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Abstract 
A statistical multiplexer with a finite number of independent heterogeneous 
bursty ttafflc sources is considered in this paper. Each source stochastically 
alternates between on-periods. during which it generates one cell per slot, and 
off-periods. during which no cells are generated. The on-periods and the 
off-periods are assumed to be independent. but are allowed to have general 
distributions. The discrete-time queueing model we thus obtain is analyzed using 
a generating-functions approach resulting in an accurate geometric approximation 
for the tail distribution of the buffer contents. The results of the study are applied 
to investigate the influence of the nature of the distributions of the on-periods and 
the off-periods of the sources on the multiplexer perfonnance. 
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1 IN1RODUcnON 

In recent years, discrete-time queueing models have received increasing attention 
due to their applicability in the analysis of ATM (asynchronous transfer mode) 
networks, where all infonnation is transmitted in the fonn of fixed-length packets 
called cells. A TM networks are capable of providing a wide variety of 
telecommunication services with different traffic characteristics such as video, 
voice and high-speed data communications. For this reason, appropriate traffic 
models need to be considered. which allow to assess the impact of different 
traffic types with different characteristics on the performance of ATM 
multiplexers and A TM switches. 

In this paper, we study the performance of a statistical multiplexer, which is fed 
by a fmite number of general heterogeneous on/off sources. Each source 
alternates between on-periods. during which it generates one cell per slot, and 
off-periods, during which no cells are generated. The alternating on-periods and 
off-periods are assumed to be independent, but may have general distributions. 
This traffic model enables us to characterize the cell streams of different types of 
ATM sources. By means of a generating-functions approach, an accurate 
approximation - of geometric fonn B.y - is obtained for the tail distribution of 
the buffer contents (i.e. the probability that the buffer contents exceeds a certain 
threshold S, for suffICiently large values of S), which is generally considered to be 
one of the most important performance measures of A TM multiplexers. In 
addition, heavy-traffic approximations for the dominant pole of the probability 
generating function (pgt) of the buffer contents, which plays a major role in the 
geometric tail approximation. are derived. 

Statistical multiplexers with on/off sources have been studied before, under 
various assumptions for the distributions of the on-periods and the off-periods. 
Both the on-periods and the off-periods of the sources are assumed to be purely 
geometrically distributed in (Janakiraman, Pagurek, Neilson, 1980), (Hirano, 
Watanabe, 1989), (Viterbi. 1986) and (Brunecl. 1988). The on-periods are 
geometrically distributed multiples of fixed-length intervals in (Xiong, Bruneel, 
1992), are distributed llCfording to a mixture of 2 geometric distributions in 
(Steyaert, Bruneel, 1995), and may have a general distribution in (Wittevrongel, 
Brunecl, 1995). The present paper can thus be viewed as an extension of 
(Wittevrongel, Bruneel, 1995). in the sense that the off-periods are now also 
allowed to follow a general distribution. This makes it possible to investigate the 
impact of the nature of the distributions of both the on-periods and the off-periods 
on the queueing performance of the multiplexer. The main difficulty in 
considering general instead of geometric off-periods lies in the occurrence of a 
number of boundary probabilities. which in general are difficult to calculate. In 
this paper, we therefore present an approximation technique, which avoids the 
calculation of all the unknown boundary probabilities. and at the same time leads 
to accurate results. We believe that the presented technique constitutes a good 



Buffer contents in a statistical multiplexer 25 

compromise between accuracy and computational complexity. General 
on-periods and general off-periods have also been considered in (Elsayed, 1994) 
and (Sohraby, 1993). However, in CElsayed, 1994), the system is analyzed by 
numerically solving a set of balance equations, and hence the analysis is limited 
by the huge state space and the computational complexity of the algorithms. In 
(Sohraby, 1993), an analytic geornettic approximation is derived for the tail 
disttibution of the buffer contents. However, the exact numerical calculation of 
the geornettic decay rate y is severely limited by the traffic characteristics, and 
furthennore, the coefficient 8 is simply approximated by the multiplexer load. 
Our approximation on the other hand is shown to be much more accurate, and our 
results are more explicit. 

