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Abstract 
The buffer contents in a discrete-time single-server queue is analyzed un­
der a round-robin service discipline. This service discipline is related to the 
continuous-time processor-sharing discipline and models the operation of cer­
tain types of input-buffered ATM-switches when variable-length packets are 
routed. The packet-length distribution is arbitrary here but of phase-type. 
Through a generating-functions approach, a set of functional equations is de­
rived from which a straightforward algorithm to calculate the mean buffer con­
tents is obtained. Numerical examples illustrate the main characteristics of the 
round-robin service discipline and its relation to the first-come-first-serve ser­
vice discipline. Hereby, implications for the performance of the input-buffered 
ATM-switches are given special attention. 
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1 INTRODUCTION 

For some time now, the round-robin (RR) service discipline, in both contin­
uous time (Lam et al. 1981, Muntz 1972) and discrete time (Daduna et al. 
1981, Schassberger 1981), and the related continuous-time processor-sharing 
(PS) discipline (Kleinrock 1976, Schassberger 1984, van den Berg et al. 1991) 
have been studied extensively, mainly in the context of multi-tasking or time 
sharing in computer systems (JaiswaI1982). Recently, however, the same dis­
ciplines have received renewed attention in the context of ATM-switching, for 
reasons to be explained next. 

In input-buffered ATM-switches (Awdeh et al. 1995, Karol et al. 1987), 
cells at the head-of-line (HOL) positions of the input queues compete for 
routing with cells at the HOL positions of other input queues having the same 
destination or output address. This process has been succesfully modelled by 
means of virtual queues (Karol et al. 1987). For uncorrelated cell destinations, 
results for (a network of) continuous-time MIDI 1 or discrete-time GI-D-l 
queues can be used to assess the performance. Typical performance measures 
include maximum throughput and mean system contents. For correlated cell 
destinations, this approach remains valid, but more complicated queue models 
have to be developed, as e.g. in (Cae 1995, Cae et al. 1995, Jacob et al. 1995, 
Laevens et al. 1996a, Li 1992). Usually the correlation is modelled by packets, 
consisting of a variable number of cells having the same destination. Important 
is that when in this case the switch selection policy is such that cells are 
served on a first-come-first-served (FCFS) basis inside the virtual queues, a 
RR discipline for HOL packets results. For a more detailed discussion of these 
issues, we refer to the cited papers. 

Our analysis mainly focuses on performance measures on packet level. It 
requires, however, minor effort to reformulate things on cell level. At this level, 
the system behaves as a single-server cell-buffer with a FCFS discipline among 
cells, whereby a form of feedback is present between cell-departure and cell­
arrival process. This feedback introduces correlation between waiting times of 
different cells belonging to a same packet. Results on feedback queues can be 
found in e.g. (Disney et al. 1984, Lam et al. 1981, Schassberger 1984, Takacs 
1963, van den Berg et al. 1989, van den Berg et al. 1991). 

The structure of the paper is as follows. In section 2, the mathemati­
cal model is defined. Phase-type distributions are introduced for the packet 
lengths and the arrival process is looked at in some detail. Section 3, where the 
per-type buffer contents is analyzed based on a generating-functions approach, 
makes up the main part of this paper. A system of functional equations is de­
rived, in subsection 3.1, from which mean values are extracted in subsection 
3.2. Two numerical examples given in subsection 3.3, highlight the main char­
acteristics of the RR discipline and its implications for switch performance. 
Hereby, results for the better known FCFS discipline are used as reference. 
Waiting times are addressed in section 4 and conclusions drawn in section 5. 
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2 THE MATHEMATICAL MODEL 

2.1 The buffer 

The buffer analyzed here, has a single server and an infinite waiting room. 
It is fed by packets (or jobs, customers, ... ) consisting of a variable number 
of fixed-length cells. It operates in a time-slotted fashion, i.e., time is divided 
into consecutive intervals of unit length, called slots, during which a single 
cell can be served. The time to transmit (or route, serve, ... ) a cell will be 
chosen as time unit. 

The numbers of cells within each packet, the so-called packet lengths, are 
independent and identically distributed (iid) random variables (rv's) with a 
common distribution s(n) = Prob[s = n] (n = 1,2, ... ). Hereby, s denotes the 
length of a generic packet. The probability generating function (pgf) associ­
ated with this distribution, is defined as 

+00 
S(z) = E[z·] = L s(n)z1l. 

