 
function of x, J.l and {A(t)}09~T' namely, 

P(Q > x) R:; F(x,J.L,{A(t)}09~T)' a < x < b. (3) 

We note that Ryu and Elwalid [Ryu 96] and GrossgJauser and BoJot [Gros 96] made 
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similar discussions, independently, but their mat.hmatical expositions were not so clear as 
ones given here, 

In the next section we show that the inverse function <t>(t) of ,,(x) exists and is given by 

<I>(t) = /1 (± 10' (].ds - t), Pt = 10' A(s)ds (4) 

under the condition that at = JVar[Wtl is increasing and concave and that ¢i(t) is a 
monotone increasing function with ¢( +0) = 0, Since the function is monotone, for a, b 
such that 0 < a < b < ¢(T) we have sUPa<x<b lI:(x) ~ lI:(b) < T, Thus the value of lI:(x) 
for x E (a,b) is uniquely determined from /1 and {A(t)}O~t<T' We also show that the 
approximating function F(x, /1, {A(t}}09<T) is given by 

- { /12 {,,(xl } 
F(x,/1,{A(t}}09~T)=Bexp -r 10 {Ms. 

, "(xl 0 
(5) 

Therefore, if the mean m and the autocovariance function {A(t)}09~T of Rt can be 
estimated from traffic data of a finite length, the tail probability P(Q > x) for x E (a, b) 
with 0 < a < b < <I>(T) can be evaluated using (4) and (5). Conversely, if we need to 
evaluate P(Q > x) for x E (a, b), we can easily obtain its approximation, except for B, by 
estimating m and A(t) from 0 to T such that b < ¢i(T). We note that the approximation 
formula (5) is consistent with previous results obtained by Norros [Norr 94], Duffield and 
O'Connell [Duffs 95] and Kouchi et al. [Kou 97]. However, our result differs form them on 
the point that we discuss P(Q > x) for x in a finite interval under finite measurement, 
while they discuss the tail behavior of P( Q > x) as x increases to infinity. 

In the discussion of whether traffic is long-range dependent or not, the behavior of A(t) 
as t -+ 00, namely, {A(t)}r<t<eo, is the most important factor [Bera 95]. However, the 
formula (5) indicates that {A(t)}o~t~T is a big factor of the tail probability P(Q > x) for 
x in a finite region. We check this result by simulation for a Gaussian fluid queue with 
a long-range dependent input and for a queue with a short-range dependent one. These 
inputs have almost the same {A(t)} in the range (0,10) and almost the same {3t in the 
range (0, IS). The simulation result indicates that in both cases P(Q > x) is almost the 
same in the region of x E (0, ¢i(IS» and is well approximated by the formula (S) except 
for the constant B. This result indicates that as long as we discuss P( Q > x) in a finite 
region of x, it is not important whether an input rate process is long-range dependent or 
not. It is more important for practical applications whether A(t) in a sufficient range can 
be estimated or not from measured traffic data and whether the formula (S) provides a 
good approximation or not. 

Finally, we apply the approximation formula (5) to the performance evaluation of an 
ATM multiplexer with VBR video traffic. In practical applications the formula (S) may 
contain various kinds of errors, such as an estimation error of A{t), the difference between 
an actual input traffic and a Gaussian process, an approximation error indwelled in the 
formula (5) and so on. Nevertheless, the simulation results show that the formula(5) 
provides a good approximation except for the multiplicative constant B and that A(t) can 
be estimated in a sufficient range for the performance evaluation of ATM multiplexers. 

The rest of the paper is organized as follows. In Section 2 we discuss our queueing 
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model and state the main result. We explain the Gaussian fluid queue in Subsection 2.1 
and derive the inverse function (4) and the approximation formula (5) in Subsection 2.2. 
In Section 3 we present numerical results. In Subsection 3.1 we apply the formula (5) to 
fluid queues with a fractional Gaussian noise input and with an autoregressive process 
one. In Section 3.2 we apply the formula (5) to the performance evaluation of an ATM 
multiplexer with VBR Video traffic. 

2 MODEL AND MAIN RESULT 

In this section we introduce our queueing model and discuss the main result. All the 
symbols used in Introduction are re-defined here. 