The outline of the paper is as follows. The modeling assumptions regarding the 
statistical multiplexer and the traffic sources are stated in Section 2. In Section 3, 
a set of state variables is defmed and the system equations are established. A 
functional equation for the pgf of the system state vector is obtained in Section 4. 
Section 5 concentrates on the derivation of the tail disttibution of the buffer 
contents from the functional equation. A number of numerical examples are 
presented in Section 6, in order to verify the accuracy of the analytic 
approximation, and to investigate the influence of the disttibutions of the 
on-periods and the off-periods on the multiplexer performance. 

2 MODELING ASSUMPTIONS 

A discrete-time queueing model for an A TM statistical multiplexer is considered. 
The modeling assumptions are as foUows : 
• The multiplexer has N input links. one output link and an infinite-capacity 

buffer for the storage of cells. 
• Time is divided into fixed-length intervals called slots, such that the 

multiplexer can transmit exactly one cell from its buffer during each slot. 
Cells may arrive in the buffer at any time point during a slot. However, the 
transmission of a cell always starts and ends at slot boundaries. 

• There is a fmite number N of independent, not necessarily identical, bursty 
traffic sources. There are T different traffic types. Denoting by N" 1 S t S T, 
the number of sources of traffic type I, we have N = NI + ... + Nr 

• Each source stochastically alternates between on-periods and off-periods. 
During an on-period. a source generates exactly one cell per slot, whereas no 
cells are generated during an off-period of a source. The (lengths of the) 
on-periods and the off-periods of a source are modeled as independent random 
variables with general distributions. For a source of traffic type t, the 
probability mass functions (pmfs) of the on-periods and the off-periods are 
denoted as a,(n) and b,(n). and the corresponding pgfs as A,(z) and 8,(z). 
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Fipre 1 Markov chain model of a type 1 source. 

• We assmne that the queueing system can reach a steady state. This means that 
the equilibrium condition, being the condition that the mean number of cell 
arrivals P during an arbitrary slot is sttictly less than I, is assumed to be 
fulfilled. 

3 SYSTEM EQUATIONS 

The goal of this section is to introduce a Markovian state description for the 
queueing system described above. In order to do so, we fll'Sl take a closer look at 
the cell arrival process. As mentioned before, each source alternates between 
on-periods and off-periods. A source is now called in state A", n ~ 1, if it is in the 
nth slot of an on-period. Similarly, a source is called in state B", n ~ I, if it is in 
the nth slot of an off-period. Note that exactly two transitions are possible from 
each state : transition to the same period. but one slot further or transition to the 
fust slot of the other period. Clearly. each source can be characterized by an 
infmite-dimensional Markov chain, with states A" and B" (n ~ I), and transition 
probabilities as depicted in Figure I. Here P II/(n) denotes the probability of having 
an on-period of at least n+ I slots, given that this on-period consists of at least n 

slots. Analogously,p"/(n) is the probability of having an off-period of at least n+l 
slots, given that this off-period consists of at least n slots. That is, 

( /I ) (II-I )-1 (/I) (/1-1 )-1 
PII.,(n)= 1-~a,(i) 1-~a,(i) : Pb.,(n)= 1-~b,(i) 1-~b,(i) 

Let us defme the random variables 8 .... (1) and h"it) (n ~ 1, 1 ~ t ~ 7) as the 
numbers of sources of traffac type 1 in states A" and B" respectively, during slot k. 
From the state transition diagram of Figure 1, we then have 



'._U_I(t) 

gll,k(t)= LCII-I,;(t) 
;=1 

""-I i-I (t) 

hll,k(t)= Ldll-I,;(t) 
;=1 

Buffer contents in a statistical multiplexer 

n>1 

.. .. 
hu(t)=Nt - I,gll.k(t)- I,hll,k(t) 

11=1 _2 

27 

(1) 

(2) 

(3) 

(4) 

The reasoning behind equation (1) is that g,.it) contains one unity for each source 
of type t which was in state A ... I during slot k-I and which changes to state A,. in 
slot k. The random variable c •. I,.{t) in equation (I) takes on the values 0 and 1, 
and equals I if and only if the ith source of type I in state A".I during slot k-I 
remains in an on-period during the next slot. This happens with probability Pain), 
as can be seen from Figure 1. A similar reasoning holds for equations (2)-(4), 
Hence, we have that (cII,.{t),i~l) and (d.~(t),i~l) (n~l, lStS1) are 
independent sets of i.i.d, Bernoulli random variables with pgfs 