11=1 

The mean packet length is then given by 

+00 
E(s] = S'(I) = Ls(n)n. 

11=1 

In this paper, we will assume that packet lengths follow a phase-type distri­
bution, as to be discussed in subsection 2.3. 

As for the arrival process, we will assume that it constitutes a so-called GI 
arrival process (Bruneel et al. 1993). If we denote by ak the number of newly 
arriving packets during slots k (k = ... ,0,1, ... ), we assume that the ak are 
iid rv's. Their common distribution will be denoted as a(n) = Prob[ak = n] 
and the associated pgf as 

+00 
A(z) = E[zo.] = L a(n)z1l. 

n=O 

The mean number of arrivals per slot is given by oX = E[ak] = A'(I). For 
reasons of stability, oX should he such that the load p = oXE(s] is less than 
unity. 
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2.2 The round-robin service discipline 

Under queueing disciplines such as FCFS or LCFS (last-come-first-served), 
packets are considered indivisible units and are served uninterruptedly once 
they access the server. No relation exists between their actual length and the 
waiting time they experience, which is a form of unfairness (Kleinrock 1976). 
To overcome this, other service disciplines have been devised in the past, 
one of which is the so-called round-robin (RR) service discipline. Under this 
discipline, packets circulate in a FCFS queue, whereby the packet at the head­
of-the-line (HOL) position is granted a single slot service time, i.e., a single cell 
of the packet is transmitted. If afterwards the packet still needs servicing, it 
has to rejoin the queue at the rear. As such, the RR discipline is the discrete­
time analog of the processor-sharing (PS) discipline (Kleinrock 1976, van den 
Berg et ol. 1991), for it distributes the available service (or channel, switching, 
... ) capacity in a more or less uniform way over all packets present in the 
system. 

Due to the time-slotted operation of the system, an issue concerning simul­
taneity arises, not found in continuous-time models. A packet may rejoin the 
queue during a slot in which also new packets arrive, and these packets can 
mix with eachother in a number of ways. Here, we will assume that newly 
arriving packets get queued ahead of a packet rejoining the queue. This seems 
to be the most natural choice for systems whereby the arrival process is not 
synchronized with the service process, so that packets can arrive at any point 
in time during a slot, while a packet can only rejoin the queue after receiving 
service, i.e., at the end of a slot. Another option is to assume that no distinc­
tion can be made between newly arriving packets and the packet rejoining 
the queue. This seems to be more likely within the context of input-buffered 
ATM-switches, since the queues within that context are only logical queues 
(Karol et al. 1987). The analysis presented here, needs only to be modified 
at some minor points to account for this. However, doing so does complicate 
the resulting expressions to some extent, and, as such, could obscure the main 
ideas of the analysis. More detailed research has shown that the exact way 
in which packets mix has only a minor effect on performance measures of 
interest. 

2.3 Phase-type distributed packet lengths 

In (Laevens et al. 1996a), the above described queue with RR discipline was 
analyzed under the assumption of geometrically distributed packet lengths, 
i.e., for s(n) = 0(1- o)n-l. A key characteristic of the geometric distribution 
is its memoryless property, i.e., the fact that P[s = nls ~ n] = 0 does not 
depend on n. This simplified the analysis in (Laevens et al. 1996a) consider­
ably, since no information about the service already received was needed to 
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determine whether or not a packet would leave the system after receiving a 
slot of service. The main idea of this paper is to extend that analysis to more 
general forms of distributions, while at the same time trying to preserve some 
sort of memory less property. Discrete phase-type distributions, while being 
fairly general, allow just that. 

Define s as the number of transitions until absorption in a finite state 
Markov chain with N non-absorbing states and a single absorbing state. Fur­
ther, denote the kth state visited by the Markov chain as !.pic. The distribution 
of s is then fully specified by the probabilities m(ilj) (i, j = 1, ... , N) of a 
transition from non-absorbing state j to non-absorbing state i, and the prob­
abilities IIj = Prob[!.pl = j] (j = 1, ... , N) of the Markov chain starting in the 
non-absorbing state j. The probabilities Tj (j = 1, ... , N) of a transition from 
non-absorbing state j to the absorbing state are given by Tj = 1-E~1 m( ilj). 
For the remainder of the paper, we will use vectors and matrices to reduce 
notational overhead. Therefore, let us define the following matrix and rowvec­
tors: [M];j = m(ilj), (y); = II;, (T); = Ti (i, j = 1, ... , N), and e = (1, ... ,1). 