2.1 Model description 

L sources 
1 2 

DO 
11 III 

Rt 

Figure 1 A fluid queue 

We consider a fluid queue model (see Figure 1) in which the buffer content Qt varies 
according to the differential equation 

dQt = {Rt - c, if Qt > 0 or Rt > C, 

dt 0, otherwise, 

where C is a constant output rate and R t is a stationary Gaussian input rate process. We 
denote by m the mean, by u~ the variance and by A(t) the autocovariance. We refer to 
this fluid queue model as a Gaussian fluid queue. 

Let At be the input process of R. in the interval [-t, 0), namely, 

.4t = fO R.ds. 
-t 

(6) 

We define by f3t the covariance between Ro and At, and by u; the variance of At. Using 
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the autocovariance function A(t) of Rt , they are writt.en as 

E[(Ro - m)(.4t - mt}] = E[(Ro - m} t (R. - m}ds] = 10' A(s}ds. 

E[Jo JO (R.. - m}(R" - m}dudv] = 2 f' ,. A(u}duds 
-t -t Jo Jo 

2 10' !3.ds. 

From (7) and (8) the standard deviation at is two times differentiable. 
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(7) 

(8) 

In this paper, we assume that m < c and that at is strictly increasing and concave, 
i.e., a; > 0 and a; < O. 

2.2 The tail behavior of P( Q > x) under finite measurement 

Suppose that the autocovariance function A(t} of the input rate process in the region 
[0, T] and the mean m are estimated from traffic data of a finite length. Then we show 
that the tail probability P(Q > x) for x in a finite interval can be evaluated by an 
approximation formula determined from J1. and {A(t)}o<t<T. This result suggests that as 
long as we evaluate P( Q > x) in a finite region of x, it is-n~t important whether the input 
rate process is long-range dependent or not. 

The tail behavior of P(Q > x) 
Duffield analyzed the tail probability of a single queue with an input whose class covers 
long-range dependent processes [Duff 95, Duffs 95]. Applying his result to a Gaussian fluid 
queue, under a mild condition the tail probability P(Q > x) is approximated by 

{ . (x + J1.t)2} P(Q > x) ~ Bexp -mf 2 ' 
t>O 2at 

(9) 

where J1. = c - m and B is a constant. See Appendix for more details. 

We can interpret the formula (9) as follows. Let Wt = At - ct. Then P(Q > x) is given 
as P(Q > x) = P(SUPt>o WI > x) [Bene 63, Duffs 95]. We define K(X) as the point t at 
which P(WI > x) attains the supremum; K(X) = argsuPI>o P(WI > x). Since Wt for a 
fixed t is a normal variable with mean -J1. t and variance a;, K(X) is given by 

( WI + J1.t x+J1.t) . x+J1.t K(X) = argsupP > --- = argmf---. 
1>0 171 at 1>0 171 

(10) 

If SUPI>O WI > x for a large x, then it is very likely that the process WI reaches x in a 
neighborhood of t* = K(X) [Duff 95, Duffs 95]. That is, the probability that Wt reaches x 
out of the neighborhood of t* = K(X) is negligible. Therefore P(SUPI>O WI > x) behaves 
as 

1 hoo JC SUPP(WI > x) = sup tn= e- 2 dy. 
t>O t>o V 21r ~ 

(11) 
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Since for y > 0 

the exponent of (11). and hence the exponent of P(Q > x), is represented as 

. f (x + ,.tt)2 
-Ill 

1>0 2u't 

The approximation of P(Q > x) under finite measurement 
We show that the formula (9) can be written as 

{ 
p.2 (''(x) } 

P(Q > x) ~ Bexp --f32 Jo f3.ds. 
,,(x) 0 

(12) 

(13) 

The function f3. for s E [0, T] can be calculated from {A(t)}o:St::;T using (7), but ,,(x) 
can not be calculated directly by using the definition (10). Fortunately, as will be proved 
later, the inverse function </J(t) of ,,(x) exists and is given as 

<p(t) = p. (~l f3.ds - t), (14) 

and it is a monotone increasing function with </J( +0) = O. 
Since </J(t) is a monotone increasing function with </J( +0) = 0, the value of ,,(x) for x in 

any interval ( a, b) where 0 < a < b < </J(T) can be easily obtained from p. and {A( t )}O:St::;T 
through (14). Thus, the exponent of (13) for x E (a,b) can be culculated from x, p. and 
{A(t)}O:St::;T' 

Remark 1. In this paper we do not discuss the multiplicative constant B in (13). How­
ever, from the discussion on (3) in the introduction, it is clear that B is determined from 
p. and {A(t)}O:St::;T. 