Let us now denote by g.(t) and h.(t) the steady-state versions of g,,;.(t) and 
h,,;.(t). Since all the traffic sources are independent, it is easily seen that the joint 

pgf N(Xl' ... 'Xr'Yl' .... Yr) of the g.(/)'s and the h,,(t)'s can be expressed as 

N(xl .. ··'%T'11' .. ·,1T) A ,U (fi X"L!')) (fi y""!'))] 
= fI (v".t(l)+ f va,,(n) XII.' + f v",t(n) YII,,)N., (6) 

t=1 11=1 11=2 

where the vectors x, = (XI,. Xu ... ) and Y, = (Y2,. Y3, • ... ). and va,(n) and v",,(n) are 
the probabilities that a source of type I is in state A,. or B II respectively, during an 
arbitrary slot in the steady state. From the set of balance equations for the Markov 
chain in Figure I, together with the nonnalization equation, the probabilities 
v.,(n) and vb,(n) can be calculated as 
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va,,{n) = V a,' (I) (~a'{i») 
1 

Va"(1) = vII,,(I) = A;(I) + B;(I) 

n~1 (7) 

(8) 

From (6). it is easy to show that the total average multiplexer load p is given by 

T T A;(I) 
p= LN, 0, = LN, A'(I)+B'(I) • ,=1 ,=1' , 

(9) 

where 0 , is the average load contributed by a type t source and A;(I) and B;{I) 
are the mean on-periods and the mean off-periods of a source of type I. 

Next. let s. represent the buffer contents at the beginning of slot k. i.e. the total 
number of cells stored in the multiplexer buffer at the start of slot k. including the 
cell that will be transmitted during slot k. if any. The evolution of the buffer 
contents is governed by the following system equation: 

(10) 

where (,f = max(O •. ) and e. denotes the total number of cell arrivals during slot 
k. which can be further expressed as 

T 00 

ek = L Lgn,k(l) . (11) 
,=1 n=1 

From the above equations. it is clear that the vector 

(gu-I' .... 8T);-1' hl);_I' .... hu_1' s.). where 8,);-1 = (gui t). g2);-I(/) • ... ) and 
h,);_1 = (h2);_1 (I). hU'_) (I) • ... ). constitutes an infinite-dimensional Markovian state 
description of the queueing system under study at the beginning of slot k. 

4 FUNCTIONAL EQUATION 

Let us defme the joint pgf of the state vector (g1);_1' .... 8u -1' hl );_1' .... hT);_l' s.) : 
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With this definition and equations (lO) and (ll). Pk+I(XI ..... xr.yl ..... yr.:) can 

be obtained as 

Based on equations (l}-(3) and averaging over the distributions of the CN,i(t)'S and 
the d {t)'s. dermed in equation (5). it follows that N,' 

Upon substitution of equation (4) this can be rewritten as 

where 

n~l. IStST (13) 

H ( ) A D (Yn+l., )/D (Y2.,) n,t x,.y,.: - n,' -- I" -- • 
XI"Z XI"Z 

n~2. IStST. (14) 

Since a cell can never leave the buffer before the end of the slot right after its 
arrival slot, Sk = 0 implies that ek_1 = 0 and hence also gn,k_l(t} = 0 (n ~ 1. 
1St S n. With this property. the right-hand side of the above equation can be 
further expressed in tenns of the function Pt. In the steady state. 

Pk(Xl' .. -'xr'yl .... 'yr.:) becomes independent of k. From equation (12), it is not 

so difficultto show that the steady-state pgf p(x\ .... 'xr'y\' .... yr'z) satisfies the 

following functional equation : 
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,P(x, ..... x,." ..... ".,) =( V. [x,.,,~,( ~~,)]"') 
. {p(GI (XI 'YI ,z), ... ,Gr(xr,Yr,z),HI (XI 'YI , z), ... ,Hr(xr,Yr,z),z ) 

+(z-l)Po Q(HI(XI,YI,z) ..... Hr(Xr'Yr'z»)} , (15) 

where 

(16) 

(17) 

for 1 S t S T, and Po denotes the steady-state probability of an empty buffer. Note 

that G,(x"y"z) and H,(x"y,!z) are only functions of x" Y, and z, which is due 

to the fact that all the T different ttaffic types are assumed to be independent. The 
Q-function in equation (IS) is dermed as 

(18) 

where 

Because of the indirect relation between hN~.I(t) and 8., it is very difficult to 
obtain an exact expression for all the unknown boundary probabilities q(jl' ... ,iT) 

and hence. for the function Q( YI ' .... yT). 