The distribution associated with s can be determined by observing that 

N 

Prob[s = n] = L Prob[s = nl!.pl = j]lIj = Prob[s = nl4>1]yt. 
j=1 

Hereby, we introduced the notation (Prob[s = nl4>t1); = Prob[s = nl!.p1 = ~ 
and used yt to denote the transpose ofy. Now, Prob[s = n+II4>t1 = Prob[s = 
nl4>1]M and Prob[s = 114>t1 = T = e(1 - M), whereby I is the N x N 
unit matrix. Hence, Prob[s = nl4>t1 = e(1 - M)Mn- 1 and Prob[s = n] = 
e(l- M)Mn-lyt. Introducing z-transforms, we obtain 

for the pgf's of s conditioned on the initial state !.pI, and 

S(z) = E[z'] = S(ZI4>I)yt = ze(l- M)(I- ZM)-lyt 

for the unconditional pgf. Derivatives of S(z) are given by 

From this, the mean packet length E[s] follows as 

E[s] = S'(I) = e(l- M)-lyt 

and the variance of the packet length V[s] as V[s] = E[s2] - E[s]2 = S"(I) + 
S'(I) - S'(1)2. 
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It is not the purpose ofthis paper to go deeper into the properties of phase­
type distributions. For more information, we refer the reader to (Neuts 1981) 
or (Asmussen et al. 1996). In the latter, the problem of fitting continuous 
phase-type distributions is addressed. Special cases of discrete phase-type dis-

polynomial convolution of geometries mixture of geometries 

Figure 1 Markov chains for three special cases of phase-type distributions 

tributions are, besides the geometric distribution, polynomial distributions, 
convolutions of geometries and mixtures of geometrics. For these cases, the 
pgf of the packet length is given by 

N II aiZ 
and 

.1-(I-ai)Z .=1 

N 
~ aiZ 
~ Vi -1---("-I---a""'i )-z 
.=1 

respectively. Corresponding Markov chains are depicted in Figure 1, from 
which the vector v and the matrix M are easily derived. 

In what follows, we will call a packet being of type j (j = 1, ... , N) when 
the Markov chain associated with its service time is in state j. After a cell of 
that packet has been served, the packet then either changes from type j to 
type i, with probability m( ilj), or leaves the queue, with probability Tj. Its 
initial type is j with probability Vj. 

2.4 A closer look at the arrival process 

The description in subsection 2.1 of the arrival process only involved the total 
number of arrivals during a given slot. In what follows, it will be easier to 
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make use of the joint pgf of the per-type arrival process, i.e., of the numbers 
ai,le of type i packets arriving during slot Ie. Therefore, define 

Since every new packet is initially of type i with probability Vi, we have 

B(z) = A(VIZI + ... + VNZN) = A(vzt). (2) 

Nothing, however, prevents us from specifying the joint generating function 
B(z) in a more general way, using e.g. N independent GI arrival processes, 
one for each type. (The load p is then no longer given by AE[s] , but by 
p = E~l Ai E[sl'Pl = '1, with Ai = E[ai,Ie].) 

This approach results, generally speaking, in the position of an arbitrarily 
chosen or tagged packet within the bulk of new packets in which it arrives, to 
be dependent on the type of that tagged packet (Laevens et al. 1996b). This 
would further complicate our analysis, as will be discussed at the appropriate 
time. Therefore, we restrict ourselves to the case of a so-called probabilistic 
mix, whereby B(z) is given as in equation (2). 

The position of a tagged packet within the bulk of arrivals during the slot 
of its arrival, can be described by the vectors (f}i = Ii and (g}i = Ui, whereby 
Ii and Ui are the numbers of type i packets arriving during the same slot as 
the tagged packet and queued ahead respectively behind it at the end of that 
slot. For the arrival process considered here, the joint pgf of f and g is of the 
form (Laevens et al. 1996b) 