Remark 2. Note that the parameters governing (14) and the exponent of (13) are p. and 
{f3'}O::;t<;T. Thus, for two input rate processes with the same m and the same {f3.}O:St<;T, 
we expect that the exponents of the tail probabilities are almost the same for x E (a, b) 
where 0 < a < b < </J(T). 

Let 

I( ) = (x + It t)2 
X. t 2 2 

U t 
(15) 
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and t' be a value of t satisfying 

a/(x, t) = 0 
at . (16) 

From (8) we have ata; = /31. It follows that 

2 

J.Lai. = (x + J.LtO)/3t. or equivalently x = J.L(/3at• - to). 
t· 

(17) 

Under the assumption that at is concave, I(x, t) > I(x, to) holds for t f= to since 

where al' + a;. (t - to) represents a tangent line of at at to. Thus the value to, the solution 
of (16), is unique for a given x so that K(X) = to and 

I(x, to) = inf I(x, t). t>o 
(18) 

Conversely for a given to the value x such that K(X) = to is uniquely determined 
from (17). Therefore the inverse function ¢(t) of K(X) exists and is given as 

a2 (2 (t ) ¢(t) =J.L(/3: -t)=J.L /3t}o /3.ds-t . (19) 

From (7), (8) and (19) we have limHO ¢(t) = 0 and 

Thus the function ¢(t) is a monotone increasing function with ¢(+O) = O. 
Using (17) and (18), the formula (9) is rewritten as 

{ (X+J.LtO)2} { J.L2a2 } P(Q > x) ~ Bexp 2 = Bexp - /3r . 
2at· 2 I' 

(20) 

Then the integral representation (8) leads the formula (13). 

3 DISCUSSION WITH NUMERICAL EXAMPLES 

3.1 Gaussian fluid queues with long-range dependent input 
and short-range dependent one 

Whether the traffic is long-range dependent or not is determined from the behavior of an 
autocovariance function A(t) as t -t 00, namely, {A(t)h<t<oo. However, the formula (13) 
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50 100 'so aoo 210 .. ... -
Figure 2 Sample sequence of FGN 

.. -
. - --- - -- --.. 0-

Figure 3 Sample sequence of AR(lO) 

implies that {A(t)}09ST is a big factor of the tail probability P(Q > x) for x in a finite 
region. 

Here we generate two sample sequences, one from a fractional Gaussian noise (FGN) 
model and one from an autoregressive (AR) model, both have almost the same autocovari­
ance function A(t) within a finite interval (0, T). The FGN model is expected to generate 
a long-range dependent sequence and the AR model a short-range dependent sequence. 
If we see the behavior of the tail probability P(Q > x) of Gaussian fluid queues having 
these sequences as input sequence, we can check whether the approximation formula (13) 
is valid or not. 

We first generate a GFN sequence {FA: = Z" - Z"_l; k = 1,2, ... , 100000} via a 
fractional Brownian motion sequence {Z,} with Hurst parameter H = 0.8. The first 500 
values of Flo are shown in Figure 2. 

Next, by supposing that the sequence {F,,} generated above is derived from a 10th-order 
autoregressive model, we estimate the parameters of the AR model using the method of 
least squares. Then we generate a sample sequence {G,,; k = 1,2, ... ,100000} using the 
AR modeL The first 500 values of GA: are shown in Figure 3. 

From the graphs of these sequences, it is difficult to state the difference between the 
two sequences. However, if we compare their autocorrelation functions 'Y(t) = A(t)/u~, 
they are clearly different, as seen in Figure 4. The autocorrelation functions are almost 
the same in the range (0,10), but as the lag increases over 10 the autocorrelation of the 
AR(lO) decays rapidly while that of the FGN decays slowly. The figure clearly shows that 
the AR(10) is short-range dependent and the FGN is long-range dependent. 

Figures 5, 6 and 7 show the covariance Pt, the standard deviation u, and the function 
q,(t) in (14), respectively. Here we set p. = 1.5 * un where Un is the variance of the FGN. 
From Figures 5 and 6, we find that both f3,'s are almost the same for t < 15 and both 
u,'s are concave. From Remark 2, the tail probabilities for the FGN and the AR(lO) are 
expected to be almost the same in the range (0, q,(15», where q,(15) ~ 1500 from Figure 7. 