Since the pgf S(z) of the steady-state buffer contents 8 equals P(l, .... 1, z), in 
principle, the functional equation fully describes the buffer behavior. 
Unfortunately, in general, it is not an easy task to obtain from (15) an explicit 
expression for the pgf S(z). Nevertheless, an approximation for the tail 
distribution of the buffer contents can be derived from it. In order to do so, we 
select only those values of xN/' YN1 and z for which the arguments of the 
P-functions on both sides of (15) are identical. i.e. such that 

x"" = G""(x"y,,z) and Y"" = H""(x"y,,z) . (20) 
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From these relationships. X"I and J"I can be solved in tems of z. It turns out that 
for a given value of z. there may be more than one set of solutions. Only one of 
these sets, which will be denoted by x,,/(Z) and l;../(Z). has the additional property 

that X"I = 1 and J"I = 1. for Z = 1. From (20), it is possible to show that x..iz) and 
l;..iz) satisfy the following set of equations : 

( ..) (F. (»)"-1 ( ) II-I (F. ( »)"-1-; z La,(i) XII,,(Z)= ~ A, F. Z( ) - La,(i) ~ • n ~ 1; 
;=11 Z, Z ;=1 Z 

(21) 

(~b,(i») ;II,'(Z) = XI.,(Z) Z {F,(Z)II-I 8,(-1-( »)- ~b,(i) F,(Z)II-I-i}. n ~ 2. (22) 
'=11 F, Z .=1 

where 

(23) 

By choosing XII" = XII,'(Z) and YII" = ;II,,(Z) in (20). we then get 

(24) 

where the functions F(z) and Q(z) are defmed as 

(25) 

(26) 

and the unknown constant Po can be calculated from the nonnalisation condition 
P(l • .... 1) = 1 as Po = 1 - p. Comparing the results obtained here with those 
obtained in (Wittevrongel. Broneel. 1995). under the assumption of geometrically 
distributed off-periods. we see that the main difficulty in considering general 
instead of geometric off-periods lies in the occurrence of a number of boundary 
probabilities. which in general are difficult to calculate. In the next section. we 
therefore present an approximation technique. which avoids the calculation of all 
the unknown boundary probabilities. and at the same time leads to accurate 
results for the tail distribution of the buffer contents. 
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5 TAIL DISTRIBUTION OF THE BUFFER CONlENTS 

A performance measure of considerable interest is the probability that the buffer 
contents exceeds a certain threshold S. This quantity is often used in a buffer 
model with a finite waiting room of size S. to approximate the cell loss ratio. i.e. 
the fraction of the arriving cells that is lost upon arrival because of buffer 
overflow. In many cases. it has been shown that the buffer-contents distribution 
exhibits a geometric tail behavior. That is. for sufficiently large S. the tail 
distribution of the buffer contents can be approximated as 

Prob[s>S]=-_O- zO-S-1 
Zo -I 

(27) 

Here Zo is the pole of S(z) with the smallest modulus. which must necessarily be 
real and positive in order to ensure that the tail distribution is nonnegative 
anywhere, and the constant 0 is the residue of S(z) in the point z = ZOo In the rest 
of this section, we will now first of all describe how the pole zo can be calculated. 
Next, we will derive an accurate closed-fonn approximation for the residue O. 

5.1 The dominant pole to 

As in (Xiong, Bruneel, 1992). (Steyaert. Bruneel. 1995) and (Wittevrongel, 
Bruneel. 1995). it can be argued that the dominant pole Zo of S(z) is also the pole 
with the smallest modulus of p(Xt(z) ..... Xr(z).;t(z) ..... ;r(z).z). Hence. Zo is 

detennined by the equation z - F(z) = O. or 

T 
z-II F,(z)N, = 0 . (28) 

,=1 

From equations (21)-(23). it furthennore follows that 

(29) 