F( ) = E[ f 8] = A(vzt) - A(vllt) 
Z, II z II A(vzt _ vllt) (3) 

whereby we used the notation zl = n~l z{' and ,18 = n~l 7Ili • 

3 ANALYSIS OF THE BUFFER CONTENTS 

3.1 A generating-functions approach 

The analysis of the buffer contents should necessarily take into account the 
numbers of different types of packets in the system, i.e., the per-type buffer 
contents, since the type of a packet determines the probability of it leaving the 
system after receiving a slot of service. A slot-to-slot based analysis of this 
per-type buffer contents, in other words, the determination of the per-type 
buffer contents at the beginning of slot Ie + 1 from that at the beginning of 
slot Ie, seems not feasible because it also requires knowledge of the exact order 
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in which packets are queued. This information is needed to determine what 
type of packet will be the next to receive service. To overcome this problem, 
we rely on an analysis of the different cycles a tagged packet goes through 
while visiting the system. 

Let us denote the vector of the numbers of type i packets in the system at 
the beginning of slot k by (Uk); = U;,k. The joint pgf 

of these numbers at the beginning of a slot in equilibrium, can be expressed 
as 

N 

U(z) =Po+ LLj(z)zj =po+L(z)zt. 
j=l 

(4) 

The functions L(z); = Lj(z) in the above, are the partial joint pgf's of the 
numbers (q); = q; of type i packets in the queue, the buffer without the 
server, and the occurence of a type j packet being in service, observed at the 
beginning of a slot, i.e., 

Lj (z) = E[zq . I( <p. = j)). (5) 

where 1(.) is the indicator function and <p. the type of the packet in service. 
The probability Po is the probability of the system being empty and is given 
by 1- p. 

Next, we will analyze the different cycles a tagged packet goes through 
while in the buffer, whereby we assume the equilibrium situation prevails. A 
cycle starts at the end of a slot wherein the packet joins the queue at the 
rear, be it either by arriving to the queue for the first time or by rejoining 
the queue after receiving a slot of service. A cycle ends at the beginning of 
the slot in which the packet will receive service, i.e., after it has queued for 
some time and reached the HOL position. Note that the slot during which 
service is received is not included in a cycle. In order to keep track of how 
the queue contents changes during different cycles, we introduce the functions 
Qn (z) = E[zq .. ] that are the joint pgf's of the per-type queue contents qn 
observed by the tagged packet at the end of the nth cycle, i.e., just before it 
receives its nth slot of service. The following relation holds for n ~ 1 

Qn+l(Z) = B(B(z)(T + zM))Qn(B(z)(T + zM)). (6) 

It is based on the following observations. At the beginning of a cycle other 
than the first, the tagged packet will be behind all other packets in the system, 
due to assumptions we made in subsection 2.2 on how packets mix with each 
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other. The per-type number of packets ahead of the tagged packet at that 
time, consists of contributions of packets already in the system when the 
tagged packet entered service, which results in the factor Qn (.), and of the 
contribution of the packets that arrived during that slot of service, which 
results in the factor B(·). The arguments in the right-hand side of equation 
(6), originate from the following observations. Before the tagged packet can 
enter service, all other packets first have to receive a slot of service. During that 
time, the queue builds up behind the tagged packet, as follows. During each 
slot, one per packet, new packets can arrive, as specified by the joint pgf B(z) 
of the GI arrival process. Besides these packets, packets rejoining the queue 
also contribute. A packet of type j will rejoin the queue as a packet of type i 
with probability m(ilj), or it will leave the queue, thus not contributing to the 
buildup of the queue, with probability Tj. For each packet of type j, a total 
contribution is thus made, described by B(z)(Tj+m(llj)zl + .. . +m(Nlj)zN). 
In vector notation, this results in the arguments B( z)(T + z M) in the right­
hand side of the above equation. 

The first cycle differs somewhat from the others, since it starts with the 
tagged packet joining the queue as a new arrival. At that moment, the tagged 
packet is not necessarily the last packet in the queue, unlike at the beginning 
of the other cycles. This is not only due to our assumption about how packets 
rejoin the queue, but also due to the random way in which the packet was 
chosen, see subsection 2.4. The per-type numbers of packets other than the 
tagged packet, in the system at the start of the first cycle, have joint pgf 