To demonstrate this, we simulate the behaviors of the tail probabilities in the range 
(0,1800) for the FGN and the AR(10). Figures 8 and 9 show the simulation results and 
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Figure 4 Autocorrelation function of FGN 
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Figure 5 Covariance f1t 

Figure 7 Function t/J(t) 
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the numerical results of the approximation (13) of P( Q > x) with B = 1 for x E {O, 1800) 
and for x E (0,8000). These figures indicate that the tail probabilities for the FGN and 
the AR(lO) are almost the same in the range (0, 1800) as expected and that they are 
well approximated by the formula (13) except for the multiplicative constant B. For 
x > 2000, the values of the approximation (13) for the two models FGN and AR(lO} 
become different, as seen in Figure 9. 

This result implies that as long as we discuss P(Q > x) in a finite region of x, it is 
not important whether an input rate process is long-range dependent or not. It is more 
important for practical applications whether A(t) in a sufficient range can be estimated 
from measured traffic data. 
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Figure 8 P(Q > x) for x E (0,1800) 
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Figure 9 P(Q > x) for x E (0,8000) 

3.2 Performance evaluation of an ATM multiplexer with 
VBR video traffic 

In this section, for the purpose of evaluating performance of an ATM multiplexer with 
VBR video traffic input, we check whether A(t) in a sufficient range can be estimated or not 
from measured traffic data and whether the formula (13) provides a good approximation 
or not except for the constant B. 

When the formula (13) is used in practical applications, there may be various kinds 
of errors, such as an estimation error of A(t), the difference between an actual input 
traffic and a Gaussian process, an approximation error indwelled in the formula (13) and 
so on. Nevertheless, the simulation results show that the formula (13) provides a good 
approximation except for B. It is also shown that if A(t) is estimated only in the range 
(0,38) of frames, we can evaluate P(Q > x) for x in the practical range. Figure IO(a) 
shows a sequence {X(k)} of real VBR traffic from a video source. In the video source 
the video data is compressed according to a modified H.26I and the frame interval is 
1/30 second. As seen in the figure, the traffic sequence indicates complicated behavior 
and it is clearly different from a Gaussian input rate process. To reproduce such video 
traffic by simulation, the authors have developed a simulation model which consists of 
three submodels, a Markovian scene transition model, a spike model for spikes and an AR 
model for bit rates following spikes [Koba 96, Kura 96]. 

Figures 10(b) and 1O(c) show sequences generated by using the simulation modeL Fig­
ures lOeb) indicates a traffic sequence {Y(k)} from one source and Figures IO(c) indi­
cates an aggregated traffic sequence {y(50)(k)} from 50 independent, identical sources. 
It is reported in [Koba 96, Kura 96] that the simulated traffic resembles the original one 
very well in four aspects; marginal distribution, autocorrelation function, R/ S function 
and spectral density function. In particular, the simulated sequence, like the original se­
quence, exhibits long-range dependence in R/ S analysis though the model consists only 
of Markovian-type submodels. The aggregated traffic differs from a Gaussian input rate 
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(b) Simulated VBR video traffic 

Figure 10 Sample sequences of VBR video traffic 

process in the rigorous sense, but from Figure IO(c) we find that it is close to a Gaussian 
input rate process. 

Figure 11 depicts the autocorrelation functions 'Y(t) of {X(k)}, {Y(k)} and {y(50l(k)} 
estimated from the sequences of length 79686. In this figure oAt) in "1.96 x oAt)" rep­
resents the large sample standard error and the curve of 1.96 x (1,(t) indicates the ap­
proximate 95% large-sample confidence limits [Vand 83]. In the region (0,900) where 
'Y(t) > 1.96 x (1,(t), the null hypothesis that 'Y(t) = 0 is rejected with 5% significance. In 
this sense, we consider that 'Y(t) is valid in the region (0,900). 

We also examine a region in which the estimation error of 'Y(t) is negligible and check 
whether at is concave or not. Figures 12 and 13 show (3t and (1t for {X(k)}, {Y(k)} and 
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{y(SO)(k)} with the variances of these processes being normalized so that uh = 1. Since 
the two sequences {Y(k)} and {y(SO){k)} theoretically have the same autocorrelation 
functions, we examine a region in which these f3t'S are very close with each other. From 
Figure 12 we find that the two estimates of f3t are almost the same in the region t < 300. 
So we expect that the estimates are good for t < 300. From Figure 13 we find that all Ut'S 

are concave in the range (O,3OOO). 
Figure 14 shows the curve of the function (14). In the figure, the parameter () represents 

the value () = (c - m)/uR. That is, the output rate is given by c = m + ()UR. Since the 
estimates of Ut and A are available for t < 300, Figure 14 implies that P(Q < x) can be 
evaluated in the region x < 20 Mbits when () ~ 2. 