The pole Zo can easily be calculated numerically from the above set of equations 
by using, for instance. a combination of repeated substitutions and the 
Newton-Raphson algorithm. From equations (28)-(29). we also note that the 
unknown boundary probabilities q(jl' .... iT) have no influence on ZOo which 
means that the geometric decay rate y= 1/zo can be calculated exactly. 
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Next. we describe a method to obtain approximations for Zo in the case of heavy 
ttaffic. i.e. when the total load P is high. It is expected that as p approaches to 
one. Zo will also be close to one. If we now consider Zo as being a function of p. 
we can expand the function zo(p) around p = 1. By keeping tenns up to <P-l)" in 
this expansion and neglecting higher-order tenDs. we then get: 

(30) 

where f. .e. d"zo(p) I . 
" dp" 

pal 

Furthennore. zo<P) behaves as IIp as p approaches to 1. By considering the 
Taylor expansion of zo<P> p around p = 1. we obtain a second approximation for 

(31) 

From (28) and (29). it follows that zo(p) satisfies the following set of equations : 

where NI(p) =_1 {p-iN,a,} and R,(p)=F,(z(p»). We then obtain 
01 ,.2 

expressions for f.. by evaluating the consecutive derivatives of the above 
equations with respect to p for p = I. taking into account that zo(1) = 1. In Figure 
2. we have plotted the exact value of Zo in tenns of the total load p. together with 
a number of heavy-traffic approximations, for N = 8 homogeneous on/off sources, 
with negative binomial distributions for both the on-periods and the off-periods. 
i.e. A(z)=(I-a)2z/(I-az)2 and B(z) = (1-piz/(1-pz)2 . The parameter K 

equals K = A'(l)(l-pIN)= B'(I) pIN. The figure shows that the obtained 

approximations are quite close to the exact results. especially for high values of 
p. but even for lower loads. accurate approximations can be obtained by keeping 
a sufficient number of tenns in (30) and (31). These approximations are excellent 
staning values when calculating the exact value of ZOo 
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Figure 2 Dominant pole versus the load p: exact results and heavy-traffic 
approximations. for negative binomial on-periods and off-periods. 

S.2 The residue 9 

Let us consider the situation where the buffer contents just after a given slot is 
extremely large (» N). It is reasonable to think that the number of cell arrivals 
during this slot (which cannot be larger than N) has almost no impact on the 
buffer contents. Hence. if j is sufficiently large (j > J ). we may assume that the 

probabilities Prob[gft(/) = iftJ (n ~ 1. I SIS n. h.(t) = kftJ (n ~ 2. 1 S t S n I s = Jl 
are almost independent of j. and approach to some limiting values for j ~ 00. 

denoted by ro(ip .... ~ ip .... iT)' with corresponding pgf D(xt ..... xp 11' .... , T). 
The residue e can then be derived. in a similar way as explained in (Xiong. 

Broneel, 1992). (Steyaert. Broneel. 1995) and (Wittevrongel. Broneel. 1995). as 

e = Zo (zo -1)(I-p) Q(zo} 
[1- F'(zo}] n(XI (zo ). .... Xr (zo )./;1 (zo ). .. ·./;r(zo}) 

(32) 

Furthermore. the following equation can be established for the pgf 
n(xp .... xp 11' .... , 1) of the limiting cell arrival process : 



Buffer contents in a statistical multiplexer 35 

As expected intuitively, it is possible to show that the solution 
n(xl , ... , x.,. 11, ... ,1T) of (33) has the same fonn of expression as the pgf 
N(xt' ... , x.,. 11' ... ,1T) of the unconditional cell arrival process. Specifically, 

where 1l .. ,tCn) and 1l.,tCn) are the (conditional) probabilities of fmding a source of 
type t in state A" or B II' respectively, when the number of cells in the multiplexer 
buffer is extremely large. Substitution of (34) into (33) and identification of the 
coefficients of x"J and Y"J on both sides of the resulting equation leads to a set of 
equations from which Il.J(n) and Il.J(n) can be derived explicitly as 

Zo (zo - F,(zo)~ B,(J/F,(zo)~ (F,(zo )-1) 
1l .. ,,(I) = 2 [( ~l ; F,(zo) (zo -1) 1-8, J/F,(zo)JJ 