P(z, y) = F(z, y) (po + L(z)(T + yM)t) , (7) 

whereby z refers to the packets ahead of the tagged packet, and y to those 
behind it. The term F(z,y) should be obvious in light of subsection 2.4. The 
other terms result from the way in which the system contents in equilibrium 
was decomposed, see equation (4). Packets in the queue, i.e., not in service, 
at the beginning of the slot of arrival of the tagged packet, will still be in the 
system at the end of that slot. They will necessarily be ahead of the tagged 
packet, hence the term L( z). The packet in service during the slot of arrival 
of the tagged packet, if any, may result in a packet rejoining the queue at 
the end of that slot, possibly with a change of type, as explained above. This 
yields the term (T + yM), in which y appears, since a rejoining packet will 
be queued behind the tagged packet. The per type queue contents at the end 
of the first cycle can now be related to this initial situation as 

Ql(Z) = P(B(z)(T + zM), z) 
= F(B(z)(T + zM), z) (Po + L(B(z)(T + zM))(T + zM)t) . (8) 

Packets ahead of the tagged packet at the beginning of the first cycle, related 
to argument z of P(z,y), result in new arrivals and packets rejoining the 
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queue, in the same way as those ahead of the packet at the beginning of other 
cycles. Packets behind the tagged packet at the beginning of the first cycle, 
argument y of P(z, y), will still be behind it at the end of the cycle. These 
observations readily yield the above equation. 

Note that the type of the tagged packet was of no importance so far. Equa­
tion (6) is valid for any tagged packet, which implies that if Qn(z) is inde­
pendent of the initial type of the tagged packet, so is' Qn+1(z), or, if Q1(Z) 
is, then all Qn{z) are. Now, Ql{Z) is independent of the initial type of the 
tagged packet, because of the special nature of the per-type arrival process, 
as argued in subsection 2.4. 

The partial pgf's Lj(z), equation (5), can be expressed as 

+00 
Lj{z) = -X L Qn(z)Prob[(s ~ n) . (,.on = j)]. (9) 

n=1 

Every packet that enters the system, -X per slot on average, contributes to the 
probability of finding a type j packet in service, whenever its service time is 
at least n slots and ,.on = i. At that time, the queue contents observed by 
that packet, is described by Qn(z). Taking into account all possible values of 
n, we easily obtain the above. Note once more that the special nature of the 
arrival process allowed us to disregard the initial type of packets. Similarly as 
in subsection 2.3, it is possible to derive the result 

N 

Prob[(s ~ n + 1) . (,.on = i)l = L Prob[(s ~ n) . (,.on-l = k)]m(jlk) 
1e=1 

for n ~ 1 and Prob[(s ~ 1)· (,.on = i)l = IIj. Using these relations, one obtains 
from equations (9) and (6) that 

N 

Lj(z) = -XQdz)lIj + B(B(z)(T + zM» L Lie (B(z)(T + zM»m(jlk) 
1e=1 

or, in vector notation, 

L{z) = -XQ1(Z)V + B(B{z)(T + zM»L(B{z)(T + zM»Mt. 

Combining this with equation (8), we finally obtain 

L(z) = -XP(B(z)(T + zM), .11) (po + L(B(z)(T + zM»(T + zM)t) v 
+ B(B(z)(T + zM))L(B(z)(T + zM))Mt. (10) 

This equation represents a system of N coupled functional equations for the 
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functions Ldz) (i = 1, ... ,N). To solve it for these functions would be a 
formidable, if not impossible, task. However, even as it stands, we can extract 
useful performance measures from it, as will be shown next. 

3.2 Derivation of the first moments 

Putting z = e in equation (10) and using the normalization condition U(e) = 
1, we obtain L(e) = 'xv + L(e)M' or L(e) = ,Xv(l- Mt)-i. The vector L(e) 
contains the probabilities of finding a type i (i = 1, ... ,N) packet in service 
at the beginning of an arbitrary slot in regime. 

Taking partial derivatives of both sides of equation (10), and performing 
some straightforward but tedious algebra, one finds for the matrix K, defined 
as 

the following system of N2 linear equations 

K= DKDt +E 

whereby the matrices D and E are given by 

and 

A"(l) 
E = --vtv(1 + D) + 'x(vtL(e)Mt + MLt(e)vD) 

2 

(11) 

respectively. Once L(e) and K have been obtained, the mean per-type buffer 
contents can be calculated from E[u] = (E[utl, ... , E[UN]) = L(e) + eK. The 
mean buffer contents then follows as E[u] = E[u]et. 