Figures 15 and 16 show the simulation results and the numerical results for the tail 
probability P(Q > x), in the region x < 20 Mbits, of a fluid queue with () = 2 and 
() = 3 when the number of sources is 50. In the figures the upper broken curve represents 
the approximation formula (13) with B = 1 and the lower broken curve indicates the 
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Figure 15 Tail probability for a fluid 
queue with () = 2 
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Figure 16 Tail probability for a fluid 
queue with () = 3 
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Figure 18 Tail probability of a fluid queue 
with () = 4 for x E (0,1) Mbits 

formula (13) with B set suitably to make the comparison of the decay rates easy. From 
the figures we find that the tail behavior of the formula (13) almost coincides with the 
simulation results though various kinds of errors may exist. The covariances f3t'S for the 
real traffic and the simulated traffic are almost the same in the range (0,300) as seen in 
Figure 12. Thus if we simulated the behavior of the tail probability using such real traffic, 
we would obtain a similar result. 

The buffer size of 20 Mbits corresponds to 47000 cells since one cell is 424 bits in ATM 
networks. In actual ATM mUltiplexers the buffer size may be thousands of cells, so we 
also check whether the formula (13) provides a good approximation or not in the range 
(0, IMbits), or equivalently (0, 2358ceIls). 

Figures 17 and 18 show the results for the tail probability P( Q > x) in the region 
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Table 1 Nessary maximum lag T and P(Q > 1 ~Ibits) 

() = (e - m)/aR 3 4 5 6 7 

T in frames 45 38 34 30 28 

P(Q> IMbits) 2.7 x 10-3 1.2 X 10-4 

x < 1 Mbits of a fluid queue with () = 3 and () = 4. We also see that the formula (13) 
provides a good approximation except for B. 

Table 1 indicates the maximum lag T needed for evaluating P(Q > x) in the region 
x < 1 Mbits and the simulation values of P(Q > 1 Mbits) at () = 3 and 4. To guarantee 
that buffer overflow probabilities are less than, say, 10-7 or 10-9 , the value of the parameter 
() must take more than 4. As () becomes larger, T becomes smaller. Therefore, if A(t) can 
be estimated in the interval (0,38) of frames, namely, (0,1.27) seconds, we can evaluate 
P(Q > x) for x in the practical range. 

APPENDIX 

Here we derive the approximation (9) from Duffied's result [Duff 95]. 
Let A~/) be an input process from source 1 in the interval [-t, 0) and WtL = l:r=l A~/) - Le. 

The tail probability p(QL > x) of a fluid queue with output rate Le is represented by 

p(QL > x) = P(sup WtL > x). 
t>o 

(21) 

Assume that there exist functions at, Vt that increase to infinity, such that for each {}, the 
limits 

(22) 

exist as extended real numbers, where 

(23) 

Duffield proved in [Duff 95] that under mild conditions 

lim L-1logP(supWtL > Lb) = -feb) 
L .... oo t>o 

(24) 

where 

feb) = infvt>.;(b/atJ and >';(x) = sup{x{} - >'M)}. 
t>O iJ 

(25) 
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From (24), t.he approximation of p(QL > x) is written as 

(26) 

where B is a constant. 
We will apply the approximation (26) to a Gaussian fluid queue. Let WP), l = 1,,'" L, 

be independent Gaussian processes with mean -JLt and variance a}, and set Vt = t 2/0-; and 
at = t. Then the equation (23) is written as >.fCt9) = - p:t9+{P /2. It is indl'pendent of both 
Land t, and hence >.,( v) and >.( tJ) in (22) exist. From (25) it follows that >.; (x) = (x+P)2/2 
and 

I(b) = inf (b + pt)2 
t>O 2(f1 

Thus we obtain 

(27) 

In the case of a single Gaussian process W t with mean -lJ.t and covariance (f;, we may 
regard it as a superposition of L independent Gaussian processes with mean - pt = - J.lt/ L 
and covariance 0-; = (f; / L and use the formula (27). Thus we obtain 

{ (X+J.lt)2} 
P(Q>x)~Bexp -inf 22 . 

t>O (ft 
(28) 
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