I1.in) = 11 •. ,(1) (F,(:, If (~.,(i»). n ~ 2 

(zo - F,(zo») [1- b,(I)] (F,(zo )-1) 
Ilb ,(2) = 3 [ 1 

. F,(zo) (zo -I) 1- 8,(J/ F,(zo »)J 

I1.,(n) = [~~~~~1)j (F,(z,r' (~b,(i»). n~3. 
Furthennore, by using (21)-(23), (28) and the above expressions, we obtain 

(35) 

(36) 

(37) 

(38) 

N, 
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Also. we get the following explicit expression for F'(zo) : 

(40) 

The only unknown quantity in (32) is Q(zo). which contains a very large 

number of unknown boundary probabilities q(jl' ...• i r). defmed in (19). Since in 
general. it is very difficult to calculate these probabilities exactly. we will derive 
an approximation for Q( zo) in stead. Our approximation is based on the 

observation that gft,k.I(t) = 0 (n ~ 1. 1 S t S n. if s. = O. For this reason. one might 
think that the difference between the cell arrival process observed when s. = 0 or 
when gft,k.I(t) = 0 (n ~ I. I ~ t S n respectively. is small. Therefore. we 
approximate the unknown boundary probabilities as 

q(jl ..... ir) (41) 

== l~ Prob[hn.k-1 (I) = in., (n ~ 2. I ~ 1 ~ T) I gn.k-1 (I) = 0 (n ~ 1. 1 ~ 1 S T)] 

Numerical results presented in Section 6 show that the above approximation leads 
to accurate results. Since the random variables gft,k.\(t) and hft,k.\(t) are both related 
to the cell arrival process. by introducing the above approximation into (18). the 
function Q( z) can be expressed in tenns of the pgf N(x\ • .... xT' YI • .... Yr)' As a 

result. the following approximation is obtained for Q( z) : 

-( )_ N(O ..... O.~l(Z) ..... ~l(Z» 
Q z = ). N(0 ..... 0.1 ..... 1 

(42) 

A little more algebra finally yields 

Combination of equations (32). (39). (40) and (43) then gives an explicit 
approximation for the parameter e in tenns of ZOo 
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6 NUMERICAL EXAMPLES 

In this section, we illustrate the obtained results by means of two specific 
examples. In the first example. geometric on-periods and mixed geometric 
off-periods are considered. whereas the second example is concerned with fixedly 
spaced on/off sources. The purpose of these examples is fllSt of all, to verify the 
accuracy of the obtained results and secondly, to investigate the influence of the 
distributions of the on-periods and the off-periods on the multiplexer 
performance. 

The model we analyzed in this paper has also been investigated in (Sohraby, 
1993). The most important differences between our study and Sohraby's are : 
• The exact numerical calculation of the geometric decay rate y = 1/ Zo by 

means of the method presented in (Sohraby, 1993) requires knowledge of the 
algebraic expression of the Perron-Frobenious (PF) eigenvalue of each of the 
individual sources. which except for some special cases, is very difficult to 
obtain. For our method, on the other hand. the expression of the PF eigenvalue 
is not necessary. and Zo can easily be calculated from (28) and (29) by means 
of a numerical algorithm. In addition. we have presented a method to derive 
accurate approximations for the dominant pole zo' which could be used as 
starting values. when calculating the exact value of ZOo 

• Our study not only yields the geometric decay rate; it also leads to an accurate 
closed-form approximation for the coefficient of the geometric form, whereas 
in (Sohraby, 1993) this coefficient is simply approximated by the multiplexer 
load, i.e .• the tail distribution of the buffer contents is approximated as 

(44) 

The approximation (44) is much less accurate then our's, as we will show in 
the sequel. 

6.1 Geometric on-periods and mixed geometric off-periods 

Let us assume that the multiplexer is fed by N homogeneous on/off sources. For 
each source, the on-periods are geometrically distributed. whereas the off-periods 
are distributed according to a mixture of 2 geometric distributions. i.e. 