Equation (11) represents a system of N2 linear equations, whereby a N2 x 
N2 matrix is thus involved. For small N, say up to values of 30, this causes 
no special problems, and the equations can be solved quite easily with e.g. 
the Gauss-Seidel method. For larger N, the matrix involved may become too 
large, especially since, in general, it has no special structure nor is it sparse. 
Repeated application of equation (11) yields 

+00 
K = I)DtE(Dt)R. 

R=O 
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Here, the matrices involved are of order N x N only. We did not investigate 
yet whether or not this approach is feasible, i.e., if it convergences fast enough 
and if it is numerically stable. Still other solution methods can be thought of, 
as e.g. diagonalization of D. Suppose D = N- 1GN, whereby G is diagonal, 
with [G]ii = 'Yi. Then, for the matrix K· = NKNt , we obtain from equation 
(11) that K· = GK·G + E· with E· = NENt. From this we get 

for i,j = 1, ... ,N, and, finally, K = N- 1K·(N-l)t. For some special cases 
of the packet-length distribution, explicit expressions for the matrices N and 
G can be derived. For example, for polynomial distributions which typically 
require a large number N of states in the underlying Markov chain, one can 
show that 'Y;1 is a solution of the polynomial equation 

S(z) - 1 
1 = pz S'(l)(z _ 1)' 

The function on the right-hand side of this equation equals the pgf of a residual 
lifetime, if one considers a discrete-time renewal process with renewal periods 
having pgf S(z). This elegant structure rises the suspicion that for this special 
case, or even in general, further analysis of equation (11) could lead to an 
explicit expression for the matrix K or for the mean per-type or total buffer 
contents, E[u] and E[u] respectively. 

With this remark, we end the analytical part of the paper and turn to some 
numerical examples to study the characteristics of the RR discipline. 

3.3 Numerical examples 

(a) Example 1 
In order to analyze the effect of the packet-length distribution on the buffer 
contents, we consider, besides the geometric (G) distribution, three other 
cases: deterministic (D) (as a special case of a polynomial distribution), a con­
volution of geometrics (C) and a mixture of geometrics (M). We refer again to 
Figure 1 for the associated Markov chains. The mean packet length is 10.0 in 
all cases. The pgf for case D equals S(z) = zN, with N = 10. Parameters for 
the other cases are as follows. For case C, the number of geometries convolved 
is N = 2 whereby 0'1 = 0'2. For case M, the number of geometrics mixed 
is N = 2. The weights are "1 = "2 = 0.5 and the mean values 1/0'1 = 5.0 
and 1/0'2 = 15.0. The variances of the resulting distributions equal 0.0, 40.0, 
90.0 and 140.0 for cases D, C, G and M respectively. The arrival process was 
assumed to be Poisson, i.e., A(z) = e~(z-l). 



E(a) 

The round-robin service discipline in discrete time 

10.0 

---- D 
LI --_ •••• C 

--0 

-'-'-M 

... 1 

u .... 
p 

~ : i 
I :I . ' . • I. ; :, . :, 

! :, , :. 
, '. , :, 

; il . ., , " 
; i, 

I II . :, 
I .. , 
• • I 

,-' .... " -,- .... " ,.' ..... ,,' 
~ • • --#fII' 

.~::::;:",., 

... 1.0 

Figure 2 Mean buffer contents (FCFS discipline) 

367 

In Figure 2, the mean buffer contents is shown as a function of the load. It 
only shows results for a FCFS discipline. Curves for the RR discipline were 
not displayed, since these curves coincide (case G) or nearly coincide (cases 
D,C and M) with the curve for case G under the FCFS discipline, as to be 
discussed next. For a Poisson arrival process, the mean buffer contents under 
a FCFS discipline is given by (Bruneel et al. 1993) 

E[ ] _ ~2(E[s]2 + V[s]) 
u -p+ 2(1-p) , (12) 

and, as clearly shows in Figure 2, an increasing packet-length variance results 
in an increasing mean buffer contents, especially when the load is high. 

For the RR discipline, we plotted in Figure 3, as a function of the load, the 
ratio ~ of the mean buffer contents, given a certain packet-length distribution, 
to the mean buffer contents for a geometric packet-length distribution with 
same mean, i.e., we plotted the quantity 

The figure shows that the variance of the packet-length distribution is of only 
minor influence, as far as the mean buffer contents is concerned. For low loads, 
packet-length variances smaller than that for a geometric distribution, cases 
D and C, lead to a slightly larger mean buffer contents, while for high loads, 
they lead to a slightly smaller one. For larger packet-length variances than 
that for a geometric distribution, case M, the opposite holds. The discrete­
time RR discpline thus behaves nearly as the continuous-time PS discipline, 
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Figure 3 Ratio of mean buffer contents (RR discipline) 

under which the mean buffer contents is influenced by the mean packet-length 
only (Kleinrock 1976). The fact that, for a Poisson arrival process, all cases 
yield a same mean buffer contents at load P = 0.5, does not seem to have an 
obvious intuitive explanation. 

Comparing the FCFS and RR disciplines, we already mentioned that they 
yield the same mean buffer contents when packet lengths are geometrically 
distributed. In light of the system equation for that buffer contents, which, 
for this special case, is of the form 

{ 
ak : Uk = 0 

Uk+! = ak + Uk : Uk > 0 , with probability 1 - Q , 

ak + Uk - 1 : Uk > 0 , with probability Q 

this fact is obvious, since the equation does not depend on the service discipline 
(Bruneel et al. 1993, Laevens et al. 1996a). For 'small' packet-length variances, 
cases D and C, the FCFS discipline outperforms the RR discipline in terms 
of mean buffer contents, while for 'large' ones, case M, the opposite is true. 

Concerning the ATM-switching application, an important observation is 
that the maximum throughput Pmall:' i.e., the maximum number of cells per 
slot that, on average, can be routed, becomes a function of the switch selection 
policy. For uniform and homogenous traffic (Awdeh et al. 1995), maximum 
throughput (Karol et al. 1987) is obtained when 

;\E[d] = E[u] = 1. (13) 

The average packet delay E[d] (waiting time plus service time) inside a virtual 
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queue, equals the average packet service time inside an input queue {Karol 
et al. 1987}. The load of the input queues is thus ~E[d], which should be less 
than unity. Little's result then yields ~E[d] = E[u] = 1 as stability margin. 
For a virtual queue using a FCFS scheduling policy on packet level, equations 
{12} and {13} yield 

2 - V2(1 + V[s]/E[s)2} 
PmafJ: = 1 - V[s]/E[s]2 

as in (Petersen 1991). For virtual queues using a RR discipline on packet 
level, no closed-form expression could be obtained. However, since the mean 
buffer contents is nearly insensitive to the exact form of the packet-length 
distribution, the formula for a geometric distribution (Jacob et al. 1995, Li 
1992, Petersen 1991) 

PmafJ: = E[s] (2 - V 4 - 2/E[sl) 

can be used as an approximation. For the four examples studied here, results 
are summarized in Table 1. Clearly, the packet-length distribution has impor­
tant consequences for the maximum throughput when the switch uses a FCFS 
selection policy on packet level. 

Table 1 Maximum switch throughput pmafJ: (cells/slot) 

FCFS RR 

D 0.5858 0.5065 

C 0.5445 0.5064 

G 0.5064 0.5064 

M 0.4772 0.5064 

(b) Example 2 
The per-type buffer contents is studied by means of a second numerical ex­
ample. Results are shown in Figures 4 and 5. We considered a Poisson ar­
rival process whereby, on average, a fraction ¢ of the packets has a geometri­
cally distributed length with mean 10.0, and a fraction 1 - ¢ a geometrically 
distributed length with mean 20.0. They are referred to in the figures as 
G{10.0} and G{20.0} respectively. Figure 4 shows the mean per-type and to­
tal buffer contents in absolute figures, while Figure 5 shows the mean per-type 
buffer contents relative to the mean total buffer contents. In the latter figure, 
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¢. = E[u.]/E[u] whereby the mean per-type and total butTer contents relate 
to the same service discipline, RR or FCFS respectively. The arrival intensity 
..\ varies with ¢, in order to keep the load constant at p = 0.8. Under the RR 
discipline, 'shorter' packets, i.e., the ones of type G(10.0), are less abundant 
than under the FCFS discpline, while the opposite goes for the 'longer' pack­
ets. Under the FCFS discipline, the fractions of packet types are nearly the 
same as those in the arrival stream, shown by the dotted lines in Figure 5. 
Both fractions would be exactly the same, if one considers only packets in the 
queue, i.e., the system without the server (Bruneel et al. 1993). The slight 
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deviation when considering the buffer contents as in Figure 5, is due to the 
fact that 'shorter' or 'longer' packets tend to spend, on average, less or more 
time in the server respect.ively. 