A(z) = (I-a) z 
l-az 

The set of parameters (N, a. q. Pl' P2) fully characterizes the cell arrival process 
to the multiplexer. However. we will use here a different, more intuitive set of 
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FiRure 3 Prob[s > S] versus S. for geometric on-periods and mixed geometric 
off-periods. for N = 4. K = 2. L = 2 and q = 0.3. 

parameters. First of all. the total multiplexer load p is given by 
p=N/[l+(l-a)B'(l)]. Also. as above. we define the burstiness factor K of a 

source as the ratio of the mean on-period (or off-period) of the source in the 
considered traffic model to the corresponding quantity in the case of a Bernoulli 
arrival process with the same load a = pIN. i.e. K = (1-a)/(l-a) = aB'(l) • 
Where the load a of a source is a measure for the ratio of the mean lengths of the 
on-periods and the off-periods. clearly the parameter K describes the absolute 
lengths of these periods. Furthermore. we derme L as the ratio of the variance of 
an off-period in the considered model. to the variance of a geometrically 
distributed off-period with the same mean length. It can be shown that for given 
values of q. L and B'(l). the parameters PI and P2 can be derived from 

_1_ = B'(l) + ,..;.(l_-,.;.;.q )..;..(L_-~I)_B..;..'(l.;..,:)[ ..... B'..;..;(1 )..;..-...,£1] 
I-PI 2q 

P2 =1- (l-q)(I-Pl) 
B'(I) (I-Pl)-q 

Hence. the set (N. p. K. L. q) also fully describes the cell arrival process. 
In order to check the accuracy of the results derived in the previous section, we 

have also numerically analyzed the queueing system under the assumption of a 
finite. but large waiting room. For the considered traffic model, provided that the 
number of sources N was not too large. the numerical solution of the resulting set 
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Figure 4 Prob(s > S] venus S. for geomeaic on-periods and mixed geomeaic 
off-periods. for N = 4. P = 0.5. K = 3 and q = 0.1. 

of balance equations was feasible. leading to the exact complementary pmf of the 
buffer contents. In Figures 3 and 4. we have plotted the obtained exact numerical 
results for Prob(s> S] in tenns of S, together with our geomeaic tail 
approximation and the approximation obtained in (Sohraby, 1993) for various 
traffic parameters. As one can observe. our approximation is really very tight to 
the actual tail disaibution, whereas Sohraby's results overestimate the tail 
disaibution. Figure 4 furthennore iUusttates the importance of the precise 
disaibution of the off-periods: a simplified model which uses a geomeaic 
disaibution for the off-periods, i.e. L = I, tends to underestimate the tail 
disaibution of the buffer contents. 

6.2 on/orr sources with fixed spacing 

We now consider an A TM statistical multiplexer with N homogeneous fixedly 
spaced on/off sources. The onIoff traffic source model with fixed spacing is 
described as follows. Each source alternates between "active" and ''passive'' 
periods. The number of cells generated in an active period and the length of a 
passive period are both be geomeaically disaibuted with parameters (X and Ii. 
respectively. Hence, the mean number of cells entering the system during an 
active period, the so-called "average burst length", is given by Ex = 1/ (1- (X). 

The interarrival time between two adjacent cells generated in the same active 
period is fixed, and equals m sloes. The pgf's A(:) and B(:) describing the lengths 
of the on-periods and the off-periods, as dermed in Section 2, can then be 
obtained as 



40 Part II Queueing Models/or ATM 

1.0E+OO ~----------------, 

1.0E-01 
N-16, p=O.4 

~:~ 
1.0E-02 

1.0E-03 

1.0E-04 F=~:;;~~;::=::::~~~:::J --limulati(JI'J 

1.0E-05 -our apprOltimati(JI'J 
- - - Sohnby's apprOltimati(JI'J 

1.0E-oe +---+---+---II---+---+---+-....::::ot 
o 10 20 30 40 50 80 70 

s 

Figure 5 Prob[s > S] versus S. for fixedly spaced on/off sources. 

A(z} = z and ( ) ... -1 (l-a)(l-p) z'" 
Bz=az + A. • 

l-.,z 
(46) 

In Figures 5 and 6. the geometric tail approximation of the buffer contents is 
compared with the exact complementary pmf. obtained by simulation, and with 
the approximation derived in (Sohraby. 1993). for various values of Ex and m. 
These figures reveal that our approximation is quite close to the simulation 
results. It is worth noting here that deriving the simulation results is very time 
consuming and becomes even unpractable for low values of Prob[s> S]. while 
calculating our approximation for the tail distribution requires very little 
computing time. Figure 5 also shows that for given values of the total load p and 
the average burst length Ex. the performance improves with increasing values of 
the spacing interval m. Figure 6 illustrates that. for given p and m, longer average 
burst lengths Ex give rise to higher buffer contents. 
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