4 WAITING TIMES 

Concerning waiting times or delays, we can rely on Little's result to calculate 
mean values, yielding E[d) = ~-lE[u] and E[w] = E[d)-E[s] = ~-1E[u]-E[s]. 
In order to obtain, for instance, an expression for the pgf of the waiting time 
of a tagged packet or for the variance thereof, the analysis in subsection 3.1 of 
the buffer contents should be modified to some extent. Since the waiting time 
of a tagged packet is strongly related with the number of other packets in the 
system during the different cycles it goes through, a joint analysis of these 
random variables follows closely the derivations made in subsection 3.1. We 
do not include this analysis here, but refer the interested reader to (Laevens et 
al. 1996a), where such an analysis was done for the special case of a geometric 
packet-length distribution. 

In general, we cannot use Little's result to calculate mean packet waiting 
times conditioned on their initial type, since packets may change type while 
in the system. We can, however, apply it to a set of types, for which the 
corresponding states of the underlying Markov chain form a closed subchain, 
i.e., when they cannot be reached from any of the non-absorbing states outside 
the set and vice versa. Let us denoted such a set by H. Little's result then 
yields 

E[wl'P1 E H] = (~L Vi) -I (L E[Usl) - E[sl'Pl E H]. 
iEH iEH 

This observation provides us with a method to calculate the mean waiting 
time of a packet, conditioned on its initial state. By defining an alternative 
Markov chain with, in general, 2N states, in such a way that 

M'= [~~] 
and 

v' = (v .. ... , VII_1. 0, VII+1. ••• , VN, 0, ... ,0, VII, 0, ... ,0), 

we artificially create a closed class for packets whose initial type 'P1 is k. 
Note that both the orginial and new Markov chain correspond nonetheless 
to a same phase-type distribution. Then, applying the above formula with 
H = {N + 1, ... ,2N}, we can obtain E[wl'Pl = k], after baving calculated 



372 Part VIII Phase-Type Input Models 

E[Ui] for i = N + 1, ... , 2N. In general, this approach doubles the number 
of states in the Markov chain, and hence quadruples the matrix involved in 
solving equation (11). Moreover, it should be repeated for every conditional 
mean waiting time one wants to obtain. 
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Figure 6 Mean waiting time per type 

We conclude this section with Figure 6, that complements Figures 4 and 
5. Shown is the mean waiting time under the RR discipline of packets with 
geometrically distributed length with mean 10.0 and 20.0, denoted G(10.0) 
and G(20.0) respectively, that mix in the arrival process in fractions r/J and 
1 - r/J, as in numerical example 2. Clearly, under the RR discipline the mean 
waiting time of a packet of one type is only slightly disturbed by the presence 
of packets of another type. For comparison, the mean waiting time under the 
FCFS discipline, which is the same for all types of packets, is also shown. 
Under this discipline 'shorter' packets suffer from the presence of 'longer' 
packets. 

5 CONCLUSIONS 

A system of functional equations was derived for multivariate generating func­
tions related to the queue contents in a discrete-time single-server queue, 
based on a kind of memoryless property of the phase-type distribution that 
was assumed for the packet lengths. From this complex system of equations, a 
practical method to calculate the mean buffer contents was obtained. Little's 
result then yielded mean waiting times. Calculation of higher-order moments 
of the buffer contents, such as variances, is just a matter of performing some 
straightforward algebra, along the lines of subsection 3.2. A topic for future re-
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search certainly is the question whether tail probabilities can also be extracted 
from the functional equations, be it through numerical transform inversion or 
by an approximate analytical approach. 

Comparing the RR discipline with the FCFS discipline showed that the 
former does not always perform optimal in terms of mean buffer contents, 
or, within the context of ATM-switching, in terms of maximum throughput. 
However, since it is quasi insensitive to the exact form of the packet-length 
distribution, a switch design implementing the RR discipline would be more 
robust. Besides this, the discipline also has the advantageous feature of being 
fair, in the sense that it relates packet waiting-times inside the virtual queues 
to packet lengths. 

To keep focus on the main ideas of the proposed approach, the analysis was 
restricted to the essentials. We hope a more detailed analysis, incorporating 
e.g. higher-order moments of the waiting time, may become the subject of 
future reports. 
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